
Toward Measuring Defect Debt and Developing a
Recommender system for their prioritization∗

Shirin Akbarinasaji
Data Science Lab
Ryerson University
Toronto, Canada

shirin.akbarinasaji@ryerson.ca

ABSTRACT
Software development managers make a release decision with-
out fully resolving the defects from current and previous re-
leases due to tight deadlines. Deferring the defects would
accumulate a tremendous amount of technical debt in the
system. Typically, the defect debts are defined as the type
of defect that should be fixed. However, due to compet-
ing priorities and the limited amount of time and resources,
they would be postponed to the next release. In order to
aid practitioners ,who make release decisions, to observe the
amount of debt, there is a need for quantifying the defect
debt. Software bug repositories roughly provide us with in-
formation about the amount of time the defect debt exist in
the system, the time the defects are resolved and the sever-
ity of the defect. We suggest categorizing the defect into
the regular defect and debt prone defect by analyzing this
information. Afterwards, we compare the regular defect and
debt-prone defect to determine the principal, interest and
interest probability of defect debt. We also propose the re-
inforcement learning for scheduling which defect debt needs
to be paid and when they need to be paid.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Theory

Keywords
Technical Debt Measurement, Defect Debt, Reinforcement
Learning, Software Maintainability

1. INTRODUCTION
∗Copyright ©2015 for this paper by its authors. Copying
permitted for private and academic purposes.

Every project requires to be completed and delivered under
certain constraints. Project management body of knowl-
edge modeled these constraints as the iron triangle of time,
cost and quality (scope). Figure 1 illustrates the project
management triangle. Typically, changing one side of the
triangle has an effect on the other side of the triangle. For
instance, increasing the quality (scope) leads to the growth
in time and cost. Similarly, tight time (budget) constraints
may cause increasing of the budget (time) and reducing the
quality. Complex software projects certainly need to tackle
the triple project constraints as well. The quality of soft-
ware often diminished over time since the software mainte-
nance projects are performed under tight time and resource
constraints. The project managers need to make balance
between time and cost properties and the required quality
level. To achieve the system equilibrium, they might delay
some maintenance activities such as documentation, testing
or even fixing bugs. The consequence of delaying these tech-
nical development activities can be interpreted as a type of
debt and it will affect the long term maintenance and devel-
opment activities. The trade-off between short term benefits
of delaying these activities and long-term effect of postpon-
ing them is articulated as “technical debt”.

Figure 1: Project Triangle

Generally, the technical debt describes the delayed devel-
opment activity due to the time and resource constraints.
Likewise the financial debt, principal is an amount of effort
in terms of time or cost require paying off the debt (i.e com-
plete the task). Interests are the potential penalty in terms
of extra amount of effort required to pay as a compensation
for what is borrowed [24]. Accumulation of technical debt in
the system has tremendous effect on the quality of the sys-
tem [24]. There is always a choice between paying down the
whole principal or continuing to pay off the interest. And,
in small software projects, the managers may implicitly de-
cide on the amount of the debt to be paid off and payment

15



schedule. However, in the large projects, there is a need for
a comprehensive system that is able to track and manage
the technical debt [19].

Additionally, technical debts may occur intentionally or un-
intentionally [14]. Intentional debts are the kind of debts
that the developers and managers are aware of their exis-
tence and they occur deliberately due to the strategic and
tactical mission. Unintentional debts occur due to the de-
velopers'lack of attention or understanding and the team is
not aware of their existence and their location. Further-
more, the debts may also be classified according to its type.
According to Li et al. technical debts are classified into 10
types of debts including: requirement, architectural, design,
code, test, build, documentation, infrastructure, versioning
and defect debt[13]. In this study we particularly focus on
defect debts which refer to the defects, bugs or failures found
but not fixed in the current release[19].

Since, quantifying the technical debt is a key factor in mak-
ing decision about incurring, paying off and deferring tech-
nical debt, we will initially propose a new approach for mea-
suring the principals and interests of defect debt. Most of the
quantifying approaches in the literature are based on the dis-
tance between the violation of the code from the ideal code.
However, our approach differentiates from the existing ap-
proaches since it concentrates on mining of bug repositories
and collecting data from issue tracking system.

On the other hand, software development team always faces
the high volume of defect reports and change requests in
every cycle of release. The challenge is to figure out which
instance of defects should be addressed in this release and
in which order they are required to be fixed. Therefore, an
important next step is recommending a system to the de-
velopers and managers to prioritize instances of defect debt
in the current release. Our proposed solution for scheduling
of the defect debt is based on reinforcement learning. Our
ultimate goal is finding an optimal action-selection policy
for paying off the defect debt in limited time in such a way
that minimizing the amount of interest. We can summarize
our contribution as follows:

• Proposing a new approach for quantifying the defect
debt,

• Developing an automated framework for prioritization
of defect debt

The remainder of the paper is as follows: in section 2, we
will briefly explain the current research issues and what we
would like to get advice on. Section 3 will review the related
work. In section 4, we will specifically discuss our research
objectives. Section 5 is a brief explanation of research ap-
proach. Finally, section 6 will review next step and section
7 is conclusion and summary.

2. CURRENT RESEARCH ISSUES
Although the technical debt attracts interests of many re-
searchers in recent years, most of the work only capture the
theoretical aspect of the technical debt and there is still a
lack of empirically based studies in the literate. In this re-
search, we would like to propose an empirical approach for

quantifying the defect debt and we seek feedback on our
research approach and our proposed solution.

3. RELATED WORK
The technical debt was first introduced two decades ago by
Ward Cunningham [3]. He described that “Shipping first
time code is like going into debt. A little debt speeds devel-
opment so long as it is paid back promptly with a rewrite”.
Although it is a fairly recent metaphor in software engineer-
ing, it is highly related to well-researched issue like software
decay by Lehman and Belady [11] and software aging by
Parnas [17] . Software decay is a complexity of software
due to continuous changes and software aging is a disability
of software to meet required changes. The introduction of
technical debt facilitates managing these concepts.

Martin Fowler [7] suggested the quadrilateral categorization
of technical debt considering intention (deliberate or inad-
vertent) versus awareness (reckless or prudent). Brown et al.
[1] extended the concept of technical debt from the code level
metaphor to architectural and detailed design. Since then,
many practitioners and researchers relied on the definition
of the technical debt in order to explain various cost-drive
issues in software engineering. Tom et al. [24] explored
the technical debt concept focusing on dimension of tech-
nical debt, the advantages and drawbacks of allowing them
in a system and its origins. In another study, Tom et al.
[23] did a systematic literature review focusing on the state
of academic research for technical debt. Li et al. [13] did a
systematic mapping study on technical debt and its manage-
ment. Seaman and Guo [19] reviewed some issues associated
with technical debt and proposed the framework for mea-
suring and monitoring the debt based on risk management
approaches. Their framework for managing technical debt
was identifying debt, measuring debt and monitoring debt.
For identifying debt, especially code-based debt, there are
various tools. They are designed to detect code smell [18],
modularity violation [25], grime buildup [9] and potential
defect. Zazworka et al. [27] found that different tools did
not reveal overlapping results, rather they each pointed out
a different problem.

Letouzney [12] proposed the SQALE (Software Quality As-
sessment based on Lifecycle of Expectations) for evaluat-
ing the technical debt. Sonar tool1 is a popular tool for
evaluating the technical debt but it is not perfect as it is
widely discussed in technical debt literature [5]. Sonar ap-
plied quality heuristic for identifying code duplication, vio-
lation of code standard, lack of testing, and potential latent
bugs. Nord et al. [15] presented a metrics based on architec-
ture and measurement approach for managing the technical
debt. Nugroho et al. [16] redefined the technical debt as
fixing cost of the technical issue. They performed static
analysis to identify debt and estimated the debt principle
based on the percentage of changed line code, code duplica-
tion, dependency and parameter count and also complexity
metric. They calculated the interest estimation by assigning
these metrics to risk categories. Guo et al. [8] investigated
the effect of technical debt in a real software project by es-
timating the principal debt according to effort estimation.
Zazworka [28] applied cost-benefit analysis for prioritizing

1http://www.sonarsource.org/)

16



the God class debt. He ranked the cost of paying debt and
the impact of debt on quality to determine which refactoring
activities need to be performed initially. Singh et al. [20]
monitored developer activities to estimate the debt interest.
Several studies proposed considering interest probability for
interest estimation [2], [6]. This is the probability of debt, if
not paid, how it would affect other tasks in a negative way
[19]. There are also several studies that are presented and
classified the technical debt by mapping study by [13].

Xuan et al. proposed the concept of debt-prone bugs and
identified three types of debt :tag bugs, reopen bugs and du-
plicate bugs. Tag bugs are the bugs which“fixme, todo, xxx”
tags annotated to them. Reopened bugs are the bugs which
are solved by developers but reopen later, and duplicate bugs
are the bugs with the same root as existing ones.They con-
ducted a case study on Mozilla to investigate effect of debt
prone bugs on software quality. [26].Snipes et al. identified
and categorized cost related to fixing the defects or deferring
the defects. They stated that decision factor for managing
defects from the technical debt perspective are: severity, an
existence of a workaround, an urgency of fix required by
customer, the effort to implement the fix, the risk of the
proposed fix and the scope of testing required[21].

In this study,we particularly concentrate on defect debts and
we propose how to measure the principal and interest and
interest probability of defect debts. However, the main con-
cern of development team is how to prioritize defect debts in
order to minimize the total amount of interest. We propose
reinforcement learning to schedule debt prone bugs pay off.
For future step, we plan to collect data from bug reposi-
tory of a real project to show the feasibility of our proposed
model.

4. RESEARCH OBJECTIVE
The general objective of this study is to propose an approach
that provides the developers and practitioners to make a de-
cision under uncertainty during project management regard-
ing the defect debt. In particular, the goals of this proposal
can be summarized as following:

• To propose a simple and straightforward approach for
measuring the principal and interest of any defect prone
bug instance: In most of the previous studies, the tech-
nical debt has been measured by comparing the current
state of the code and the ideal target for the code. In
this study, we would like to propose a new approach to
measure the technical debt by mining the bug reposi-
tory.

• To develop a framework for automating the prioritiza-
tion of defect debt: Once technical debt is measured,
the next step is to provide a guide to practitioners a
decision technique and approach to determine whether
or not to pay off the debt at a particular point of time.

5. RESEARCH APPROACH
5.1 Definition of Defect Debt
Defect debts refer to the defects, bugs or failures found but
not fixed in the current release, because there are higher pri-
ority bugs to fix or there are limited resources to fix them.

Jifeng et al. referred to the defect debt by another terminol-
ogy as “debt prone bugs” and described it as any software
bugs which remain in the system because of any immature,
incomplete process of fixing the bugs[26].

From the perspective of defect debt definition, the bugs are
divided into the bugs which constitute the technical debt
and the bugs which do not form any debt. Hereafter, we
refer to the latter as regular bugs. Therefore, two type of
bugs exist in any bug repositories:

• Regular bugs which refer to the bugs that are submit-
ted and resolved in the same release

• Debt prone bugs which refer to the bugs that are sub-
mitted in one release but are not resolved in that re-
lease

5.2 Measuring defect debt principal and in-
terest

In management level of any software organization, they are
interested in achieving a quantitative understanding of time
constraints for fixing the bugs. However, the time con-
straints that debt prone bugs may impose to the system
is totally different from the regular bug fixing time. The
fixing time for debt prone bugs is the summation of the
standard amount of time required for fixing the bugs and
an extra amount of time required to fix them as a penalty
of deferring the process. In other word, this fixing process
for debt prone bugs may exceed the standard fixing time for
regular bugs because the accumulation of unresolved bugs
in the system would make it more complicated to repair the
defects. Will Snipes et al. identified the following type of
time (cost) for fixing defects[21]:

• Investigation time or the time of diagnosing, verifying
and finding the alternative solution for defects.

• Modification time which refers to the time of applying
the solution to fix defects

• Work around time that deals with providing the bypass
for defects which are not resolved immediately

• Customer support time is the time of providing sup-
port for the customer because of the defect that exists
in the current release

• Patch time or the time of finding temporary solution
for fixing the bugs

• Validation time that refers to the time of testing the
systems.

Investigation, modification and validation time are incurred
for fixing the regular bugs. However, postponing the fix-
ing process of the bugs may impose additional time such as
workaround, customer support time and patch time to the
system as well. Besides, the investigation cost may increase
because of the accumulation of more defects make the diag-
nosis process more complicated[21]. As mentioned earlier,
technical debt principal is the amount of effort in terms of

17



time that are required for fixing bugs. And the interest is
an extra amount of time as a type of penalties which are
required for fixing the defect. Consequently, principal value
for debt prone bugs may include three components: investi-
gation, modification and validation time. The interest value
may compromise additional workaround, customer support
time and patch time.

In order to help software development team to better esti-
mate if the defect debt can be absorbed in current release or
not, a fair approximation for principal and interest are re-
quired. Suppose that two similar bugs with the same charac-
teristic such as severity, same assignment, and same product
exist in bug repositories. One bug is treated as a regular bug
and one is treated as debt prone bug. For any regular bug,
we can easily estimate the regular fixing time by retriev-
ing the historical data from bug tracking system. In any
bug tracking system, the bugs are submitted by develop-
ers and testers with an ID, description of bugs, its version,
the reported date and its severity. The developers who are
interested in working on those bugs may assign different la-
bels to bugs such as new, unconfirmed, reopened and etc.
They also contain an adequate information regarding the
last time the bugs are modified and the history of modifica-
tion. The fixing time for regular bugs is equivalent to the
difference between reporting time of the bugs and the re-
solving time of the bugs. Therefore, we are able to build a
prediction model based on the data from regular bug fixing
time to predict the principal for debt prone bugs. The po-
tential input features for feeding the prediction model would
be severity, submitter, owner, priority, the indicator if the
bug internally discovered or externally discovered, etc.

In order to evaluate the interest for debt prone bugs, ini-
tially the variance between the fixing time and the estimated
principal needs to be calculated. The interest amount is
proportional to this variance. The weighting factor for ad-
justing that is called severity. Severity is the potential effect
of defect in the functionality of the system and customer
requirement[21]. For instance, one reason for deferring the
bugs fixation to the next release is that the bug is very triv-
ial. Suppose the customer is requesting changes related to
background color of the system. In this case, the impact
of the defect is a minor irritation. Therefore, the severity
of the bug is very low and postponing the defect for many
years may not affect the functionality of the system. There-
fore, the interest amount for this particular bug is the vari-
ance between the regular fixing time and estimated principal
times the severity of the bugs. From this point of view, we
can conclude that the interest amount is the time difference
between principal and real fixing time multiplying the co-
efficient based on severity. Fundamentally, the more severe
bugs pose more interests to the system if they are not fixed
in the same release as they reported. Therefore, an interest
amount can be calculated as below:

InterestAmount = (RealF ixingT ime−EstimatedPrincipal)
∗ Severity

Another component of the interest is the interest probability
which refers to the probability that defect debt, if not fixed,
will negatively affect the fixing time of other defects[19].For
the sake of estimating interest probability, all the bugs that

are dependent to current bugs need to be divided by the
number of all existing bugs in the current release.

5.3 Applying Reinforcement Learning for Pri-
oritization of Defect Debt

Reinforcement learning is a machine learning task of find-
ing an optimal action-selection behavior of an agent in or-
der to maximize the total amount of reward[22]. Reinforce-
ment learning is inspired by a concept in psychology “re-
inforcement”. In behavioral psychology, reinforcement is a
consequence that will motivate the agent behavior by of-
fering specific stimulus followed by the behavior. Basically,
reinforcement learning is a problem of an agent who inter-
acts with the environment and tries to achieve an optimal
goal. Reinforcement learning has many applications in dif-
ferent domains: robotic control, scheduling, chess playing,
backgammon, etc. [10]. Reinforcement learning is based
on Markov Decision Process (MDP) and the components of
basic reinforcement learning model are as following:[22]:

• a set of actions a ∈ A

• a set of states in the environment s ∈ S

• a set of transactions between the states

• The rules that determine an immediate reward for any
transition (r)

• The rules that determine what the agent are able to
observe from an environment

The agent interacts with an environment over potentially
infinitive discrete time steps of t = 1, 2, 3, . The time step
is not necessarily fixed interval time, it can be determined
based on point of time that the state change or new action
has been performed[4]. At each time, the agent based on
state of an environment chooses an action at. Then, the
agent receives a reward based on chosen action and will be
transferred to new state st+1. The agent can evaluate its
performance based on the received reward. The reward de-
fines the goal in the learning problem. The Policy is the
rule agent uses to select actions and for each state it assigns
a probability to each possible action. The agent tries to
adjust policy in order to maximize the accumulated reward
[4]. Figure (2) depicts a standard framework of reinforce-
ment learning.

Figure 2: Reinforcement learning Framework

Prioritization of defect debt can be modeled as a reinforce-
ment learning. The main reason is that in scheduling of de-

18



fect debt, we are facing a changing environment and, there-
fore, a traditional fixed policy schedule would not work in
such a fluctuating environment. Additionally, we are not
able to anticipate the long-term consequence of debt prone
bugs in the system. In software defect detection, practition-
ers are looking for recommendations beyond classification.
Identifying and recommending a course of action for defect
debt is a complex task that traditional classification algo-
rithms may not suffice. A classification algorithm takes a
given data to learn and build a model for making a single
prediction or decision. However, human learning takes place
in three phases, classification, memorization and procedural
by interacting with the environment in making decisions.
When building recommender systems in complex environ-
ments such as software defect debt prediction, we need to
use learning techniques such as reinforcement learning where
an algorithm considers the effect of actions by trying things
to learn. It is different than dynamic programming as we do
not know the effects of actions in the case of prioritization
of defect debts. Since technical debt is hidden in the code
and we do not know its future effect, we need a learning al-
gorithm that considers this uncertainty and learns from its
environment by interacting with it. Such learning is more
realistic and closer to how humans learn, but it is difficult
to implement as a learning algorithm.

The potential framework for prioritization of debt is as fol-
lows: Suppose that the developer is the agent in the model
that should adjust policy in order to maximize the amount
of interest we could save. A set of states in environment
might be the amount of time remaining before upcoming
release. A set of actions is whether to pay debt i in the
upcoming release or not. Reward is equal to amount of in-
terest we save if we pay the debt i at current time instead
of postponing it to the next release. Note that after fixing
a defect debt bugs, the target is achieving zero (minimum)
amount of debt before the release or maximizing amount of
interest that we saved. We assume that the developers are
fully aware of the current state of the model. They have
all the required information about how much debt is in the
system and how much time they have to work on debt prone
bugs.

Assume that in each release the developer team decides to
assign a specific amount of time T to fix some defect debts.
At t = 1 the developer face totally N defect debts to be
fixed. He needs to decide which debt to pay at time t = 1.
Suppose that the developer decides to fix defect debt i and
it would take x1 minutes to fix it. He would save an interest
of r(s1). At t = 2, the remaining time is equal to T − x1.
As, defect debt i has been fixed in the system, it would
effect the number of defect debt we may face in the system
since it will facilitate fixing of some other bugs which are
dependent in defect debt i. For instance, the number of
defects may change to N + m − 1. Suppose, at time t = 2
the developer decides to fix defect debt j and it would take
x2. The remaining time would be T −x1−x2 and he would
save r(s2). The developer will continue till he reaches time
T . He needs to make the decision based on the long-term
reward the system would return to him. The expected long-
term rewards at each state s for policy ,π, would be:

Bπ(s) = Exp[r(st) + γ ∗ r(st+1) + γ2 ∗ r(st+2) + ...|st = s]

Where B is the long-term reward in the system, π is the
action (policy) the developers decide to take. r is a reward
at each state and 0 < γ < 1 is the discount factor which
needs to be determined initially. The optimum decision is
to optimize the long-term reward:

π(s) = argmaxBπ(s)

The optimal π would return the sequence of the defect debt
that developers should fix to save the maximized amount of
interest.

6. PLANNED NEXT STEPS
In order to check the feasibility of our approach, we need
to apply it in real world projects and analyze the results.
Therefore, we plan our next steps of this research as below:

The initial next step is collecting data from both open source
projects and also commercial software companies and ap-
plying our proposed techniques for quantifying their defect
debt. We also need to consult with developers in each do-
main to assess our approach. The second step is determin-
ing which reinforcement learning method is best situated for
our model such as temporal difference learning, Q-learning,
SARSA , etc. The last step is to extend our approach to
other types of technical debt.

7. CONCLUSION
In this study, we described a new procedure for measur-
ing the principal, interest and interest probability for defect
debt. Despite most of the existing approaches which are
based on the violation of the program from the right code
practice, our proposed method is based on mining the bug
repository and standardizing the measurement based on the
actual status of the system. Our proposed approach presents
a simple heuristic for practitioners with limited knowledge
about the architecture of the code in quantifying the defect
debt. Typically, we concentrate on the bugs that are opened
and resolved in the same release and use them as an original
required fixing time. Then, by comparing the defect debt
prone to the regular defect, we calculate the interest.

Furthermore, we would like to develop a novel learning frame-
work for scheduling of the defect debt. Our proposed method
is reinforcement learning because of the dynamic nature of
the defect debt environment. We believe that determining
which defect debt to work on is a very complicated problem
and developers need an automated framework that suggest
them a sequence of defect debt they can fix in limited time
that can return the maximum amount of reward to them.

8. ACKNOWLEDGMENT
I would like to express my sincere thanks to Dr. Ayse Bener
and Dr. Bora Caglayan for providing me with their valuable
advice and guidance. I am very grateful for their support
and feedback that help me to improve my proposal.

9. REFERENCES
[1] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim,

P. Kruchten, E. Lim, A. MacCormack, R. Nord,
I. Ozkaya, et al. Managing technical debt in
software-reliant systems. In Proceedings of the

19



FSE/SDP workshop on Future of software engineering
research, pages 47–52. ACM, 2010.

[2] Y. Cai, R. Kazman, C. Silva, L. Xiao, and H.-M.
Chen. A decision-support system approach to
economics-driven modularity evaluation.
Economics-Driven Software Architecture, 2013.

[3] W. Cunningham. The wycash portfolio management
system. ACM SIGPLAN OOPS Messenger,
4(2):29–30, 1993.

[4] M. K. P. DARSINI. Application of Reinforcement
learning algorithms to software verification. PhD
thesis, M. Sc. Thesis, Universite Laval, 2006.

[5] R. J. Eisenberg. A threshold based approach to
technical debt. ACM SIGSOFT Software Engineering
Notes, 37(2):1–6, 2012.

[6] C. Fernández-Sánchez, J. Dı́az, J. Pérez, and
J. Garbajosa. Guiding flexibility investment in agile
architecting. In System Sciences (HICSS), 2014 47th
Hawaii International Conference on, pages 4807–4816.
IEEE, 2014.

[7] M. Fowler. Technical debt quadrant. Bliki [Blog].
Available from: http://www. martinfowler.
com/bliki/TechnicalDebtQuadrant. html, 2009.

[8] Y. Guo, C. Seaman, R. Gomes, A. Cavalcanti,
G. Tonin, F. Q. Da Silva, A. L. Santos, and C. Siebra.
Tracking technical debtâĂŤan exploratory case study.
In Software Maintenance (ICSM), 2011 27th IEEE
International Conference on, pages 528–531. IEEE,
2011.

[9] C. Izurieta and J. M. Bieman. How software designs
decay: A pilot study of pattern evolution. In
Empirical Software Engineering and Measurement,
2007. ESEM 2007. First International Symposium on,
pages 449–451. IEEE, 2007.

[10] L. P. Kaelbling, M. L. Littman, and A. W. Moore.
Reinforcement learning: A survey. Journal of artificial
intelligence research, pages 237–285, 1996.

[11] M. M. Lehman and L. A. Belady. Program evolution:
processes of software change. Academic Press
Professional, Inc., 1985.

[12] J.-L. Letouzey. The sqale method for evaluating
technical debt. In Proceedings of the Third
International Workshop on Managing Technical Debt,
pages 31–36. IEEE Press, 2012.

[13] Z. Li, P. Avgeriou, and P. Liang. A systematic
mapping study on technical debt and its management.
Journal of Systems and Software, 101:193–220, 2015.

[14] S. McConnell. Technical debt. 10x software
development. Blog]. Available at: http://blogs.
construx.
com/blogs/stevemcc/archive/2007/11/01/technicaldebt-
2. aspx,
2007.

[15] R. L. Nord, I. Ozkaya, P. Kruchten, and
M. Gonzalez-Rojas. In search of a metric for managing
architectural technical debt. In Software Architecture
(WICSA) and European Conference on Software
Architecture (ECSA), 2012 Joint Working IEEE/IFIP
Conference on, pages 91–100. IEEE, 2012.

[16] A. Nugroho, J. Visser, and T. Kuipers. An empirical
model of technical debt and interest. In Proceedings of
the 2nd Workshop on Managing Technical Debt, pages

1–8. ACM, 2011.

[17] D. L. Parnas. Software aging. In Proceedings of the
16th international conference on Software engineering,
pages 279–287. IEEE Computer Society Press, 1994.

[18] J. Schumacher, N. Zazworka, F. Shull, C. Seaman, and
M. Shaw. Building empirical support for automated
code smell detection. In Proceedings of the 2010
ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, page 8. ACM,
2010.

[19] C. Seaman and Y. Guo. Measuring and monitoring
technical debt. Advances in Computers, 82:25–46,
2011.

[20] V. Singh, W. Snipes, N. Kraft, et al. A framework for
estimating interest on technical debt by monitoring
developer activity related to code comprehension. In
Managing Technical Debt (MTD), 2014 Sixth
International Workshop on, pages 27–30. IEEE, 2014.

[21] W. Snipes, B. Robinson, Y. Guo, and C. Seaman.
Defining the decision factors for managing defects: A
technical debt perspective. In Managing Technical
Debt (MTD), 2012 Third International Workshop on,
pages 54–60. IEEE, 2012.

[22] R. S. Sutton and A. G. Barto. Reinforcement learning:
An introduction, volume 1. MIT press Cambridge,
1998.

[23] E. Tom, A. Aurum, and R. Vidgen. A consolidated
understanding of technical debt. In ECIS, page 16,
2012.

[24] E. Tom, A. Aurum, and R. Vidgen. An exploration of
technical debt. Journal of Systems and Software,
86(6):1498–1516, 2013.

[25] S. Wong, Y. Cai, M. Kim, and M. Dalton. Detecting
software modularity violations. In Proceedings of the
33rd International Conference on Software
Engineering, pages 411–420. ACM, 2011.

[26] J. Xuan, Y. Hu, and H. Jiang. Debt-prone bugs:
technical debt in software maintenance.

[27] N. Zazworka, C. Izurieta, S. Wong, Y. Cai,
C. Seaman, F. Shull, et al. Comparing four approaches
for technical debt identification. Software Quality
Journal, 22(3):403–426, 2014.

[28] N. Zazworka, C. Seaman, and F. Shull. Prioritizing
design debt investment opportunities. In Proceedings
of the 2nd Workshop on Managing Technical Debt,
pages 39–42. ACM, 2011.

20




