
Attention, Test Code is Low-quality!

Xinye Tang

State Key Laboratory of Computer Science

Institute of Software,

Chinese Academy of Sciences

tangxinye@nfs.iscas.ac.cn

ABSTRACT
In this paper, we describe the formatting guidelines for ACM SIG

Proceedings. Software testing is an essential process during

software development and maintenance for improving software

quality. Test code, the artefact during software testing, has been

widely used in many software quality assurance techniques.

Traditionally, software quality assurance techniques, e.g.,

automatic bug repair, fault localization, test case prioritization,

and mining API usage from test code are based on the hypothesis

of a sound quality of the test code. However, via empirical study

on four open source projects, we found that the quality of test

code is quite low comparing with corresponding source code, and

this might hurt the above software quality assurance techniques.

In this paper, we studied more than 140,000 LOC(lines of code)

test code from four large scale and widely used open source

projects and found that it is common for test code to be

unregulated and of low-quality in open source projects. First, the

comment clone ratio, unreleased resource ratio and clone code

ratio of test code is much higher than that of corresponding source

code; second, bug-fixed coverage is down to 0. We have learned

the following lessons: the quality of test code is quite low

comparing with corresponding source code, and the low quality

test code may misguide existing software quality assurance

techniques.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: [Testing and Debugging]

General Terms

Experimentation, Measurement.

Keywords

Test code quality, empirical study, testing, software quality

assurance.

1. INTRODUCTION
Software testing is an essential process during software

development and maintenance. Test code is widely used as the

artefact during software testing for ensuring software quality.

Therefore, it’s critical to maintain high quality test code. Existing

work [3] revealed that high quality test code of a software system

could improve the development team’s performance. Moreover,

they reported that the bad quality of test code demonstrated a

significant positive correlation between test code quality and the

throughput and productivity of issue handling. In this paper, we

conduct a pilot study to examine test code quality from a different

aspect, specifically, we try to study the potential relation between

test code quality and some software quality assurance techniques,

e.g., automatic bug repair, fault localization, test case

prioritization, and mining API usage from test code.

Traditionally, software quality assurance techniques, e.g.,

automatic bug repair [4, 9, 14], fault localization [11, 15], test

case prioritization [6], and mining APIs from test code [8][16] are

based on the hypothesis of a sound quality of the test code.

Research studies on automatic fault repair leverage test code to

measure their performance. For fault localization, test code is

required to improve the accuracy and establish the lower and

upper bounds. Test case Prioritization techniques aim to rearrange

the execution order of test cases, which is based on the sound

quality of the test code. What’s more, test code is essential to

mine API usage examples, which is helpful for developers to learn

and understand the correct usage of APIs of libraries.

In this paper, via empirical study on four large scale and widely

used open source projects, we found that the quality of test code is

quite low comparing with corresponding source code, and this

might have negative impact on the above software quality

assurance techniques. We studied more than 140,000 LOC test

code from four large scale and widely used open source projects

and found that it is common for test code to be unregulated and

low-quality in open source projects. Specifically, first the

comment clone ratio, unreleased resource ratio and clone code

ratio of test code is much higher than that of corresponding source

code; second, bug-fixed coverage is down to 0.

We have learned the following lessons: the quality of test code is

quite low comparing with corresponding source code, and the low

quality test code may misguide existing software quality assurance

techniques. The main contributions of this work include:

1. We proposed five criteria for the measurement of test code

quality.

2. Based on proposed criteria, we measured test code quality of

four large scale, widely used open source projects. Results show

that the quality of test code is quite low comparing with

corresponding source code. We further discuss the potential

Copyright © 2015 for this paper by its authors. Copying permitted for

private and academic purposes

27

Figure 1: An example of duplicate code extracted from FailTest.java in Ant 1.9.4.

impact of low quality test code on existing software quality

assurance techniques. To the best of our knowledge, this is the

first work to report that the test code is low-quality and

untrustworthy, which should be taken seriously.

In the remainder of this paper, section II presents points on which

the author would like to get the most advice on; Section III

presents essential background and related work of our study;

Section IV shows our motivation; Section V present the three

categories for the measurement of the test code quality. Section

VI explains how we conduct our empirical study; Section VII

discusses the threats to this work; Section VIII concludes this

paper and discuss our future work.

2. ADVICE WANTED
As for the points on which we would like to get the most advice

on, we are thinking about the possibilities of proceeding our

research further. Specifically, we plan to conduct quantitative and

qualitative studies to explore how exactly the low-quality test

code could impact software quality assurance techniques, i.e.,

automatic bug repair, fault localization, test case prioritization,

and mining API usage. We will appreciate it if mentors could give

insightful suggestions on whether the work is valuable and how it

could be effectively done. Also, any feedback on the structure and

content of the paper would be welcome.

3. BACKGROUND AND RELATED WORK

Automatic Bug Repair: is the process of automatically

generating patches for repairing bugs. A lot of studies have been

carried out to address this issue. Weimer et al. [14] present a fully

automated technique for repairing bugs using one part of a

program as a template to repair another part. Kim et al. [9]

proposed a patch generation approach learned from human-

written patches and identified common fix patterns for automatic

patch generation. Tan et al. [13] propose an approach of

automated repair of software regression bugs. Test code is used to

evaluate the effectiveness of these approaches, specifically, given

a bug, if a generated repair patch could pass all test cases, the

generated repair patch will be treated as an effective repair for this

bug.

Fault Localization: is the indispensable process to identify

exactly where the bugs are before fixing them. Xuan et al. [15]

pointed out that the effectiveness of fault localization depends on

the quantity of test code and proposed an approach to improve

fault localization with test case purification. Steimann et al. [11]

empirically explored performance of existing fault locators and

their results shown the quality of test code is a key factor for fault

locators. Campos et al. [5] proposed an approach to fault

localization by entropy-based test generation.

Test Case Prioritization: aims to rearrange the

execution order of test cases to maximize specific objectives.

Elbaum et al. [6] compare different test case prioritization

techniques in regression testing on the performance in improving

the rate of fault detection.

Mining API Usage from Test Code: Understanding

and learning the correct usage of APIs of libraries are significant

but complex activities for developers. Ghafari et al. [8] described

an approach to code recommendation where examples are

obtained by mining and manipulating the unit tests of the API.

Zhu et al. [16] proposed an approach to mining API usage

examples from test code, combining the technique of clustering to

improve the representativeness of extracted examples. Nasehi et al.

[10] proposed to supplement the standard API documentation

with relevant examples taken from the unit tests. Thus, the quality

of APIs usage in test code is critical to this topic.

Test Code Quality: It is critical to detect the quality of test

code, however there are not enough work done in this field.

Athanasiou et al. [3] revealed that high quality test code of a

28

Table 1. Details of Studied Projects in This Work

Project Version TC*

Clone

Com#

Clone

Com

Ratio#

Unreleased

Resources#

Unreleased

Resource

Ratio#

Clone

Codes#

LOC# Clone

Code

Ratio#

Ant 1.9.4
Test 329 35 0.11 67 0.20 6863 43774 0.16

Src 832 25 0.03 101 0.12 15918 183692 0.09

Maven 3.2.5
Test 175 29 0.17 35 0.2 2816 18581 0.15

Src 659 18 0.03 27 0.04 5801 77983 0.07

Log4j 1.2.17
Test 90 26 0.29 29 0.32 2993 13681 0.22

Src 272 28 0.10 33 0.12 4757 41991 0.11

Commons

Math
3.5

Test 570 114 0.2 41 0.07 38986 98626 0.40

Src 942 242 0.26 19 0.02 29295 95697 0.31

* TC represents Total Classes, which means the number of the test classes.LOC represents lines of code.

Clone Com(Comment) are the number of test classes which clone comment, and Clone Comment Ratio represents the number of clone

comment classes out of the total number of test classes. Unreleased Resources are the number of test classes which do not release resources,

and Unreleased Resource Ratio represents the number of test classes which do not release resource out of the total number of test classes.

Code Clones represent the lines of clone code, and Clone Code Ratio represents the lines of clone code out of the total lines of code.

Software system could improve the development team’s

performance.

4. MOTIVATION
As is mentioned above, test code is closely related with software

quality assurance techniques, e.g., automatic bug repair, fault

localization, test case prioritization, and mining API usage from

test code. These studies are based on the hypothesis of a sound

quality of the test code. Thus, the quality of test code is critical for

the performance of these techniques. In this study, we try to

conduct a pilot study to explore the quality of test code according

to the five criteria.

5. TEST CODE QUALITY
In this section, we present the three categories for the

measurement of test code quality.

5.1 Incorrectness
This category consists of test criteria that focus on measuring the

error detection ability of the code. Unreleased resource and code

clone are the main criteria for this category.

5.1.1 Unreleased resource
Unreleased resource is a kind of incorrect use of APIs. Unreleased

resource occurs when developers fail to release resource such as

File, ResultScanner and so on. When developers finished the

input and output operations on a file object, developers should

close file and release resources, or there will be a potential

memory leak vulnerability. Moreover, developers should close the

resource with finally clause to ensure the resource is closed no

matter what happens in the try block.

The following real test case from Ant 1.9.4, is an example where

the method did not close the file object it opened.

In this study, the unreleased resource ratio is defined as the

following:

Unreleased Resource Ratio = (#unreleased resource classes)/TC

where #unreleased resource classes shows the number of the

classes which did not release resources, and TC shows the total

number of the classes.

We have developed a tool to automatically examine the code, and

checked whether every resource was closed after being opened

and used. If the resource was closed, we checked whether the

close statement is enclosed in finally blocks. We counted both the

resources which were not closed and those that were not closed in

finally block for the unreleased resources.

5.1.2 Code Clones
Code clones are separate fragments of code that are very similar.

They are a common phenomenon in the open source systems

which have been under development for some time. Clone codes

are often referred to due to the difficulty it makes in changing and

maintaining the open source systems since developers have to

locate and update many fragments frequently. For example,

Fowler [7] argues that code duplicates are bad smells of poor

1 public void testPassFile () throws Exception {

2 buildRule . executeTarget (”test3 ”);

3 File f = new File (

4 buildRule . getProject (). getBaseDir () ,

5 “testpassfile .tmp ”);

6 assertTrue (. . .) ;

7 assertEquals (. . .) ;

8 }

29

designFigure 1 shows an example of clone codes. Clone code

ratio is defined as the following:

Clone Code Ratio = (#clone code lines)/LOC

where #clone code line shows the lines of clone code, and LOC

shows the lines of code.

To estimate the clone code, we use PMD’s Copy/Paste Detector

(CPD) [2] and set the minimum Tile-size at 10, meaning that CPD

cannot find clones in methods that are less than 10 statements

long. Figure 1 indicates that the clone analysis tool can find

fragments which differ in the names of variables and parameters,

and in which some statements have been rearranged.

5.2 Insufficiency
Criteria that fall inside this category focus on measuring the loss

detection ability of the code. To identify the loss of code, we

choose code coverage and bug-fixed coverage as the main criteria.

5.2.1 Code Coverage
Code coverage is the most frequently used metric for test code

quality assessment [3]. It is used to describe the degree to which

the source code of a project is tested by a particular test suite.

Usually the project with lower code coverage has been

insufficiently tested and therefore has a higher chance of

containing bugs. There exist many tools for dynamic code

coverage estimation (e.g., Clover 5 and Cobertura 6 for Java,

Testwell CTC++ 7 for C++, NCover 8 for C#). We used Clover [1]

to obtain a code coverage metric.

5.2.2 Bug-fixed Coverage
In general, after fixing a bug, new unit test should be created and

added to the regression test suite to ensure this bug will not be re-

introduced in the following versions of the projects. The bug-

fixed coverage is a measure used to describe the degree to which

extent the fixed bug is covered by test code. If a fixed bug has not

been covered by test cases, this fixed bug will be under high risk

of reopening. In this study, the bug-fixed coverage is defined as

the following:

Bug-fixed Coverage = (#tested bugs)/ (#fixed bugs)

where #tested bugs is the number of fixed bugs which is tested in

the current version of the project, and #fixed bugs is the number

of fixed bugs in the current version of the project.

To calculate the bug-fixed coverage, we first collected the fixed

bugs for the responding version of the four open source projects

from their release notes; second, we found the fixed bugs which

are not tested in the current version, manually. Specifically, the

first author is responsible for the collection of un-tested fixed

bugs, after which the second author recollected the data. Then

results are merged, and conflicts were get resolved by a joint pair-

inspection of all three authors.

5.3 Bad Readability
This category consists of test criteria that focus on measuring the

detection of the unreadable code. Clone comment ratio is the main

criterion for this category.Comments make the code developer-

readable. They generate code documentation in predefined format.

Clone comments are the same prologue comment of different

methods, which makes the code inconsistent with the code

documentation and hard to understand. Often this occurs when

developers miss to change the clone comment.

Consider the following real test code from Ant 1.9.4:

In this study, the clone comment ratio is defined as the following:

Clone Comment Ratio = (#clone comment classes)/TC

where #clone comment classes shows the number of the classes

which clone comment, and TC shows the total number of the

classes.

The logic of the two test cases are different, yet the comments are

the same, which might cause the developers’ confusion in terms of

the understanding of the test logic of these two test cases. We

developed a simple tool to detect cloned comments, which could

look into the code and locate the functions that share comment,

and collect the clone comments automatically.

6. EMPIRICAL STUDY
In this section, we present the quality of test code of the four open

source projects according to the five criterion respectively.

6.1 Dataset
In this paper, we try to explore the quality of test code of four

large-scale and widely used open source projects, i.e., Ant, Maven,

Log4j, and Commons Math, using the five criteria. For each

project, we extracted the test code and source code separately

from the latest version. Details of these projects are shown in

Table 1.

6.2 Result Analysis

6.2.1 Unreleased Resource
As is shown in Table 1, in the four projects, the unreleased

resource ratio for test code is up to 32% and on average it is 20%,

while the average ratio for source code is less than 7%. Overall,

all the unreleased resource ratios in test code are much higher

than that in the corresponding source code.

Potential Impact on Software Quality Assurance Techniques:

The results indicate that the quality of source code is much higher

than test code. As the test code is widely used for mining API

usage examples [10, 16], this can result in bad API usage

examples, making API learning quite confusing for developers.

1 /∗∗ Test right use of cache names. ∗/

2 @Test

3 public void testValidateWrongCache () {

4 . . .

5 }

6 /∗∗ Test right use of cache names. ∗/

7 @Test

8 public void testValidateWrongAlgorithm() {

9 . . .

10 }

30

Table 2. Details of Quality of Test Code

Project Version Code Coverage Tested FBs# FBs# Bug-fixed Coverage#

Ant 1.9.4 85% 0 15 0.00

Maven 3.25 78% 1 6 16.67

Log4j 1.2.17 75% 0 5 0.00

Commons Math 3.5 81% 2 8 25.00

FBs are the number of fixed bugs in the current version, and Tested FBs are the number of fixed bugs which have been tested in the

current version. Bug Coverage is the ratio of Test FBs out of FBs.

6.2.2 Code Clone
As is shown in Table 1, in the open source projects, the clone

code ratio for test code is up to 40% and on average the ratio is

about 23%, while the average ratio for source code is about 17%.

Overall, all the clone code ratios in test code are much higher than

that in corresponding source code.

Potential Impact on Software Quality Assurance Techniques:

Clone test code is harmful for software quality, which increases

test maintenance overhead and propagates any pre-existing errors.

Clone test code always cover similar source code, which reduces

the discrimination among test code and might hurt fault

localization and test case prioritization.

6.2.3 Code Coverage
As is shown in Table 2, in the four projects, the code coverage for

test code varies from 75% to 85%, while the average ratio for

code coverage is around 80 %. Overall, the code coverage are

high enough to basically cover the test of the source code.

6.2.4 Bug-fixed Coverage
Results are shown in Table 2, Bug-fixed Coverage in our studied

versions of Ant and Log4j is 0, which means none of the fixed 20

bugs in Ant 1.9.4 and Log4j 1.2.17 has been tested after fixing. In

Maven, and Commons Math, values of Bug-fixed Coverage are

also quite low, more than 70% fixed bugs are not addressed in test

code. Overall, the bug-fixed coverage is so low that the test for the

fixed bugs are not sufficient.

Potential Impact on Software Quality Assurance Techniques:

The low Bug-fixed Coverage values in software projects make it

hard to practice test case prioritization, and also hurt the

effectiveness of automatic bug repair. Since test case prioritization

aims to arrange test cases based on the code coverage for

accelerating bug detection, the low Bug-fixed Coverage means

that when un-tested fixed bugs are re-introduced, prioritized test

cases might not reveal these bugs; for automatic bug repair, the

low Bug-fixed Coverage makes the evaluation inefficient.

Automatic bug repair evaluates its repair patch by running all test

cases. If all test cases are passed, the generated patch will be

treated as an effective repair patch for a bug. However the low

Bug-fixed Coverage means many fixed bugs are not tested by the

existing test cases. So when evaluating generated repair patches,

even all test cases are passed, these un-covered fixed bugs might

be re-introduced.

6.2.5 Comment Clone
As is shown in Table 1, the average clone comment ratio for test

code is about 20% and the average clone comment ratio for source

code is less than 10%. Overall, the clone comment ratio in test

code is much higher than that in source code of the four projects.

The results indicate that the quality of source code is much higher

than the test code in terms of comment clone.

Potential Impact on Software Quality Assurance Techniques:

Program comments are important for developers to understand

code. Moreover, comments that are inconsistent with code can

easily confuse and misguide developers to introduce bugs in

subsequent versions [12]. The high clone comment ratio in test

code is harmful for developers to understand the test logic.

7. THREATS TO VALIDITY

7.1 Internal Validity
In this paper, we study the quality of test code. we present the five

criteria for the measurement of test code quality. However, other

criteria that we have overlooked may also can measure the quality

of test code.

7.2 External Validity
In this work we investigate the quality of test code in terms of five

proposed criteria on open source projects. However, it is possible

that our approach may not work well on some closed-source

software, or small scale open source software projects. The

purpose of this work is to study the impact of low quality test

code on several software assurance techniques, however, not all

projects maintain valid test code. Our approach is not suitable for

these projects without test code.

8. CONCLUSION AND FUTURE WORK
This paper found that it is common for test code to be unregulated

and of low quality in the open source projects. We studied 1164

test classes and more than 140,000 LOC test code from the

current version of four open source projects. Results indicate that

the quality of test code is much lower than that for the

corresponding source code in terms of the proposed criteria, e.g.,

unreleased resource, code clone and comment clone, and the the

coverage of test code for fixed bug is not sufficient.

We further discussed the potential impact of low quality on the

existing software quality assurance techniques. To the best of our

knowledge, this is the first work to report that the test code is low-

quality and untrustworthy, which should be taken seriously.

Future work. Our research is in a final stage. We explored the

quality of test code in terms of five proposed criteria and the

impact of test code on software quality assurance techniques. In

the future, we plan to conduct quantitative and qualitative studies

to explore how exactly the low-quality test code could impact

31

software quality assurance techniques, i.e., automatic bug repair,

fault localization, test case prioritization, and mining API usage.

Acknowledgment

This research was supported in part by National Natural Science

Foundation of China under Grant Nos. 91218302, 91318301,

71101138, and 61303163.

References

[1] Clover. https://www.atlassian.com/software/clover/overview.

Accessed April 20, 2015.

[2] Pmd’s cpd. http://pmd.sourceforge.net/pmd-4.3.0/cpd.html.

[3] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman.Test

code quality and its relation to issue handling performance.

volume 40, pages 1100–1125, Nov 2014.

[4] E. T. Barr, Y. Brun, P. Devanbu, M. Harman, and F. Sarro.

The plastic surgery hypothesis. In 22nd ACM SIGSOFT

International Symposium on the Foundations of Software

Engineering (FSE 2014), Hong Kong, volume 16.

[5] J. Campos, R. Abreu, G. Fraser, and M. d’Amorim. Entropy-

based test generation for improved fault localization. In

Automated Software Engineering (ASE), 2013 IEEE/ACM

28th International Conference on, pages 257–267.

[6] S. Elbaum, A. Malishevsky, and G. Rothermel. Test case

prioritization: A family of empirical studies. volume 28,

pages 159–182, 2002.

[7] M. Fowler. Refactoring: Improving the design of existing code.

In Proceedings of the Second XP Universe and First Agile

Universe Conference on Extreme Programming and Agile

Methods - XP/Agile Universe 2002, page 256, 2002.

[8] M. Ghafari, C. Ghezzi, A. Mocci, and G. Tamburrelli. Mining

unit tests for code recommendation. In Proceedings of the

22Nd International Conference on Program Comprehension,

pages 142–145. ACM, 2014.

[9] D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch

generation learned from human-written patches. In

Proceedings of the 2013 International Conference on

Software Engineering, pages 802–811. IEEE Press.

[10] S. M. Nasehi and F. Maurer. Unit tests as api usage examples.

In Software Maintenance (ICSM), 2010 IEEE International

Conference on, pages 1–10. IEEE, 2010.

[11] F. Steimann, M. Frenkel, and R. Abreu. Threats to the

validity and value of empirical assessments of the accuracy

of coverage-based fault locators. In Proceedings of the 2013

International Symposium on Software Testing and Analysis,

pages 314–324. ACM.

[12] L. Tan, D. Yuan, G. Krishna, and Y. Zhou. /* iComment:

Bugs or bad comments? */. In Proceedings of the 21st ACM

Symposium on Operating Systems Principles (SOSP07),

October 2007.

[13] S. H. Tan and A. Roychoudhury. relifix: Automated repair of

software regressions. In Proceedings of the 2015

International Conference on Software Engineering. IEEE,

2015.

[14] W. Weimer, T. V. Nguyen, C. L. Goues, and S. Forrest.

Automatically finding patches using genetic programming. In

Proceedings of the 31st International Conference on

Software Engineering, pages 364–374. IEEE Computer

Society, 2009.

[15] J. Xuan and M. Monperrus. Test case purification for

improving fault localization. In Proceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of

Software Engineering, pages 52–63. ACM, 2014.

[16] Z. Zhu, Y. Zou, B. Xie, Y. Jin, Z. Lin, and L. Zhang. Mining

api usage examples from test code. In Software Maintenance

and Evolution (ICSME), 2014 IEEE International

Conference on, pages 301–310. IEEE.

32

