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Abstract

We present a fuzzy description logic where the representation of concept member-
ship functions and fuzzy modifiers is allowed, together with a inference procedure
based on a mixture of a tableaux and bounded mixed integer programming.

1 Introduction

Description Logics(DLs) [1] play an important role in the context of theSemantic Web
as they are essentially the theoretical counterpart of theWeb Ontology Language OWL
DL [5], a state of the art language to specify ontologies. However, DLs becomes less
suitable in domains where concepts have not a precise definition. For instance, in a
flower ontology we may encounter the problem of representing concepts like “Candia
is a creamy white rose with dark pink edges to the petals” and “Calla is a very large,
long white flower on thick stalks”. As it becomes apparent such concepts hardly can
be encoded into DLs, as they involve so-calledfuzzyor vague concepts, like “creamy”,
“dark”, “large” and “thick”. The problem to deal withimprecisionhas been addressed
several decades ago by Zadeh, which gave bird in the meanwhile to the so-calledfuzzy
set and fuzzy logic theory(see, e.g. [4] for an in-depth study of fuzzy logic). Unfortu-
nately, despite the popularity of fuzzy logic theory, relative little work has been carried
out involving fuzzy DLs [3, 7, 8, 11, 12].

We present a fuzzy version ofALC(D). Main features are that we allow the explicit
representation of typical concept membership functions (fuzzy concrete domains) and
fuzzy modifiers (similarly to [11, 3]). We present a novel inference procedure based on
a mixture of tableaux rules and bounded Mixed Integer Programming (bMIP). In the
following, we present fuzzyALC(D) and a reasoning procedure. An extended version
of this work can be found in [9].

2 FuzzyALC with fuzzy domains

A fuzzy setA w.r.t. a universeX is characterized by amembership functionµA: X →
[0, 1], or simply A(x) ∈ [0, 1]. A(x) gives us an estimation of the belonging ofx
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to A. In fuzzy logics, the degree of membershipA(x) is regarded as thedegree of
truth of the statement“x is A” . Accordingly, in our fuzzy DL, a conceptC will be
interpreted as a fuzzy set and, thus, concepts becomeimprecise; and, consequently,
e.g. the statement “a is an instance of conceptC”, will have a truth-value in[0, 1] given
by the membership degreeC(a). In our fuzzy variant ofALC(D), unlike the classical
case (see [6]), concrete domains are considered as fuzzy sets. Afuzzy domainis a pair
〈∆D, ΦD〉, where∆D is an interpretation domain andΦD is the set offuzzy predicatesd
with a predefined arityn and an interpretationdD: ∆n

D → [0, 1], which is an-ary fuzzy
relation over∆D. To the ease of presentation, we assume the fuzzy predicates have arity
one, the domain is a subset of the rational numbersQ and the range is[0, 1] ∩ Q (in
the following, whenever we write[0, 1], we mean[0, 1] ∩ Q). For instance, we may
define the predicate≤18 as an unary predicate over the natural numbers denoting the set
of integers smaller or equal to18. On the other hand,Young may be a fuzzy predicate
denoting the degree of youngness of a person’s age over the domain range[0, 150] with

Young(x) = ls(10, 30, [0, 150]) ,

where ls(a, b, [0, 150]) is a left shoulder function with shape defined as in the fig-
ure below. Concerning fuzzy predicates, there are many membership functions for
fuzzy sets membership specification. However, (see figure below), fork1 ≤ a <
b ≤ c < d ≤ k2 rational numbers, thetrapezoidaltrz(a, b, c, d, [k1, k2]), the trian-
gular tri(a, b, c, [k1, k2]), the left-shoulder functionls(a, b, [k1, k2]), theright-shoulder
function rs(a, b, [k1, k2]) and thecrisp functioncr(a, b, [k1, k2]) are simple, yet most
frequently used to specify membership degrees and are those we are considering in this
paper. To simplify the notation, we may omit the domain range, and write, e.g.cr(a, b)
in place ofcr(a, b, [k1, k2]), whenever the domain range is not important.

Trapezoidal function Triangular function Left-shoulder function

Right-shoulder function Crisp function Linear modifier function
Fuzzy modifiers [3, 11] likevery, more or less andslightly, apply to fuzzy sets to
change their membership function and allow, e.g. to express concepts likevery(High),
moreOrLess(Ripe) andslightly(Nice). Formally, amodifieris a functionfm: [0, 1] →
[0, 1]. For instance, we may define

very(x) = lm(0.7, 0.49, 0, 1) ,

while defineslightly(x) aslm(0.7, 0.49, 1, 0), wherelm(a, b, c, d) is thelinear mod-
ifier in the figure. For the purpose of this paper, we will assume that modifiers are a
linear combinationof two linear functions as depicted in the figure, which covers usual
cases.
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Now, let C, Ra, Rc, Ia, Ic andM be non-empty finite and pair-wise disjoint sets of
concepts names(denotedA), abstract roles names(denotedR), concrete roles names
(denotedT ), abstract individual names(denoteda), concrete individual names(denoted
c) andmodifiers(denotedm). Ra contains a non-empty subsetFa of abstract feature
names(denotedr), while Rc contains a non-empty subsetFc of concrete feature names
(denotedt). Features are functional roles. The set of fuzzyALC(D) conceptsis defined
by the following syntactic rules (d is a unary fuzzy predicate):

C −→ > | ⊥ | A | C1 u C2 | C1 t C2 | ¬C | ∀R.C | ∃R.C | ∀T.D | ∃T.D | m(C)
D → d | ¬d
m → lm(a, b, c, d)
d → trz(a, b, c, d, [k1, k2]) | tri(a, b, c, [k1, k2]) | ls(a, b, [k1, k2]) |

rs(a, b, [k1, k2]) | cr(a, b, [k1, k2])

A TBoxT consists of a finite set ofterminological axiomsof the formA v C (A is
sub-concept ofC) or A = C (A is defined as the conceptC), whereA is a concept
name andC is concept. We allow the definition of modifier names and concrete pred-
icates names to appear in the TBox and concept expressions. For instance,very =
lm(0.7, 0.49, 0, 1) ∈ T dictates thatvery is an abbreviation forlm(0.7, 0.49, 0, 1),
while Young = ls(10, 30, [0, 150]) ∈ T dictates thatYoung is an abbreviation for
ls(10, 30, [0, 150]).

We also assume that no conceptA appears more than once on the left hand side
of a terminological axiom and that no cyclic definitions are present inT . Note that in
classical DLs, usually terminological axioms are of the formC v D, whereC andD
are concepts. While from a semantics point of view it is easy to consider them as well
(see [10]), we have not yet found a calculus to deal with such axioms.

Using axioms we may define the concept of a minor and young person as

Minor = Person u ∃age.≤18

≤18 = cr(0, 18, [0, 150])

YoungPerson = Person u ∃age.Young
Young = ls(10, 30, [0, 150])

A concept-, role- assertion axiomand anindividual (in)equality axiomhas the form
a: C, (a, b): R, a ≈ b anda 6≈ b, respectively, wherea, b are abstract individuals. For
n ∈ [0, 1], anABoxA is a finite set offuzzy conceptand fuzzy role assertion axioms
of the form〈α, n〉, whereα is a concept or role assertion. Informally,〈α, n〉 constrains
the truth degree ofα to be greater or equal ton. An ABox A may also contain a finite
set of individual (in)equality axiomsa ≈ b anda 6≈ b, respectively. A fuzzyALC(D)
knowledge baseK = 〈T ,A〉 consists of a TBoxT and an ABoxA.

From a semantics point of view, we extend fuzzyALC [7]. A fuzzy interpretation
I w.r.t. a concrete domainD is a pairI = (∆I , ·I) consisting of a non empty set∆I

(called thedomain), disjoint from ∆D, and of afuzzy interpretation function·I that
assigns(i) to each abstract conceptC ∈ C a functionCI : ∆I → [0, 1]; (ii) to each
abstract roleR ∈ Ra a functionRI : ∆I × ∆I → [0, 1]; (iii) to each abstract feature
r ∈ Fa a partial functionrI : ∆I × ∆I → [0, 1] such that for allu ∈ ∆I there is an
uniquew ∈ ∆I on whichrI(u, w) is defined;(iv) to each abstract individuala ∈ Ia
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an element in∆I ; (v) to each concrete individualc ∈ Ic an element in∆D; (vi) to each
concrete roleT ∈ Rc a functionT I : ∆I × ∆D → [0, 1]; (vii) to each concrete feature
t ∈ Fc a partial functiontI : ∆I×∆D → [0, 1] such that for allu ∈ ∆I there is an unique
o ∈ ∆D on whichtI(u, o) is defined;(viii) to each modifierm ∈ M the corresponding
functionfm: [0, 1] → [0, 1]; (ix) to each unary concrete predicated the corresponding
fuzzy relationdD: ∆D → [0, 1] and to¬d the negation ofdD. The mapping·I is extended
to concepts and roles as follows (whereu ∈ ∆I): >I(u) = 1,⊥I(u) = 0,

(C1 u C2)
I(u) = min{C1

I(u), C2
I(u)}

(C1 t C2)
I(u) = max{C1

I(u), C2
I(u)}

(¬C)I(u) = 1− CI(u)
(m(C))I(u) = fm(CI(u))
(∀R.C)I(u) = infw∈∆I max{1−RI(u, w), CI(w)}
(∃R.C)I(u) = supw∈∆I min{RI(u, w), CI(w)}
(∀T.D)I(u) = info∈∆D

max{1− T I(u, o), DI(o)}
(∃T.D)I(u) = supo∈∆D

min{T I(u, o), DI(o)} .

Note that due to the restrictions on the chosen fuzzy functions, we do have that(∀R.C)I =

(¬∃R.¬C)I . This will allow us to transform concept expressions into a semanti-
cally equivalentNegation Normal Form(NNF), which is obtained by pushing in the
usual manner negation on front of concept names, modifiers and concrete predicate
names only. With nnf(C) we denote the NNF of conceptC. The mapping·I is
extended to assertion axioms as follows (wherea, b ∈ Ia): (a: C)I = CI(aI) and
((a, b): R)I = RI(aI , bI). The notion ofsatisfiabilityof a fuzzy axiomE by a fuzzy
interpretationI, denotedI |= E, is defined as follows:

I |= A v C iff for all u ∈ ∆I , AI(u) ≤ CI(u)
I |= A = C iff for all u ∈ ∆I , AI(u) = CI(u)
I |= 〈α, n〉 iff αI ≥ n
I |= a ≈ b iff aI = bI

I |= a 6≈ b iff aI 6= bI

The notion ofsatisfiability(is model) of a knowledge baseK = 〈T ,A〉 andentailment
of an assertional axiom is straightforward. Concerning terminological axioms, we also
write K |= 〈A v B, n〉 iff for every modelI of K, [infu∈∆I AI(u) ⇒ BI(u)] ≥
n. Finally, givenK and an axiomα the greatest lower boundof α w.r.t. K, denoted
glb(K, α), is glb(K, α) = sup{n:K |= 〈α, n〉}, wheresup ∅ = 0. Determining theglb
is called theBest Degree Bound(BDB) problem. AsK |= 〈α, n〉 iff glb(K, α) ≥ n, the
BDB problem is the major problem we have to consider in fuzzyALC(D), which we
address in the next section.

Example 1 Consider the following simplified excerpt of a knowledge base about cars
(speed is a concrete feature):

SportsCar = ∃speed.very(High), High = rs(80, 250, [0, 400])
very = lm(0.7, 0.49, 0, 1), ≤170 = cr(0, 170, [0, 400])
≥350 = cr(350, 400, [0, 400]), =243 = cr(243, 243, [0, 400])

〈mg mgb:∃speed.≤170, 1〉, 〈ferrari enzo:∃speed.≥350, 1〉, 〈audi tt:∃speed. =243, 1〉}
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Then
K |= 〈mg mgb:¬SportsCar, 0.72〉, K |= 〈ferrari enzo: SportsCar, 1〉
K |= 〈audi tt: SportsCar, 0.92〉

Note how the maximal speed limit of themg mgb car (≤ 170) induces an upper limit,
0.28 = 1− 0.72, on the membership degree of beingmg mgb a SportsCar.

Example 2 ConsiderK with terminological axiomsMinor = Personu∃age.≤18 and
YoungPerson = Person u ∃age.Young, where≤18 = cr(0, 18, [0, 150]), Young =
ls(10, 30, [0, 150]) andage is a concrete feature. ThenK |= 〈Minor v YoungPerson, 0.5〉.

Example 3 Consider the following simplified excerpt of a computer store:

Computer v ∃hasPrice.Price), 〈c1:∃hasPrice.=995, 1〉, 〈c2:∃hasPrice.=1010, 1〉

wherehasPrice is a concrete feature. Suppose a customer is looking for a computer
whose price is in the range[900, 1000]. In a classical DL retrieval system justc1 is
retrieved, leaving unfortunatelyc2 out. However, if the system internally defines

PriceRange = trz(800, 900, 1000, 1100, [0, 5000])

establishing that the price boundaries of the customer are not crisp anymore (as almost
all store owners do), then

K |= 〈c1:∃hasPrice.PriceRange, 1〉
K |= 〈c2:∃hasPrice.PriceRange, 0.9〉

and, thus, the “fuzzy” retrieval gives us a ranking of the itemsc1 andc2, in decreasing
order of relevance.

3 Reasoning

A more detailed description of the reasoning algorithm can be found in [9]. Consider
K = 〈T ,A〉. In order to solve the BDB problem, we combine appropriate DL comple-
tion rules with methods developed in the context ofMany-Valued Logics(MVLs) [2].
The basic idea is as follows. In order to determine e.g.glb(K, a: C), we consider an ex-
pression of the form〈a:¬C, 1− x〉 (informally, 〈a: C ≤ x〉), wherex is a [0, 1]-valued
variable. Then we construct a tableaux forK = 〈T ,A ∪ {〈a:¬C, 1− x〉}〉 in which
the application of satisfiability preserving rules generates new assertion axioms together
with inequationsover [0, 1]-valued variables. These inequations have to be hold in or-
der to respect the semantics of the DL constructors. Finally, in order to determine the
greatest lower bound, weminimizethe original variablex such that all constraints are
satisfied. In this paper, we limited the choice of the semantics of concept constructors,
modifiers and fuzzy predicates in such a way that we end up with abounded Mixed
Integer Program(bMIP) optimization problem. Interestingly, as for the MVL case, the
tableaux we are generating containsonebranch only and, thus, justonebMIP problem
has to be solved.
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A general MIP problem consists in minimizing a linear function w.r.t. a set of con-
straints that are linear inequations in which rational and integer variables can occur.
In our case, the variables are bounded. More precisely, letx = 〈x1, . . . , xk〉 and
y = 〈y1, . . . , ym〉 be variables overQ, over the integers and letA, B be integer matrices
andh an integer vector. The variables iny are calledcontrol variables. Let f(x,y) be
ank +m-ary linear function. Then thegeneral MIP problemis to findx̄ ∈ Qk, ȳ ∈ Zm

such thatf(x̄, ȳ) = min{f(x,y): Ax+By ≥ h}. The general case can be restricted to
what concerns the paper as we can deal withboundedMIP (bMIP). That is, the rational
variables range over a given interval, while the integer variables ranges over{0, 1}. Fur-
thermore, we say thatM ⊆ [0, 1]k is bMIP-representableiff there is a bMIP(A, B, h)
with k real andm 0-1 variables such thatM = {x:∃y ∈ {0, 1}m such thatAx+By ≥
h}. In particular, we require that the setsg(f) = {〈x1, . . . , xk, x〉: f(x1, . . . , xk) ≥ x}
and ḡ(f) = {〈x1, . . . , xk, x〉: f(x1, . . . , xk) ≤ x} should be bMIP-representable. It is
easily verified that all fuzzy predicates, modifiers and DL constructors are bMIP repre-
sentable (see [9]).The BDB problem. We start with a pre-processing steps in which
eachA v C can be replaced withA = C u A∗, whereA∗ is a new concept name,
then substitute concept names with their definitions and finally transform each concept
into NNF. This last operations does not affect the semantics due to the restrictions we
made on the fuzzy constructors. Notice that negation may appear on front of modifiers
in the from¬m(C), whereC is a complex concept. Now, letV be a new alphabet of
variablesx ranging over[0, 1], W be a new alphabet of 0-1 variablesy. We extend fuzzy
assertions to the form〈α, l〉, wherel is a linear expression over variables inV, W and
real values. Alinear constraintis of the forml ≥ l′ or l ≤ l′, wherel, l′ are linear
expressions over variables inV, W and rational values. The satisfiability notion of linear
constraints is immediate. Aconstraint setS is a set of terminological axioms, fuzzy
assertion axioms, (in)equality axioms and linear constraints.I satisfiesS iff I satisfies
all elements of it. WithS0 we denote the constraint setS0 = T ∪ A. We will see
later how to determine the satisfiability of a constraint set. In the following, we assume
thatS0 is satisfiable, otherwiseglb(K, α) = 1. As in [7], concerning fuzzy role asser-
tions, we have thatK |= 〈(a, b): R, n〉 iff 〈(a, b): R,m〉 ∈ A with m ≥ n. Therefore,
glb(K, (a, b): R)) = max{n: 〈R(a, b), n〉 ∈ A}. So we do not consider this case further.
Now, let us determineglb(K, a: C). As anticipated,

glb(K, a: C) = minx such thatS = S0 ∪ {〈a:¬C, 1− x〉} satisfiable .

Similarly, for a terminological axiomA v B,

glb(K, A v B) = minx such thatS = S0 ∪ {〈a: A u ¬B, 1− x〉}} satisfiable ,

wherea is new abstract individual. Therefore, the BDB problem can be reduced to
minimal satisfiability problem.The Satisfiability problem. Our satisfiability checking
calculus is based on a set of constraint propagation rules transforming a setS of con-
straints into “simpler” satisfiability preserving constraint setsSi until eitherSi contains
aclashor no rule can be further be applied toSi. If Si contains a clash thenSi and, thus
S is immediately not satisfiable. Otherwise, we apply a bMIP oracle to solve the set
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of linear constraints inSi to determine either the satisfiability of the set or the minimal
value for a given variablex, makingSi satisfiable. We assume that a constraint setS is
reflexive, symmetric and transitively closed concerning the equality axioms.S contains
a clash iff either 〈a:⊥, n〉 ∈ S with n > 0, or {a ≈ b, a 6≈ b} ⊆ S. The rules follow
easily from the bMIP representations.Each rule instantiation is applied at most once.
Before we can formulate the rules we need a technical definition involving feature roles
(see [6]). LetS be a constraint set,r an abstract feature and both〈(a, b1): r, l1〉 and
〈(a, b2): r, l2〉 occur inS. Then we call such a pair afork. As r is a function, such a fork
means thatb1 andb2 have to be interpreted as the same individual. A fork〈(a, b1): r, l1〉,
〈(a, b2): r, l2〉 can be deleted by replacing all occurrences ofb2 in S by b1. A similar
argument applies to concrete feature roles. At the beginning, we remove the forks from
S0. We assume that forks are eliminated as soon as they appear (as part of a rule appli-
cation) with the proviso that newly generated individuals are replaced by older ones and
not vice-versa. Withxα we denote the variable associated to theatomic assertionα of
the forma: A or (a, b): R. xα will take the truth value associated toα, while withxc we
denote the variable associated to the concrete individualc. The rules are the following:
RA. If 〈α, l〉 ∈ Si andα is an atomic assertion of the forma: A or (a, b): R thenSi+1 = Si ∪ {xα ≥ l}.
RĀ. If 〈a:¬A, l〉 ∈ Si thenSi+1 = Si ∪ {xa: A ≤ 1− l}.
Ru. If 〈a: C uD, l〉 ∈ Si thenSi+1 = Si ∪ {〈a: C, l〉, 〈a: D, l〉}.
Rt. If 〈a: C tD, l〉 ∈ Si thenSi+1 = Si ∪ {〈a: C, x1〉, 〈a: D, x2〉, x1 + x2 = l, x1 ≤ y, x2 ≤ 1 − y, xi ∈ [0, 1], y ∈

{0, 1}}, wherexi is a new variable,y is a new control variable.
R∃. If 〈a: ∃R.C, l〉 ∈ Si thenSi+1 = Si ∪{〈(a, b): R, l〉, 〈b: C, l〉}, whereb is a new abstract individual. The case for concrete

roles is similar.
R∀. If {〈a: ∀R.C, l1〉, 〈(a, b): R, l2〉} ⊆ Si thenSi+1 = Si ∪ {〈a: C, x〉, x + y ≥ l1, x ≤ 1 − y, l1 + l2 ≤ 2 − y, x ∈

[0, 1], y ∈ {0, 1}}, wherex is a new variable andy is anew control variable. The case for concrete roles is similar.
Rm. If 〈a: m(C), l〉 ∈ Si thenSi+1 = Si ∪ γ(a: C, l), where the setγ(a: C, l) is obtained from the bMIP representation of

g(m) as follows: replace ing(m) all occurrences ofx2 with l. Then resolve forx1 and replace all occurrences of the formx1 ≥ l′

with 〈a: C, l′〉, while replace all occurrences the formx1 ≤ l′ with 〈a: nnf(¬C), 1− l′〉.
Rm̄. The case〈a:¬m(C), l〉 ∈ Si is similar to ruleRm, where we use the bMIP representation ofḡ(m) in place ofg(m)

Rd. If 〈c: d, l〉 ∈ Si thenSi+1 = Si ∪ γ(c: d, l), where the setγ(c: d, l) is obtained from the bMIP representation ofg(d) by

replacing all occurrences ofx2 with l andx1 with xc.
Rd̄. The case〈c:¬d, l〉 ∈ Si is similar to ruleRd, where we use the bMIP representation ofḡ(d) in place ofg(d).
Note thatan unique branchis generated in the tableaux ofS0. Some comments for the
Rt rule. By reasoning by case, fory = 0, we havex1 = 0, x2 ≤ 1, x2 = l, while for
y = 1, we havex2 = 0, x1 ≤ 1, x1 = l. Therefore, the control variabley simulates the
two branchings of the disjunction. A similar argument applies to the other rules.

A constraint setS ′ obtained from rule applications toS is acompletionof S iff no
more rule can be applied toS ′. It can be shown that the rules are satisfiability preserving
and a completion is obtained after a finite number of rule applications. Furthermore,
considerK〈T ,A〉 and letα be a concept assertion axioma: C or a terminological axiom
A v B. Then in finite time we can determineglb(K, α) as the minimal value ofx such
that the completion ofS = T ∪ A ∪ {〈α′, 1− x〉} is satisfiable, where(i) α′ = a:¬C
if α = a: C, (ii) α′ = a: A u ¬B if α = A v B.

An example of computation can be found in [9].
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4 Conclusions, related work and outlook

We have presented a fuzzy DL showing that its representation capabilities go beyond
current approaches to fuzzy DLs. We recall that the first work on fuzzy DLs is due
to Yen ([12]) who considered a sub-language ofALC, FL−. It already informally
talks about the use of modifiers and fuzzy concrete domains. Tresp ([11]) considered
fuzzy ALC extended with a special form of modifiers.min, max and1 − x mem-
bership functions has been considered and complete reasoning algorithm testing the
subsumption relationship has been presented. Similar to our approach, a linear pro-
gramming oracle is needed. Straccia ([7]) considers fuzzy assertion axioms in fuzzy
ALC, concept modifiers are not allowed however. He also introduced the BDB prob-
lem and provided a sound and complete reasoning algorithm based on completion
rules ([8] provides a translation of fuzzyALC into classicalALC). In the same spirit
[3] extend Straccia’s fuzzyALC with slightly more enhanced concept modifiers. A
sound and complete reasoning algorithm for the graded subsumption problem is pre-
sented. Finally, [10] extendsALC(D) to OWL DL. However, no reasoning algorithm
is given. Future work involves the extension of fuzzyALC(D) to SHOIN (D), the
theoretical counterpart of OWL DL. Another direction is in extending fuzzy DLs with
fuzzy quantifiers, where∀ and∃ are replaced with fuzzy quantifiers likemost, some,
usually and the like. This allows to define concepts likeTopCustomer = Customeru
(Usually)buys.ExpensiveItem, ExpensiveItem = Item u ∃price.High. Fuzzy
quantifiers can be applied to inclusion axioms as well, allowing to express, e.g.(Most)
Bird v FlyingObject. Here the fuzzy quantifierMost replaces the classical universal
quantifier∀ assumed in the inclusion axioms expressing that “most birds fly”.
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[4] Hájek, Petr.Metamathematics of Fuzzy Logic. Kluwer, 1998.

[5] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL: The making of a web ontology
language.Journal of Web Semantics, 1(1):7–26, 2003.

[6] C. Lutz. Description logics with concrete domains—a survey. InAdvances in Modal Logics Volume 4. 2003.

[7] U. Straccia. Reasoning within fuzzy description logics.Journal of Artificial Intelligence Research, 14:137–166, 2001.

[8] U. Straccia. Transforming fuzzy description logics into classical description logics. In LNCS 3229, 2004. Springer Verlag.

[9] U. Straccia. Fuzzy Description Logics with Concrete Domains. Technical Report 2005-TR-03, ISTI-CNR, Pisa, Italy, 2005.

[10] Umberto Straccia. Towards a fuzzy description logic for the semantic web (preliminary report). InEuropean Semantic Web
Conference (ESWC-05), 2005. To appear.

[11] C. Tresp and R. Molitor. A description logic for vague knowledge. In ECAI-98.

[12] J. Yen. Generalizing term subsumption languages to fuzzy logic. In IJCAI-91.

8


