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Abstract

We present a fuzzy description logic where the representation of concept member-
ship functions and fuzzy modifiers is allowed, together with a inference procedure
based on a mixture of a tableaux and bounded mixed integer programming.

1 Introduction

Description LogicgDLs) [1] play an important role in the context of t&emantic Web

as they are essentially the theoretical counterpart of\tele Ontology Language OWL

DL [5], a state of the art language to specify ontologies. However, DLs becomes less
suitable in domains where concepts have not a precise definition. For instance, in a
flower ontology we may encounter the problem of representing concepts like “Candia
is a creamy white rose with dark pink edges to the petals” and “Calla is a very large,
long white flower on thick stalks”. As it becomes apparent such concepts hardly can
be encoded into DLs, as they involve so-callerzyor vague concepidike “creamy”,
“dark”, “large” and “thick”. The problem to deal withmprecisionhas been addressed
several decades ago by Zadeh, which gave bird in the meanwhile to the sofgated

set and fuzzy logic theofgee, e.g. [4] for an in-depth study of fuzzy logic). Unfortu-
nately, despite the popularity of fuzzy logic theory, relative little work has been carried
out involving fuzzy DLs [3, 7, 8, 11, 12].

We present a fuzzy version gf£C(D). Main features are that we allow the explicit
representation of typical concept membership functions (fuzzy concrete domains) and
fuzzy modifiers (similarly to [11, 3]). We present a novel inference procedure based on
a mixture of tableaux rules and bounded Mixed Integer Programming (bMIP). In the
following, we present fuzzyA£LC(D) and a reasoning procedure. An extended version
of this work can be found in [9].

2 Fuzzy ALC with fuzzy domains

A fuzzy setd w.r.t. a universeX is characterized by membership functiop4: X —
[0,1], or simply A(z) € [0,1]. A(x) gives us an estimation of the belonging of
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to A. In fuzzy logics, the degree of membersmma? is regarded as thdegree of
truth of the statementx is A”. Accordingly, in our fuzzy DL, a concept' will be
interpreted as a fuzzy set and, thus, concepts bedompeecise and, consequently,

e.g. the statement'is an instance of concept’, will have a truth-value irf0, 1] given

by the membership degr&&(a). In our fuzzy variant ofALC(D), unlike the classical

case (see [6]), concrete domains are considered as fuzzy sktszyAdomairs a pair

(Ap, Pp), WhereA is an interpretation domain anl, is the set ofuzzy predicated

with a predefined arity, and an interpretatior®: A7 — [0, 1], which is an-ary fuzzy
relation overd,. To the ease of presentation, we assume the fuzzy predicates have arity
one, the domain is a subset of the rational numlizi@nd the range if), 1] N Q (in

the following, whenever we writé), 1], we mean[0, 1] N Q). For instance, we may
define the predicatg s as an unary predicate over the natural numbers denoting the set
of integers smaller or equal t8. On the other handjoung may be a fuzzy predicate
denoting the degree of youngness of a person’s age over the domairjrarige with

Young(z) = 1s(10, 30, [0, 150]) ,

wherels(a,b,[0,150]) is a left shoulder function with shape defined as in the fig-
ure below. Concerning fuzzy predicates, there are many membership functions for
fuzzy sets membership specification. However, (see figure below);fox a <

b < ¢ < d < ky rational numbers, th&apezoidaltrz(a, b, ¢, d, [k1, ko), the trian-

gular tri(a, b, ¢, [k1, ko), theleft-shoulder functioris(a, b, [k1, ko)), theright-shoulder
functionrs(a, b, [k1, ks]) and thecrisp functioncr(a, b, [k1, k2]) are simple, yet most
frequently used to specify membership degrees and are those we are considering in this
paper. To simplify the notation, we may omit the domain range, and writece(g, b)

in place ofer(a, b, [k1, k2]), whenever the domain range is not important.
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Right-shoulder function Crisp function Linear modifier function
Fuzzy modifiers [3, 11] likerery, more or_less andslightly, apply to fuzzy sets to
change their membership function and allow, e.g. to express conceptetikéiigh),
moreOrLess(Ripe) andslightly(Nice). Formally, anodifieris a functionf,,: [0, 1] —
[0, 1]. For instance, we may define

very(z) = 1m(0.7,0.49,0,1) ,

while defineslightly(z) aslm(0.7,0.49, 1,0), wherelm(a, b, ¢, d) is thelinear mod-

ifier in the figure. For the purpose of this paper, we will assume that modifiers are a
linear combinatiorof two linear functions as depicted in the figure, which covers usual
cases.



Now, letC, R,, R, I,, I. andM be non-empty finite and pair-wise disjoint sets of
concepts name&enotedA), abstract roles namefenotedR), concrete roles names
(denotedr), abstract individual name@enoted:), concrete individual namgslenoted
¢) and modifiers(denotedm). R, contains a non-empty subsgt of abstract feature
namegdenoted-), while R, contains a non-empty subgetof concrete feature names
(denoted). Features are functional roles. The set of fuzZzyC (D) conceptss defined
by the following syntactic rulesi(is a unary fuzzy predicate):

D — d|-d

m — 1lm(a,b,c,d)

d - trz(a,b, c,d, [klka]) | tri(aaba <, [klka]) | 1S(aaba [klka]) |
rs(a,b, [k1,ks]) | cr(a,b, [k1,ks])

A TBox7 consists of a finite set derminological axiom®f the formA T C (A is
sub-concept o) or A = C (A is defined as the concept), where A is a concept
name and” is concept. We allow the definition of modifier names and concrete pred-
icates names to appear in the TBox and concept expressions. For instange-
1m(0.7,0.49,0,1) € 7 dictates thatvery is an abbreviation folm(0.7,0.49,0, 1),
while Young = 1s(10,30,[0,150]) € 7 dictates thatroung is an abbreviation for
1s(10, 30, [0, 150]).

We also assume that no concepiappears more than once on the left hand side
of a terminological axiom and that no cyclic definitions are preseft.iiNote that in
classical DLs, usually terminological axioms are of the farnic D, whereC' and D
are concepts. While from a semantics point of view it is easy to consider them as well

(see [10]), we have not yet found a calculus to deal with such axioms.
Using axioms we may define the concept of a minor and young person as

Minor = Person[1dage.<ig
<4g = cr(0, 18, [0, 150])

YoungPerson = Person 1 dage.Young
Young = 1s(10, 30, [0, 150])

A concept; role- assertion axionand anindividual (in)equality axionmhas the form
a:C, (a,b): R,a =~ b anda % b, respectively, where, b are abstract individuals. For
n € [0,1], anABox A is a finite set offuzzy concepandfuzzy role assertion axioms
of the form(a, n), wherea is a concept or role assertion. Informaliy, n) constrains
the truth degree ok to be greater or equal te. An ABox .4 may also contain a finite
set of individual (in)equality axioms ~ b anda % b, respectively. A fuzzyALC(D)
knowledge bask = (7, A) consists of a TBo¥ and an ABoxA.

From a semantics point of view, we extend fuza¥C [7]. A fuzzy interpretation
7 w.r.t. a concrete domaib is a pairZ = (AZ,-%) consisting of a non empty set”
(called thedomair), disjoint from Ap, and of afuzzy interpretation functior? that
assigng(i) to each abstract conceft € C a functionC?: A7 — [0,1]; (ii) to each
abstract roleR € R, a functionRZ: AT x AT — [0, 1]; (ii7) to each abstract feature
r € F, a partial functionr?: AT x AT — [0,1] such that for alu € AZ there is an
uniqguew € A% on whichr?(u, w) is defined;(iv) to each abstract individual € I,
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an element im\%; (v) to each concrete individuale I.an elementin\,; (vi) to each
concrete rolel’ € R, a functionT?: AT x A, — [0,1]; (vii) to each concrete feature
t € F. a partial function?: A7 x A, — [0, 1] such that for al € AZ there is an unique
o € Ap on whichtZ(u, o) is defined;(viii) to each modifiern € M the corresponding
function f,,,: [0, 1] — [0, 1]; (ix) to each unary concrete predicatéhe corresponding
fuzzy relationd®: A, — [0, 1] and to—d the negation of®. The mapping” is extended
to concepts and roles as follows (where A%): TZ(u) = 1, L7 (u) = 0,

(C1nCo) (u) = min{Ci7(u),Co" (u)}

(Cy UICQ)I(u) = max{gll(u), ot (u)}

(=C)" (w) = 1-C"(u)

MO () = fu(CT(w)

(VR.C)* (u) = inf,car max{1 — RT(u,w), CT(w)}
(3R.C)* (u) = sup,ear min{R% (u, w), C% (w)}
(VI.D)*(u) = infeen, max{l — TZ(u,0), DX(0)}
(3T.D)* (u) supyea, min{T% (u,0), D*(0)} .

Note that due to the restrictions on the chosen fuzzy functions, we do havehat)” =
(-3R.~C)*. This will allow us to transform concept expressions into a semanti-
cally equivalentNegation Normal Formr(NNF), which is obtained by pushing in the
usual manner negation on front of concept names, modifiers and concrete predicate
names only With nnf(C') we denote the NNF of concegt. The mapping? is
extended to assertion axioms as follows (wheré € 1,): (a:C)* = CZ(a%) and
((a,b): R)* = R*(a®,b%). The notion ofsatisfiabilityof a fuzzy axiomE by a fuzzy
interpretatioriZ, denoted = F, is defined as follows:

(u)

IEACC iff forall ue AT, AT(u) <C
= C*(u)

IEA=C iff forall ue AT AT(u)
IE{(a,n) iff of>n
ITka~b iff of =07
TkEazb iff o £b7

The notion ofsatisfiability (is mode) of a knowledge bask = (7, .4) andentailment

of an assertional axiom is straightforward. Concerning terminological axioms, we also
write K = (A C B,n) iff for every modelZ of K, [inf,caz AT(u) = B%(u)] >

n. Finally, given/C and an axiomx the greatest lower boundf o« w.r.t. K, denoted
glb(K, ), is glb(K, ) = sup{n: K = {(a,n)}, wheresup () = 0. Determining theylb

is called theBest Degree Boun(BDB) problem. AsK |= (a, n) iff glb(K,a) > n, the

BDB problem is the major problem we have to consider in fuzz§C (D), which we
address in the next section.

Example 1 Consider the following simplified excerpt of a knowledge base about cars
(speed is a concrete feature):

SportsCar = Jspeed.very(High), High = rs(80,250,[0,400])
very = 1m(0.7,0.49,0,1), <j70 = cr(0, 170, [0,400])
>350 = cr(350,400, [0,400]), =243 = cr(243,243,[0,400])

(mg mgb: Ispeed.<y70,1), (ferrari_enzo: Ispeed.>3s50, 1), (audi_tt: Ispeed. =p43,1)}
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Then
(mg_mgb: =SportsCar, 0.72), K |= (ferrari_enzo: SportsCar, 1)

K
K |= (audi_tt: SportsCar, 0.92)

Note how the maximal speed limit of thg mgb car (< 170) induces an upper limit,
0.28 = 1 — 0.72, on the membership degree of beiiggmgb a SportsCar.

Example 2 Consider/C with terminological axiom#inor = Person[1Jage.<;g and
YoungPerson = Person 1 Jage.Young, Where<;s = cr(0, 18, [0, 150]), Young =
1s(10, 30, [0, 150]) andage is a concrete feature. Thé@ = (Minor C YoungPerson, 0.5).

Example 3 Consider the following simplified excerpt of a computer store:
Computer C JhasPrice.Price), (c1l: JhasPrice.=ggs, 1), (c2: JhasPrice.=1010,1)

wherehasPrice is a concrete feature. Suppose a customer is looking for a computer
whose price is in the rang®00, 1000]. In a classical DL retrieval system justl is
retrieved, leaving unfortunatek2 out. However, if the system internally defines

PriceRange = trz(800, 900, 1000, 1100, [0, 5000])

establishing that the price boundaries of the customer are not crisp anymore (as almost
all store owners do), then

K [ (cl:JhasPrice.PriceRange, 1)
K [ (c2:JhasPrice.PriceRange,0.9)

and, thus, the “fuzzy” retrieval gives us a ranking of the itemh@ndc2, in decreasing
order of relevance.

3 Reasoning

A more detailed description of the reasoning algorithm can be found in [9]. Consider
K = (T, A). Inorder to solve the BDB problem, we combine appropriate DL comple-
tion rules with methods developed in the contexiMany-Valued Logic§MVLs) [2].

The basic idea is as follows. In order to determine @l /C, a: C'), we consider an ex-
pression of the fornfa: =C, 1 — z) (informally, (a: C' < z)), wherez is a0, 1]-valued
variable. Then we construct a tableaux for= (7, AU {{(a: ~C,1 — z)}) in which

the application of satisfiability preserving rules generates new assertion axioms together
with inequationsover [0, 1]-valued variables. These inequations have to be hold in or-
der to respect the semantics of the DL constructors. Finally, in order to determine the
greatest lower bound, wainimizethe original variabler such that all constraints are
satisfied. In this paper, we limited the choice of the semantics of concept constructors,
modifiers and fuzzy predicates in such a way that we end up withumded Mixed
Integer Program(bMIP) optimization problem. Interestingly, as for the MVL case, the
tableaux we are generating contaorebranch only and, thus, jushebMIP problem

has to be solved.



A general MIP problem consists in minimizing a linear function w.r.t. a set of con-
straints that are linear inequations in which rational and integer variables can occur.
In our case, the variables are bounded. More preciselyk let (zy,...,z;) and
y = {v1,-..,ym) be variables oveQ, over the integers and let, B be integer matrices
andh an integer vector. The variablesynare calledcontrol variables Let f(x,y) be
ank + m-ary linear function. Then thgeneral MIP problenis to findx € Q*,y € Z™
such thatf (x,y) = min{ f(x,y): Ax+ By > h}. The general case can be restricted to
what concerns the paper as we can deal ittndedViIP (bMIP). That is, the rational
variables range over a given interval, while the integer variables range$ueér Fur-
thermore, we say that/ C [0, 1]* is bMIP-representabléf there is a bMIP(A, B, h)
with & real andmn 0-1 variables such thadt/ = {x: Jy € {0, 1}"™ such thatAx + By >
h}. In particular, we require that the setsf) = {(z1, ...,z z): f(z1,...,2%) > x}
andg(f) = {(z1,...,xp,2): f(x1,...,2x) < x} should be bMIP-representable. It is
easily verified that all fuzzy predicates, modifiers and DL constructors are bMIP repre-
sentable (see [9])The BDB problem. We start with a pre-processing steps in which
eachA C C can be replaced withl = C' 11 A*, where A* is a new concept name,
then substitute concept names with their definitions and finally transform each concept
into NNF. This last operations does not affect the semantics due to the restrictions we
made on the fuzzy constructors. Notice that negation may appear on front of modifiers
in the from—-m(C'), whereC' is a complex concept. Now, l&tbe a new alphabet of
variablesr ranging over0, 1], w be a new alphabet of 0-1 variablgsWe extend fuzzy
assertions to the fornn, 1), wherel is a linear expression over variablesviriv and
real values. Alinear constraintis of the formi > [’ or [ < I’, wherel, [’ are linear
expressions over variablesinw and rational values. The satisfiability notion of linear
constraints is immediate. Bonstraint setS is a set of terminological axioms, fuzzy
assertion axioms, (in)equality axioms and linear constrainhsatisfiesS iff Z satisfies
all elements of it. WithS, we denote the constraint s6f = 7 U .A. We will see
later how to determine the satisfiability of a constraint set. In the following, we assume
that .S, is satisfiable, otherwisglb(KC, «) = 1. As in [7], concerning fuzzy role asser-
tions, we have thakl = ((a,b): R, n) iff ((a,b): R,m) € A with m > n. Therefore,
glb(KC, (a,b): R)) = max{n: (R(a,b),n) € A}. So we do not consider this case further.
Now, let us determinglb(C, a: C'). As anticipated,

glb(K, a: C')) = min, such thatS = Sy U {(a: =C, 1 — x)} satisfiable .
Similarly, for a terminological axiomi C B,
glb(K, A C B) = min, such thatS = Sy, U {(a: AN =B, 1 — z)}} satisfiable ,

wherea is new abstract individual. Therefore, the BDB problem can be reduced to
minimal satisfiability problemThe Satisfiability problem. Our satisfiability checking
calculus is based on a set of constraint propagation rules transforming>asebn-
straints into “simpler” satisfiability preserving constraint sgtsintil eitherS; contains
aclashor no rule can be further be applied$a If .S; contains a clash thet} and, thus

S is immediately not satisfiable. Otherwise, we apply a bMIP oracle to solve the set



of linear constraints irb; to determine either the satisfiability of the set or the minimal
value for a given variable, making.S; satisfiable. We assume that a constraintssist
reflexive, symmetric and transitively closed concerning the equality axiSraentains
aclashiff either (a: L,n) € Swithn > 0, 0or{a~b, a % b} C S. The rules follow
easily from the bMIP representatiorSach rule instantiation is applied at most once
Before we can formulate the rules we need a technical definition involving feature roles
(see [6]). LetS be a constraint set; an abstract feature and bottu, b,): 7, ;) and
((a,by):7,13) occur inS. Then we call such a pairfark. Asr is a function, such a fork
means thali; andb, have to be interpreted as the same individual. A forkb,): r, 1),
((a,by):7,15) can be deleted by replacing all occurrence$.0i S by b;. A similar
argument applies to concrete feature roles. At the beginning, we remove the forks from
Sp. We assume that forks are eliminated as soon as they appear (as part of a rule appli-
cation) with the proviso that newly generated individuals are replaced by older ones and
not vice-versa. Withr, we denote the variable associated todb@amic assertiony of
the forma: A or (a, b): R. xq Will take the truth value associateddowhile with z. we
denote the variable associated to the concrete individuEhe rules are the following:
RA. If (,1) € S; anda is an atomic assertion of the form A or (a, b): RthenS; 1 = S; U{za > [}.
RA. If (a:—A,l) € S; thenS; 11 = S; U {zg. o <1 -1}
RM.If (a:C 1 D,1) € S; thenS; 11 = S; U {(a:C,1), (a: D,1)}.
RU. If (a:C LU D,l) € S;thenS; 11 = S; U {(a:C,z1), {(a: D, x2), 21 + 22 = l,z1 < y,z2 < 1—y,z; € [0,1],y €
{0,1}}, wherez; is a new variabley is a new control variable
R3. If (a:3R.C,1) € S; thenS; 11 = S; U{{(a,b): R, 1), (b: C, 1)}, whereb is a new abstract individual. The case for concrete
roles is similar
RV. If {{a:VR.C,l1),{(a,b): R,l2)} C S;thenS;+1 = S; U{{a:C,x),z+y > lL,e <1—yli+l<2—y,z€
[0,1],y € {0,1}}, wherez is a new variable and is anew control variable. The case for concrete roles is similar
Rm. If (a:m(C),1) € S; thenS;11 = S; U~(a:C,1), where the sef/(a: C, 1) is obtained from the bMIP representation of
g(m) as follows: replace ig(m) all occurrences af2 with . Then resolve for, and replace all occurrences of the farm > I/
with (a: C,1’), while replace all occurrences the fomm < I’ with (a:nnf(=C),1 —').
Rm. The cas€a: -m(C),l) € S; is similar to ruleRm, where we use the bMIP representatiorg6f) in place ofg(m)
Rd. If (c:d,l) € S; thenS;11 = S; U~(e:d, 1), where the sefy(c: d,1) is obtained from the bMIP representationggfl) by
replacing all occurrences af, with [ andz; with ..
Rd. The caséc: —d, ) € S; is similar to ruleRd, where we use the bMIP representatiog¢d) in place ofg(d).
Note thatan unique branclis generated in the tableaux 8§. Some comments for the
RUI rule. By reasoning by case, fgr= 0, we haver; = 0,2, < 1,25 = [, while for
y = 1, we haver, = 0,2, < 1,2z, = [. Therefore, the control variablesimulates the
two branchings of the disjunction. A similar argument applies to the other rules.

A constraint set5’ obtained from rule applications t® is acompletionof S iff no
more rule can be applied 1. It can be shown that the rules are satisfiability preserving
and a completion is obtained after a finite number of rule applications. Furthermore,
consideriC(7, A) and leto be a concept assertion axiamC' or a terminological axiom
A C B. Thenin finite time we can determigéb(kC, «) as the minimal value of such
that the completion of = 7 U AU {{(a/,1 — )} is satisfiable, wheré) o/ = a: =C
ifa=aC, (i)' =a:AN-Bifa=ALC B.

An example of computation can be found in [9].
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4 Conclusions, related work and outlook

We have presented a fuzzy DL showing that its representation capabilities go beyond
current approaches to fuzzy DLs. We recall that the first work on fuzzy DLs is due
to Yen ([12]) who considered a sub-languageA£C, FL~. It already informally

talks about the use of modifiers and fuzzy concrete domains. Tresp ([11]) considered
fuzzy ALC extended with a special form of modifiersnin, max and1 — x mem-
bership functions has been considered and complete reasoning algorithm testing the
subsumption relationship has been presented. Similar to our approach, a linear pro-
gramming oracle is needed. Straccia ([7]) considers fuzzy assertion axioms in fuzzy
ALC, concept modifiers are not allowed however. He also introduced the BDB prob-
lem and provided a sound and complete reasoning algorithm based on completion
rules ([8] provides a translation of fuzz4£C into classicalALC). In the same spirit

[3] extend Straccia’s fuzzydLC with slightly more enhanced concept modifiers. A
sound and complete reasoning algorithm for the graded subsumption problem is pre-
sented. Finally, [10] extendd£C (D) to OWL DL. However, no reasoning algorithm

is given. Future work involves the extension of fuzA(C(D) to SHOZN (D), the
theoretical counterpart of OWL DL. Another direction is in extending fuzzy DLs with
fuzzy quantifierswhereV andd are replaced with fuzzy quantifiers likest, some,
usually and the like. This allows to define concepts likeoCustomer = Customer[]
(Usually)buys.Expensiveltem, Expensiveltem = Item 1 Jprice.High. Fuzzy
quantifiers can be applied to inclusion axioms as well, allowing to expresgMesg.)

Bird C FlyingObject. Here the fuzzy quantifiefost replaces the classical universal
guantifiery assumed in the inclusion axioms expressing that “most birds fly”.
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