
Black Box Techniques for Debugging
Unsatisfiable Concepts

Aditya Kalyanpur, Bijan Parsia, Evren Sirin
University of Maryland

College Park, USA
aditya@cs.umd.edu, bparsia@isr.umd.edu, evren@cs.umd.edu

June 22, 2005

1 Motivation

Now that OWL is a W3C Recommendation, one can expect that a much wider
community of users and developers will be exposed to the expressive description
logic SHIF(D) and SHOIN(D) which are the basis of OWL-DL. These users and
developers are likely not to have a lot of experience with knowledge representa-
tion (KR), much less logic-based KR, much less description logic based KR. For
such people, having excellent documentation, familiar techniques, and helpful
tools is a fundamental requirement.

A ubiquitous activity in programming is debugging, that is, finding and fixing
defects in a program. Ontologies too have defects, and a common activity is to
find and repair these defects. Unfortunately, the tool and training support for
debugging ontologies is fairly weak.1 We have chosen to focus on debugging
unsatisfiable concepts (and contradictory ABoxes) because contradictions, in
general, seem analogous to fatal errors in programs. Debugging fatal errors in
programs can be relatively straightforward: the program crashes, there is a stack
trace or similar information, and (one measure of) success is a running program.
Current tools do support indicating the dramatic failure of a unsatisfiable class,
and success is similarly clear, however, supporting the diagnosis and resolution
of the bug is not supported at all. In [2], we investigated better support for
debugging unsatisfiable concepts using both glass box (wherein the reasoner is

1While, historically, good KR modeling practices have been developed and described, often
with an emphasis on description logics[3], tool support for “good” modeling remains elusive,
especially given the lack of consensus on practice and the strong dependence of goodness on
application and domain specifics.



modified return explanations of the unsatisfiability) and black box (wherein the
only inference service is satisfiability checking) techniques. In this paper, we
extend our investigation of black box techniques which have two advantages
over glass box ones: reasoner independence (you do not need a specialized,
explanation generating reasoner) and avoiding the performance penalty of glass
box techniques.

2 Root and Derived Unsatisfiabilities

We categorize unsatisfiable classes into two types:

1. Root Class - this is an unsatisfiable class in which a clash or contradiction
found in the class definition (axioms) does not depend on the unsat-
isfiability of another class in the ontology. More specifically, the unsat-
isfiability bug for a root class cannot be fixed by simply correcting the
unsatisfiability bug in some other class, instead, it requires fixing some
contradiction stemming from its own definition. Root classes can be fur-
ther subdivided into two categories:

(a) Pure Root : This is a (root) class whose unsatisfiability depends strictly
on its own definition (axioms), and not on the unsatisfiability of
any other (root) class in the ontology. For example: Student v
(≥ 2)hasAdvisor ∩ (≤ 1)hasAdvisor

(b) Mutually Dependent Root : This is a (root) class whose unsatisfiabil-
ity depends on one or more distinct (root) classes in the ontology.
For example: if you have two classes Male and Female, which are
asserted to be disjoint from one other, but also incorrectly defined as
equivalents. In this case, both classes are mutually dependent roots
with the problem lying in the equivalence and disjoint axioms.

2. Derived Class - this is an unsatisfiable class in which a clash or contradic-
tion found in a class definition either directly (via explicit assertions) or
indirectly (via inferences) depends on the unsatisfiability of another
class (we refer to it as the parent unsatisfiable class). Hence, this is a less
critical bug in the sense that (in most cases) it can be resolved by fixing the
unsatisfiability of this parent dependency. Note that there may be cases in
which fixing the dependency bug reveals yet another unsatisfiability bug
in the class, which needs to be resolved separately (making the derived
class necessarily, but not sufficiently, dependent on the parent). Example
of a derived class is: Class GraduateStudent v Student, where Student
is an unsatisfiable class itself, in this case, its parent.



3 Automating root class discovery

In this section, we present an algorithm to separate the root unsatisfiable classes
from the derived ones given the total set of unsatisfiable classes in an ontology
as provided by a reasoner. The algorithm consists of two parts: Structural
Tracing and Root Pruning and we describe each in detail in the following
subsections.

For each unsatisfiable class in the ontology, the algorithm obtains its depen-
dencies as follows:

• For a root class, it returns itself.

• For a derived class, it returns all the parent dependency classes along with
the corresponding axioms that link the derived class to the parent. More
specifically, the data structure returned is a set of tuples, where each tuple
τ is recursively defined as:
τ = (τ , axiom), and the fixed point of τ is:
τ = (dep, axiom), where,
dep is a set of dependency sets dep′, such that each dep′ is a set of parent
unsatisfiable classes that together cause the bug (could be a singleton set),
and
axiom = associated axiom linking current class to dependency set

For example,
τ(A) = ({{D}, equClaAxiom}, {{C, E}, subClaAxiom})
implies the following:
A has an equivalent class axiom relating it to parent dependency D i.e.
(solely D) is unsatisfiable makes A unsatisfiable. E.g., A = D ∩ (≤ 1p)
A has a subclass axiom relating it to parents (C and E) i.e. (both C and
E) are unsatisfiable makes A unsatisfiable. E.g., A v (C ∪ E)

3.1 Structural Tracing

The tracing algorithm is used to determine structural dependencies between
unsatisfiable classes. The details of the algorithm are given in [1]. For now, we
briefly enumerate its three stages:

Stage 1: Pre-processing - given a class definition (considering its equivalence
and subclass axioms), we obtain a set of all property-value chains inherent in
these axioms, which terminate in a universal value restriction (∀) on an unsatis-
fiable class. The intuition for this is as follows: universal value restrictions on a
property must be satisfied iff the property exists i.e. the class definition entails
a ≥ 1 cardinality restriction on the property. In Stage 2 (dependency-tracing of
a particular class), each time we discover the existence of a property, we check
the allPC chains to ensure that the associated universal restriction is satisfied.



However, note that we need to determine the set of allPC chains beforehand,
since the non-localization of the class definition makes it difficult to verify all
universal restrictions during tracing directly.

Stage 2: Dependency-tracing - a recursive set of methods are used to extract
all dependency unsatisfiable classes and the adjoining axioms given the original
class definition. The output contains a mixture of definite and optional depen-
dency cases. The basic tenets of the tracing approach are as follows:
Class A is a derived unsatisfiability if:

1. A is equivalentTo/subClassOf an intersection set, any of whose elements
are unsatisfiable, i.e., A = (B∩C..∩D), and one of B,C..D is unsatisfiable
(any such unsatisfiable class becomes its parent)

2. A is equivalentTo/subClassOf a union set, all of whose elements are un-
satisfiable, i.e., A = (B ∪ C.. ∪ D), and all B,C..D are unsatisfiable (all
such unsatisfiable classes become its parents)

3. A has an existential (∃) property restriction on an unsatisfiable class, i.e.,
A = ∃(p, B) and B is unsatisfiable (B becomes its parent)

4. A entails a (≥ 1) cardinality restriction on a property-chain, and the uni-
versal (∀) value restriction on that chain is not satisfied (object/value of
property chain becomes its parent)

5. A entails a (≥ 1) cardinality restriction on a property, and the domain of
the property is unsatisfiable, i.e., A v (≥ 1p), domain(p) = B, and B is
unsatisfiable, making it the parent of A (similar domain check has to be
made for every ancestor property of p)

6. A entails a (≥ 1) cardinality restriction on an object property, and the
range of its inverse is unsatisfiable, i.e., A v (≥ 1p), range(p−) = B, and
B is unsatisfiable, making it the parent of A (similar range check has to
be made for every ancestor property of p−)

Stage 3: Post-processing - In this stage, all the optional unsatisfiable classes
or parent dependencies that may have been introduced in the previous stages
are either pruned out or transformed (to necessary dependencies) in the final
dependency set.

Detailed examples of the structural tracing algorithm are given in [1].

3.1.1 Drawbacks of Tracing

One of the main drawbacks of the structural tracing algorithm is that it does not
consider inferred equivalence or subsumption between root classes. Consider two
classes A and B that do not have an explicit subsumption relation between them



but the reasoner can infer one, e.g., A = (≥ 1p) and B = (≥ 2p). Even though
there is no subclass axiom relating the two classes, a reasoner can infer that
B v A (provided of course, that both are satisfiable). However, if the tracing
algorithm returns both classes as root, it cannot find the hidden dependency of
B on A. In this case, even using a reasoner to infer the subsumption relation
will not work as both classes are unsatisfiable and hence effectively equivalent
to the bottom concept. As a result, we need an alternate way to prune the root
classes further by finding these hidden dependencies.

3.2 Pruning potential roots

We are working on a simple, but optimized, brute force approach to detect
hidden dependency (equivalence and/or subsumption) between potential root
classes (rootp) found at the end of the structural tracing. It involves removing
a set of rootsp from the ontology and testing the satisfiability of the remaining
rootsp. Before we present the details of this approach, we need to specify what
we mean by removing a class from the ontology: here, removal of class C implies
getting rid of all definitions of the class from the ontology, i.e., axioms in which
C appears solely on the LHS.

3.2.1 Brute-force Pruning

Considering the following example. Suppose structural tracing identifies the fol-
lowing potential root classes : {R1, R2, R3, C1, C2, C3, C4} such that {R1, R2, R3}
are the actual roots (each mutually dependent) and {C1, C2, C3, C4} are derived
from the roots based on the following (non-asserted) dependencies:
C3 v C1 v C4 v R1

C3 v R2

C2 v R2

C4 v R3

The detailed algorithm for iteratively pruning the actual roots is given in [1].
Here, we briefly explain how it works: One iteration of the algorithm takes a
set of unsatisfiable classes and identifies a single root in it by gradually reducing
the set to one in which all classes are satisfiable.

Thus, we have the following condition: given a set of unsatisfiable classes L,
we split it into two parts, L1 and L2, such that:

1. removing L1 from the ontology makes L2 satisfiable, and

2. L1 is minimal, i.e., there exists no other partitioning of the list L =
{L′

1, L
′
2} satisfying (1) such that L′

1 ≤ L1



Now, if R is the class at the boundary of the partition, i.e., R is the last
class to be added to L1 to satisfy the above two conditions, then we can infer
the following:

1. R is a root class since removing it (along with the previously removed
classes in L1) from the ontology makes L2 completely satisfiable. Note: L1

(which contains R) should be minimal for this to hold.

2. Conversely, each class in L2 is a derived class which has atleast one root
dependency: R (there may be additional dependencies on other classes in
L1)

Since the above root identification process is generic for any list of unsatisfi-
able classes, we can remove the root R from the ontology and repeat the above
process iteratively to prune out all the roots.

An important optimization in the algorithm above is to track dependent
sets dynamically, i.e., if during an intermediate partitioning stage, we find that
a class becomes consistent, we tag it as a dependent class and skip it during
later partitioning stages, thereby preventing numerous unnecessary satisfiability
checks.

To see how the algorithm works with the above case, consider an initial
(random) ordering of potential roots: L = {C4, R3, C1, R1, C3, R2, C2}. The it-
erations of the root pruning process are shown in the table below. The total no.
of satisfiability tests needed to identify all three roots {R1, R2, R3} is 11.

Unsat. Class List / Partitions Roots Dependent
L = {C4, R3, C1, R1, C3, R2, C2} R2 C1, C2

L1 = {C4, R3, C1, R1, C3}+ {R2}
L2 = {C2}
No. of Sat Tests = 6
L = {C4, R3, R1, C3} R1 C3

L1 = {C4, R3}+ {R1}
L2 = {C3}
No. of Sat Tests = 3
L = {C4, R3} R3 -
L1 = {C4}+ {R3}
L2 = {}
No. of Sat Tests = 1
L = {C4} - C4

No. of Sat Tests = 1



4 Evaluation: The Tambis Ontology

For the purpose of evaluation, we needed an expressive, moderately-sized OWL
ontology that had a large number of unsatisfiable classes. The Tambis ontology
fit our needs well - its an OWL DL ontology containing 395 Classes and its ex-
pressivity is SHIN. Moreover, the OWL version 2 was generated by a conversion
script and a number of errors crept in during that process – 144 unsatisfiable
classes in all. Many of the unsatisfiable classes depend in simple ways on other
unsatisfiable classes, so that a brute force going down the list correcting each
class in turn is unlikely to produce correct results, or, at best, will be pointlessly
exhausting. In one case, three changes repaired over seventy other unsatisfiable
classes. Given the highly non-local effects of assertions in a logic like OWL, it
is not sufficient to take on defects in isolation.

We implemented the black-box techniques in the Swoop OWL ontology editor
3, used the default DL Tableaux Reasoner, Pellet, and carried out the analysis
and debugging of Tambis. Running the structural tracing algorithm on the un-
satisfiable classes in Tambis identified 111 derived classes and 33 potential roots
in ≈ 20ms. This was a significant result, the problem space was pruned by more
than 75% enabling us to direct our attention on a narrow set of unsatisfiabile
classes, and moreover, for each derived unsatisfiabile class, we obtained the de-
pendency relation (via axioms) leading to its corresponding roots, which were
presented in the Swoop UI.

Out of the remaining 33 potential roots, we applied the brute-force root prun-
ing technique (which performed an additional 51 satisfiability checks in ≈ 11s)
and reduced the root set to just 2! This was both, a surprising and interesting
result, and due in fact to the inferred equivalence between a large number of
potential roots. The 33 classes all shared the same structure (defined equivalent
to the same intersection set) out of which 2 were actual roots, (any pair from
the set {metal, nonmetal, metalloid} 4), each asserted as mutually disjoint in
the ontology thus causing the contradiction; while the remaining 30 classes were
all inferred to be equivalent to the above 3 classes making them unsatisfiable
as well. Thus, root pruning was able to reduce the problem space of the on-
tology even further, demonstrating the effectiveness of black-box techniques for
debugging ontologies.

The next step we intend working on is pinpointing problematic axioms in the
ontology, a problem which is simplified now that we have identified the small
set of root unsatisfiable classes.

2http://www.cs.man.ac.uk/ horrocks/OWL/Ontologies/tambis-full.owl
3http://www.mindswap.org/2004/SWOOP
4Fixing any pair of unsat. classes from the set makes the third class satisfiable



5 Related Work and Conclusion

To our knowledge, black-box debugging to find and explain dependencies be-
tween unsatisfiable classes is a largely unexplored topic. The closest work
we know of is [4], who propose non-standard reasoning algorithms (for ALC
TBoxes) based on minimization of axioms using Boolean methods, and demon-
strate promising results on the DICE terminology. Their approach which deals
with axiom and concept pinpointing is related to our work, though they rely on
glass box techniques as well.

The black box debugging techniques described in this paper focus on sep-
arating the root from the derived unsatisfiable classes allowing the modeler to
focus solely on the problematic parts of the ontology. Evaluation performed
on the Tambis ontology has given us promising preliminary results. The struc-
tural tracing algorithm helped prune out a large chunk of unsatisfiable classes
(111/144) based on simple (direct), as well non-local (indirect) dependencies
on root classes; while further root pruning (30/33) helped reveal hidden equiv-
alence/subsumption between potential roots. The Tambis use case scenario
is quite reasonable, given that automated scripts for converting ontologies or
schemas to OWL are likely to introduce errors, and modelers keen on using
the rich expressivity of OWL-DL require good debugging support to fix them.
The debugging techniques are also useful to reveal dependencies during iterative
building of an ontology when highly non-local interactions in the ontology cause
sudden and unexpected erroneous results, e.g., when adding a new axiom makes
some atomic class equivalent to owl:Thing causing numerous classes to become
unsatisfiable due to disjointness.

References

[1] A. Kalyanpur, Parsia B, and E. Sirin. Detecting dependencies between un-
satisfiable classes. http://www.mindswap.org/papers/depunsat.pdf. 2005.

[2] Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Debugging owl ontolo-
gies. In The 14th International World Wide Web Conference (WWW2005),
Chiba, Japan, May 2005.

[3] A. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch, R. Stevens,
H. Wang, and C. Wroe. Owl pizzas: Common errors & common patterns
from practical experience of teaching owl-dl. In European Knowledge Acqui-
sition Workshop (EKAW), 2004.

[4] S. Schlobach and R. Cornet. Non-standard reasoning services for the debug-
ging of description logic terminologies. Proceedings of IJCAI, 2003, 2003.


