
A Tableau Algorithm for DLs with Concrete

Domains and GCIs

Carsten Lutz and Maja Miličić
Institute of Theoretical Computer Science

TU Dresden, Germany
{lutz,milicic}@tcs.inf.tu-dresden.de

Abstract

We identify a general property of concrete domains that is sufficient
for proving decidability of DLs equipped with them and GCIs. We show
that some useful concrete domains, such as a temporal one based on the
Allen relations and a spatial one based on the RCC-8 relations, have this
property. Then, we present a tableau algorithm for reasoning in DLs
equipped with such concrete domains.

1 Introduction

In many relevant applications of description logics (DLs) such as the semantic
web and reasoning about ER and UML diagrams, there is a need for DLs that
are equipped with both concrete domains and general concept inclusions (GCIs)
[2, 5, 11]. Unfortunately, combining concrete domains with GCIs easily leads
to undecidabilty. For example, it has been shown in [14] that the basic DL
ALC extended with GCIs and a concrete domain based on the natural numbers
and providing for equality and incrementation predicates is undecidable. More
information can be found in the survey paper [12].

In view of this discouraging result, it is a natural question whether there are
any useful concrete domains such that, when used with a DL providing for GCIs,
reasoning remains decidable. A positive answer to this question has been given
in [13] and [10], where two such well-behaved concrete domains are identified:
a temporal one based on the Allen relations and a numerical one based on the
rationals and equipped with various unary and binary predicates such as “≤”,
“>5”, and “6=”. Using an automata-based approach, it is shown in [13, 10] that
reasoning in the DLs ALC and SHIQ extended with these concrete domains
and GCIs is decidable and ExpTime-complete.

The purpose of this paper it to elaborate on the existing decidability results.
Our contribution is two-fold: first, instead of focussing on particular concrete
domains as in previous work, we identify a general property of concrete domains,

called ω-admissibility, that is sufficient for proving decidability of DLs equipped
with concrete domains and GCIs. For defining ω-admissibility, we concentrate on
a particular kind of concrete domains that we call constraint systems. Roughly, a
constraint system is a concrete domain that only has binary predicates, and these
predicates are interpreted as jointly exhaustive and pairwise disjoint (JEPD)
relations. We exhibit two example constraint systems that are ω-admissible: a
temporal one based on the rational line and the Allen relations [1], and a spatial
one based on the real plane and the RCC8 relations [4, 16]. The proof of ω-
admissibility turns out to be relatively straightforward in the Allen case, but is
somewhat cumbersome for RCC8.

Second, for the first time we develop a tableau algorithm for DLs admitting
both concrete domains and GCIs. This algorithm is used to establish decidability
of ALC equipped with ω-admissible concrete domains and GCIs. As state-of-
the-art DL reasoners such as FaCT and RACER are based on tableau algorithms
similar to the one described in this paper [8, 7], we view our algorithm as a first
step towards an efficient implementation of description logics with (ω-admissible)
concrete domains and GCIs. Our decidability result reproves the decidability
of ALC with GCIs and the Allen relations from [13], and, as a new result,
establishes decidability of ALC with GCIs and the RCC8 relations as a concrete
domain.

This paper is accompanied by a technical report containing full proofs [15].

2 Constraint Systems

We introduce a notion of constraint system that is intended to capture standard
constraint systems based on a set of jointly-exhaustive and pairwise-disjoint
(JEPD) binary relations.

Definition 1 (Constraint System). Let Var be a countably infinite set of
variables and Rel a finite set of binary relation symbols. A Rel-constraint is an
expression (v r v′) with v, v′ ∈ Var and r ∈ Rel. A Rel-network is a (finite or
infinite) set of Rel-constraints. For N a Rel-network, we use VN to denote the
variables used in N . We say that N is complete if, for all v, v ′ ∈ VN , there
is exactly one constraint (v r v′) ∈ N . N is a model of a network N ′ if N is
complete and there is a mapping τ : VN ′ → VN such that (v r v′) ∈ N ′ implies
(τ(v) r τ(v′)) ∈ N .

A constraint system C = 〈Rel,M〉 consists of a finite set of binary relation
symbols Rel and a set M of complete Rel-networks (the models of C). A Rel-
network N is satisfiable in C if M contains a model of N .

black b gray
gray a black

black m gray
gray mi black

black o gray
gray oi black

black d gray
gray di black

black s gray
gray si black

black f gray
gray fi black

Figure 1: The thirteen Allen relations, equality omitted.

We give two examples of constraint systems: a constraint system for temporal
reasoning based on the Allen relations in the rational line, and a constraint
system for spatial reasoning based on the RCC8 relations in the real plane.
Both constraint systems have been extensively studied in the literature.

In artificial intelligence, constraint systems based on Allen’s interval relations
are a popular tool for the representation of temporal knowledge [1]. Let

Allen = {b, a, m, mi, o, oi, d, di, s, si, f, fi, =}

denote the thirteen Allen relations. Examples of these relations are given in
Figure 1. As the flow of time, we use the rational numbers with the usual
ordering. Let Int � denote the set of all closed intervals [q1, q2] over � with
q1 < q2, i.e., point-intervals are not admitted. The extension r

�
of each Allen

relation r is a subset of Int � × Int � . It is defined in terms of the relationships
between endpoints in the obvious way, c.f. Figure 1. We define the constraint
system Allen � = 〈Allen,M � 〉 by setting M � := {N � }, where N � is defined by
fixing a variable vi ∈ Var for every i ∈ Int � and setting

N � := {(vi r vj) | r ∈ Allen, i, j ∈ Int � and (i, j) ∈ r
�
}.

Whether we use the rationals or the reals for defining this constraint system has
no impact on the satisfiability of (finite and infinite) constraint networks.

The RCC8 relations describe the possible relation between two regions in a
topological space [16]. In this paper, we use the standard topology of the real
plane, one of the most natural topologies for spatial reasoning. Let

RCC8 = {eq, dc, ec, po, tpp, ntpp, tppi, ntppi}

denote the RCC8 relations. Examples of these relations are given in Figure 2.
Recall that a topological space is a pair T = (U, I), where U is a set and I is an

r s r s sr sr

r po s r eq s

srr sr s r s

r ntppi sr ntpp s

r tpp s r tppi sr dc s r ec s

Figure 2: The eight RCC8 relations.

interior operator on U , i.e., for all s, t ⊆ U , we have

I(U) = U I(s) ⊆ s I(s) ∩ I(t) = I(s ∩ t) II(s) = I(s).

As the regions of a topological space T = (U, I), we use the set of non-empty,
regular closed subsets of U , where a subset s ⊆ U is called regular closed if
CI(s) = s. Given a topological space T and a set of regions UT, we define the
extension of the RCC8 relations as the following subsets of UT × UT:

(s, t) ∈ dcT iff s ∩ t = ∅
(s, t) ∈ ecT iff I(s) ∩ I(t) = ∅ ∧ s ∩ t 6= ∅
(s, t) ∈ poT iff I(s) ∩ I(t) 6= ∅ ∧ s \ t 6= ∅ ∧ t \ s 6= ∅
(s, t) ∈ eqT iff s = t

(s, t) ∈ tppT iff s ∩ t = ∅ ∧ s ∩ I(t) 6= ∅

(s, t) ∈ ntppT iff s ∩ I(t) = ∅
(s, t) ∈ tppiT iff (t, s) ∈ tppT

(s, t) ∈ ntppiT iff (t, s) ∈ ntppT.

Let T � 2 be the standard topology on
� 2 induced by the Euclidean metric, and

let RS � 2 be the set of all non-empty regular-closed subsets of T � 2. Intuitively,
regular closedness is required to eliminate sub-dimensional regions such as 0-
dimensional points and 1-dimensional spikes. We define the constraint system
RCC8 � 2 = 〈RCC8,M � 2〉 by setting M � 2 := {N � 2}, where N � 2 is defined by
fixing a variable vs ∈ Var for every s ∈ RS � 2 and setting

N � 2 := {(vs r vt) | r ∈ RCC8, s, t ∈ RS � 2 and (s, t) ∈ rT � 2}.

Properties of Constraint Systems

We will use constraint systems as a concrete domain for description logics. To
obtain sound and complete reasoning procedures for DLs with such concrete
domains, we require constraint system to have certain properties.

Definition 2 (Patchwork Property, Compactness, ω-admissible). Let
C = 〈Rel,M〉 be a constraint system. If N is a Rel-network and V ⊆ VN , we
write N |V to denote the network {(v r v′) ∈ N | v, v′ ∈ V } ⊆ N . We say that

• C has the patchwork property if the following holds: for all finite, complete,
and satisfiable Rel-networks N,M that agree on their (possibly empty)
intersection (i.e. NVN∩VM

= MVN∩VM
), N ∪ M is satisfiable;

• C has the compactness property if the following holds: a Rel-network N
with VN infinite is satisfiable in C if and only if, for every finite V ⊆ VN ,
the network N |V is satisfiable in C.

• C is ω-admissible if satisfiability of Rel-networks in C is decidable, and C
has both the patchwork property and the compactness property.

Intuitively, the patchwork property ensures that satisfiable networks (satisfying
some additional conditions) can be “patched” together to a joint network that
is also satisfiable. Compactness ensures that this even works when patching
together an infinite number of satisfiable networks. Taken together, these prop-
erties are similar to the property of constraint systems formulated in [3], where
constraint systems are combined with linear temporal logic.

In the technical report [15], we prove the following:

Theorem 3. RCC8 � 2 and Allen � are ω-admissible.

The proof of compactness works by devising a satisfiability-preserving transla-
tion of constraint networks to sets of first-order formulas, and then appealing
to compactness of the latter. In the case of Allen � , we need first-order logic on
structures 〈 � , <〉, while arbitrary structures are sufficient for RCC8 � 2. The proof
of the patchwork property is relatively straightforward in the case of Allen � :
given two finite, satisfiable, and complete networks N and M that agree on the
overlapping part, we show how models of N and M can be manipulated into
a model of N ∪ M . The proof of the patchwork property of RCC8 � 2 requires
quite some machinery. We consider RCC8-networks interpreted on topologies
that are induced by so-called fork frames, and then use the standard translation
of RCC8-networks into the model logic S4 and repeated careful applications of a
theorem from [6] to establish the patchwork property. Finally, since satisfiability
in RCC8 � 2 and Allen � is known to be NP-complete [17, 18], we conclude that
these constraint systems are ω-admissible.

3 Syntax and Semantics

We introduce the description logic ALC(C) that allows to define concepts with
reference to the constraint system C. Different incarnations of ALC(C) are ob-
tained by instantiating it with different constraint systems. Let C = (Rel,M) be

a constraint system, and let NC, NR, and NcF be mutually disjoint and countably
infinite sets of concept names, role names, and concrete features. We assume
that NR has a countably infinite subset NaF of abstract features. A path is a
sequence R1 · · ·Rkg consisting of roles R1, . . . , Rk ∈ NR and a concrete feature
g ∈ NcF. A path R1 · · ·Rkg with {R1, . . . , Rk} ⊆ NaF is called feature path. The
set of ALC(C)-concepts is built according to the following syntax rule

C ::= A | ¬C | C u D | C t D | ∃R.C | ∀R.C | ∃U1, U2.r | ∀U1, U2.r

where A ranges over NC, R ranges over NR, r ranges over Rel, and U1, U2 are
either both feature paths or U1 = Rg1 and U2 = g2 with R ∈ NR and g1, g2 ∈ NcF.
A general concept inclusion axiom (GCI) is an expression of the form C v D,
where C and D are concepts. A finite set of GCIs is called general TBox.

The semantics of ALC(C) is defined in terms of interpretations as usual. To
deal with the constraint constructors ∃U1, U2.r and ∀U1, U2.r, interpretations
comprise a model of C as an additional component: an interpretation I is a
tuple (∆I , ·

I ,MI), where ∆I is a set called the domain, ·I is the interpretation
function, and MI ∈ M. The interpretation function maps each concept name
C to a subset CI of ∆I , each role name R to a subset RI of ∆I × ∆I , each
abstract feature f to a partial function f I from ∆I to ∆I , and each concrete
feature g to a partial function gI from ∆I to the set of variables VMI

of MI .
The interpretation function is extended to arbitrary concepts in the usual way.
We only treat the constraint constructors explicitly:

(∃U1, U2.r)
I := {d ∈ ∆I | ∃x1 ∈ UI

1 (d), x2 ∈ UI
2 (d) : (x1 r x2) ∈ MI}

(∀U1, U2.r)
I := {d ∈ ∆I | ∀x1 ∈ UI

1 (d), x2 ∈ UI
2 (d) : (x1 r x2) ∈ MI}

where, for every path U = R1 · · ·Rkg and d ∈ ∆I , UI(d) is defined as

{x ∈ VMI
| ∃e1, . . . , ek+1 : d = e1,

(ei, ei+1) ∈ RI
i for 1 ≤ i ≤ k, and gI(ek+1) = x}.

An interpretation I is a model of a concept C iff CI 6= ∅. I is a model of a
TBox T iff it satisfies CI ⊆ DI for all GCIs C v D in T . Finally, C is called
satisfiable with respect to a TBox T iff there exists a model of C and T .

4 Tableau Algorithm

Before presenting the tableau algorithm for ALC(C), we need some prerequi-
sites. In particular, we assume a certain normal form for concepts and TBoxes:
negation is only allowed in front of concept names, and the length of paths is
restricted.

A concept is said to be in negation normal form (NNF) if negation occurs
only in front of concept names. NNF can be assumed without loss of generality:
for every ALC(C)-concept, an eqi-satisfiable one in NNF can be computed in lin-
ear time. Note that usual NNF transformations are even equivalence-preserving,
which cannot be achieved in our case. We assume that the constraint system
C has an equality predicate “=”, i.e., = ∈ Rel such that, for all M ∈ M and
v ∈ VM , we have (v = v) ∈ M .

Lemma 4 (NNF Conversion). Exhaustive application of the following rewrite
rules translates ALC(C)-concepts to eqi-satisfiable ones in NNF. The number of
rule applications is linear in the length of the original concept.

¬¬C ; C ¬(C u D) ; ¬C t ¬D ¬(C t D) ; ¬C u ¬D

¬(∃R.C) ; (∀R.¬C) ¬(∀R.C) ; (∃R.¬C)

¬(∀U1, U2.r) ; t
r′∈Rel,r′ 6=r

∃U1, U2.r
′

¬(∃u1, u2.r) ; t
r′∈Rel,r′ 6=r

∀u1, u2.r
′ where u1, u2 are feature paths

¬(∃Rg1, g2.r) ; (∀Rg∗, g2. =) u t
r′∈Rel,r′ 6=r

∀R.(∀g1, g
∗.r′)

where R ∈ NrR and g∗ is a fresh concrete feature

By nnf(C), we denote the result of converting C into NNF using the above rules.

Moreover, an ALC(C)-concept C is in path normal form (PNF) iff it is in NNF
and for all subconcepts ∃U1, U2.r and ∀U1, U2.r of C, the length of both U1 and
U2 is at most two, and at least one of them is a concrete feature. An ALC(C)-
TBox T is in path normal form iff all concepts in T are in PNF. Path normal
form was first considered in [13, 10]. The following lemma shows that we can
w.l.o.g. assume ALC(C)-concepts and TBoxes to be in PNF.

Lemma 5. Satisfiability of ALC(C)-concepts w.r.t. TBoxes can be polynomially
reduced to satisfiability of ALC(C)-concepts in PNF w.r.t. TBoxes in PNF.

Proof. Let C be an ALC(C)-concept. For every feature path u = f1 · · · fng
used in C, we assume that [g], [fng], . . . , [f1 · · · fng] are concrete features not
used in C. We inductively define a mapping λ from feature paths u in C to
concepts as follows:

λ(g) = > λ(fu) = (∃f [u], [fu]. =) u ∃f.λ(u)

For every ALC(C)-concept C, a corresponding concept ρ(C) is obtained by

• first replacing all subconcepts ∀u1, u2.r, where ui = f
(i)
1 · · · f (i)

ki
gi for i ∈

{1, 2}, with

∀f
(1)
1 . · · · ∀f

(1)
k1

.∀g1, g1.r
6= t ∀f

(2)
1 . · · · ∀f

(2)
k2

.∀g2, g2.r
6= t ∃u1, u2.r

where r 6= ∈ Rel \ {=} is arbitrary, but fixed;

• and then replacing all subconcepts ∃u1, u2.r with ∃[u1], [u2].r u λ(u1) u
λ(u2).

We extend the mapping ρ to TBoxes in the obvious way: replace each GCI C v
D with ρ(C) v ρ(D). To convert a concept to PNF, we may first convert to NNF
and then apply the above translation ρ. It is easily verified that (un)satisfiability
is preserved, and that the translation can be done in polynomial time. ❏

In what follows, we generally assume that all concepts and TBoxes are in path
normal form. Moreover, we require that constraint systems are ω-admissible
(c.f. Definition 2).

Let C0 be a concept and T a TBox such that satisfiability of C0 w.r.t. T
is to be decided. We define the set of subconcepts sub(C0, T) = sub(C0) ∪

sub(CT). The concept form CT is defined as CT = uCvD∈T nnf(¬C t D). We
now introduce the data structure underlying the tableau algorithm.

Definition 6 (Completion system). Let Oa and Oc be disjoint and countably
infinite sets of abstract and concrete nodes. A completion tree for C0, T is a
finite, labelled tree T = (Va, Vc, E,L) with nodes Va ∪ Vc, such that Va ⊆ Oa,
Vc ⊆ Oc, and all nodes from Vc are leaves. The tree is labelled as follows:

1. each node a ∈ Va is labelled with a subset L(a) of sub(C0, T),

2. each edge (a, b) ∈ E with a, b ∈ Va is labelled with a role name L(a, b)
occurring in C0 or T ;

3. each edge (a, x) ∈ E with a ∈ Va and x ∈ Vc is labelled with a concrete
feature L(a, x) occurring in C0 or T .

A node b ∈ Va is an R-successor of a node a ∈ Va if (a, b) ∈ E and L(a, b) = R,
while an x ∈ Vc is a g-successor of a if (a, x) ∈ E and L(a, x) = g. The notion
u-successor for a path u is defined in the obvious way. A completion system for
C0 and T is a tuple S = (T,N) where T = (Va, Vc, E,L) is a completion tree
for C0 and T and N is a Rel-network with VN = Vc.

To decide the satisfiability of C0 w.r.t. T (both in PNF), the tableau algo-
rithm is started with the initial completion system SC0

= (TC0
, ∅), where TC0

=
({a0}, ∅, ∅, {a0 7→ {C0}}). The algorithm applies completion rules to the comple-
tion system until an obvious inconsistency (clash) is detected or no completion
rule is applicable anymore. Before we define the completion rules for ALC(C),
we introduce an operation that is used by completion rules to add new nodes to
completion trees.

Definition 7 (⊕ Operation). An abstract or concrete node is called fresh
w.r.t. a completion tree T if it does not appear in T . Let S = (T,N) be a
completion system with T = (Va, Vc, E,L). We use the following operations:

• S ⊕ aRb (a ∈ Va, b ∈ Oa fresh in T , R ∈ NR) yields a completion system
obtained from S in the following way: if R /∈ NaF or R ∈ NaF and a has no
R-successors, then add b to Va, (a, b) to E and set L(a, b) = R, L(b) = ∅;
if R ∈ NaF and there is a c ∈ Va such that (a, c) ∈ E and L(a, c) = R then
rename c in T with b.

• S ⊕ agx (a ∈ Va, x ∈ Oc fresh in T , g ∈ NcF) yields a completion system
obtained from S in the following way: if a has no g-successors, then add x
to Vc, (a, x) to E and set L(a, x) = g; if a has a g-successor y, then rename
y in T and N with x.

Let u = R1 · · ·Rng be a path. With S ⊕ aux, where a ∈ Va and x ∈ Oc is fresh
in T , we denote the completion system obtained from S by taking distinct nodes
b1, ..., bn ∈ Oa which are fresh in T and setting

S ′ := S ⊕ aR1b1 ⊕ · · · ⊕ bn−1Rnbn ⊕ bngx

To ensure termination of the tableau algorithm, we need a mechanism for detect-
ing cyclic expansions, commonly called blocking. Informally, we detect nodes in
the completion tree “similar” to previously created ones and “block” them, i.e.,
apply no more completion rules to such nodes. To define the blocking condition,
we need a couple of notions. For a ∈ Va, define:

cs(a) := {g ∈ NcF | a has a g-successor}

N (a) := {(g r g′) | there are x, y ∈ Vc such that x is a g-successor of a,
y is a g′-successor if a, and (x r y) ∈ N}

N ′(a) := {(x r y) | there exist g, g′ ∈ cs(a) s.t. x is a g-successor of a,
y is a g′-successor if a, and (x r y) ∈ N}

A completion of a Rel-network N is a satisfiable and complete Rel-network N ′

such that VN = VN ′ and N ⊆ N ′.

Definition 8 (Blocking). Let S = (T,N) be a completion system for a concept
C0 and a TBox T with T = (Va, Vc, E,L). Let a, b ∈ Va. We say that a ∈ Va is
potentially blocked by b if b is an ancestor of a in T , L(a) ⊆ L(b), and cs(a) =
cs(b). Then, a is directly blocked by b if a is potentially blocked by b, N (a) and
N (b) are complete, and N (a) = N (b). Finally, a is blocked if it or one of its
ancestors is directly blocked.

We are now ready to define the completion rules, which are given in Figure 3.
All rules except Rnet and Rnet′ are rather standard. The purpose of these
additional rules is to resolve potential blocking situations into actual blocking
situations or non-blocking situations by completing the parts of the network N
that correspond to the “blocked” and “blocking” node. To ensure an appropriate

Ru if C1 u C2 ∈ L(a), a is not blocked, and {C1, C2} 6⊆ L(a),
then set L(a) := L(a) ∪ {C1, C2}

Rt if C1 t C2 ∈ L(a), a is not blocked, and {C1, C2} ∩ L(a) = ∅,
then set L(a) := L(a) ∪ {C} for some C ∈ {C1, C2}

R∃ if ∃R.C ∈ L(a), a is not blocked, and there is no R-successor of a such that C ∈ L(b),
then set S := S ⊕ aRb for a fresh b ∈ Oa and L(b) := L(b) ∪ {C}

R∀ if ∀R.C ∈ L(a), a is not blocked, and b is an R-successor of a such that C 6∈ L(b),
then set L(b) := L(b) ∪ {C}

R∃c if ∃U1, U2.r ∈ L(a), a is not blocked, and there exist no x1, x2 ∈ Vc such that xi is
a Ui-successor of a for i = 1, 2 and (x1 r x2) ∈ N then set S := (S ⊕ aU1x1 ⊕ aU2x2)
with x1, x2 ∈ Oc fresh and N := N ∪ {(x1 r x2)}

R∀c if ∀U1, U2.r ∈ L(a), a is not blocked, and there are x1, x2 ∈ Vc such that xi is
a Ui-successor of a for i = 1, 2 and (x1 r x2) 6∈ N , then set N := N ∪ {(x1 r x2)}

Rnet if a is potentially blocked by b and N (a) is not complete, then non-deterministically
guess a completion N ′ of N ′(a) and set N := N ∪N ′

Rnet′ if a is potentially blocked by b and N (b) is not complete, then non-deterministically
guess a completion N ′ of N ′(b) and set N := N ∪N ′

Rgci if CT 6∈ L(a), then set L(a) := L(a) ∪ {CT }

Figure 3: The Completion Rules.

interplay between Rnet/Rnet′ and the blocking condition, and thus to guarantee
termination, we apply these rules with highest precedence.

Note that the blocking mechanism obtained in this way is dynamic in the
sense that blocking situations can be broken again after they have been estab-
lished. Also note that the conditions L(a) ⊆ L(b) and cs(a) = cs(b) can be
viewed as a refinement of pairwise blocking as known from [9]: due to path
normal form, pairwise blocking is a strictly sharper condition than these two.

The algorithm applies completion rules until no more rules are applicable or
a clash is encountered.

Definition 9 (Clash). Let S = (T,N) be a completion system for a concept
C and a TBox T with T = (Va, Va, E,L). S is said to contain a clash iff there
is an a ∈ Va and an A ∈ NC such that {A,¬A} ⊆ L(a), or N is not satisfiable
in C.

The tableau algorithm checks for clashes before each rule application return-
ing “unsatisfiable” if a clash is detected. It returns “satisfiable” if it succeeds in
finding a clash-free completion system to which no rule is applicable.

Note that checking for clashes before any rule application ensures that Rnet

and Rnet′ are well-defined: if Rnet is applied, then there indeed exists a com-
pletion N ′ of N (a) to be guessed: due to clash checking, the network N is
satisfiable, and it is readily checked that this implies the existence of the re-

quired completion. Moreover, checking if N is satisfiable is decidable since C is
an ω-admissible constraint system.

In [15], it is proved that this algorithm terminates on any input, and that
it is sound and complete. The ω-admissibilty of C plays a crucial role in the
soundness proof. Let S = (T,N) be a completion system obtained after a
successful run of the algorithm for the input ALC(C)-concept C0 and TBox T .
The abstract and concrete part of a model of C0 and T are built by “patching
together” copies of (parts of) T and N , respectively. The patchwork property of
C ensures that “patching together” two copies of N yields a satisfiable network
if N is satisfiable. Compactness ensures the same for the case of infinitely many
copies. The latter is needed since ALC(C) lacks finite model property.

Theorem 10. If C is an ω-admissible constraint system, the tableau algorithm
decides satisfiability of ALC(C) concepts w.r.t. general TBoxes.

5 Conclusion

We have proved decidability of ALC with ω-admissible constraint systems and
GCIs. Concerning computational complexity, we conjecture that an integration
of the techniques from the current paper with those from [13, 10] allows to prove
ExpTime-completeness of satisfiability in ALC(C) provided that satisfiability
in C can be decided in ExpTime. Various language extensions, both on the
logical and concrete side, should also be possible in a straightforward way.

An additional contribution of the current paper is the exhibition of the first
tableau algorithm for DLs with concrete domains and GCIs in which the concrete
domain constructors are not limited to concrete features. We view this algorithm
as a first step towards an implementation, although there is clearly room for
improvements: the rules Rnet and Rnet′ add considerable non-determinism,
clash checking involves the whole network N rather than only a local part of it,
and blocking can be further refined. We believe that, in general, getting rid of
the additional non-determinism introduced by Rnet and Rnet′ is difficult. Still,
it seems possible to identify restrictions on the number of concrete features and
the structures of paths allowed inside the concrete domain constructors that
allow for more well-behaved tableau algorithms.

References

[1] J. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,
26(11), 1983.

[2] F. Baader, I. Horrocks, and U. Sattler. Description logics as ontology languages for the
semantic web. In Festschrift in honor of Jörg Siekmann, LNAI Springer, 2003.

[3] P. Balbiani and J.-F. Condotta. Computational complexity of propositional linear tem-
poral logics based on qualitative spatial or temporal reasoning. In Proc. of FroCoS 2002,
number 2309 in LNAI, pages 162–176. Springer, 2002.

[4] B. Bennett. Modal logics for qualitative spatial reasoning. Journal of the Interest Group

in Pure and Applied Logic, 4(1), 1997.

[5] D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for conceptual data model-
ing. In Logics for Databases and Information Systems, pages 229–263. Kluwer , 1998.

[6] D. M. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-Dimensional Modal

Logics: Theory and Applications. Elsevier, 2003.

[7] V. Haarslev and R. Möller. RACER system description. In Proc. of IJCAR’01, number
2083 in LNAI, pages 701–705. Springer, 2001.

[8] I. Horrocks. Using an expressive description logic: Fact or fiction? In Proc. of KR98,
pages 636–647, 1998.

[9] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description
logics. In Proc. of LPAR’99, number 1705 in LNAI, pages 161–180. Springer, 1999.

[10] C. Lutz. Adding numbers to the SHIQ description logic—First results. In Proc. of

KR2002, pages 191–202. Morgan Kaufman, 2002.

[11] C. Lutz. Reasoning about entity relationship diagrams with complex attribute dependen-
cies. In Proc. of DL2002, number 53 in CEUR-WS (http://ceur-ws.org/), pages 185–194,
2002.

[12] C. Lutz. Description logics with concrete domains—a survey. In Advances in Modal

Logics Volume 4, pages 265–296. King’s College Publications, 2003.

[13] C. Lutz. Combining interval-based temporal reasoning with general TBoxes. Artificial

Intelligence, 152(2):235–274, 2004.

[14] C. Lutz. NExpTime-complete description logics with concrete domains. ACM Transac-

tions on Computational Logic, 5(4):669–705, 2004.

[15] C. Lutz and M. Miličić. A tableau algorithm for DLs with concrete domains and GCIs.
LTCS-Report LTCS-05-07, Chair for Automata Theory, Institute for Theoretical Com-
puter Science, Dresden University of Technology, Germany, 2005. See http://lat.inf.tu-
dresden.de/research/reports.html.

[16] D.A. Randell, Z. Cui, and A.G. Cohn. A spatial logic based on regions and connection.
In Proc. of KR’92, pages 165–176. Morgan Kaufman, 1992.

[17] J. Renz and B. Nebel. On the complexity of qualitative spatial reasoning: A maximal
tractable fragment of the region connection calculus. Artificial Intelligence, 108(1–2):69–
123, 1999.

[18] M. Vilain, H. Kautz, and P. van Beek. Constraint propagation algorithms for temporal
reasoning: a revised report. In Readings in qualitative reasoning about physical systems,
pages 373–381. Morgan Kaufmann, 1990.

