
A High Performance
Semantic Web Query Answering Engine

Michael Wessel and Ralf Möller
Hamburg University of Technology (TUHH)

Hamburg-Harburg, Germany
{mi.wessel | r.f.moeller}@tuhh.de

Abstract

We present an (extensively revised) semantic web query language called
nRQL as well as a working high performance implementation of this lan-
guage in the RacerPro system. We present the features of this query
answering engine.

1 Introduction

The Racer description logic system [1] implements the very expressive descrip-
tion logic (DL)ALCQHIR+(D−). Racer’s most prominent feature is the support
for so-called ABoxes which allow for the representation of a “concrete state of
the world” in terms of individuals and relationships. Due to Racer’s ability
to reason with ABoxes, the need for a more expressive Abox querying language
became apparent. Many users of Racer have requested such a query language.

Thus, in dialog with the user community, we designed and implemented an
expressive ABox query language tailored specifically for Racer in order to fulfill
these requests. The result of our efforts is called the new Racer Query Language,
nRQL (pronounce: nercle), which now is an integral part of the RacerPro 1.8.0
engine (the successor of Racer). nRQL was designed with a focus on conceptual
simplicity as well as language orthogonality on the one hand, but also had to
meet the requirement to offer “full query access” to all ABox features available
in Racer, for example, offer access to the concrete domain part of an ABox.

Since its first release [2], nRQL has grown a lot. In this paper, we first
present an extensively revised version of the nRQL language. However, the
biggest achievement since [2] is the availability of a full-fledged nRQL query
answering engine, offering an extensive API instead of just a single API query
function “retrieve”as in [2]. The features of this new nRQL query answering
engine are described as well in this paper. A benchmark of an older version

of the nRQL query answering engine using the Lehigh University Benchmark
(LUBM) can be found in [3].
The semantic web is aimed at providing machine “understandable” meta data
information for web resources. An other important aspect of Racer is its ability
to process OWL (Web Ontology Language) documents (OWL KBs), which will
be the official semantic web annotation language. Thus, Racer is not only a
description logic system, but also a semantic web reasoning engine. Racer can
process OWL Lite as well as OWL DL documents (knowledge bases) with ap-
proximations for nominals. Since extensional information from OWL documents
(OWL instances and their interrelationships) are represented as ABoxes within
Racer, it became apparent that nRQL can also be understood as a semantic web
query language. In order to support special OWL features such as annotation
and datatype properties, special OWL querying facilities have been incorporated
into nRQL. Thus, nRQL can be used to query OWL documents.

The query language OWL-QL [4] is the W3C recommendation for querying
OWL documents. nRQL has been used as a basic engine for implementing a
subset of the OWL-QL query language [5]. We will describe the features of the
nRQL engine which provide the basis for this work.

This paper is structured as follows. First, we informally describe the main
features and language constructs of the revised nRQL language. We also moti-
vate the design decisions we made. Then we specify the syntax and semantics
of nRQL. After that, the features of the nRQL query answering engine will be
presented. We then discuss related work and describe how OWL-QL can be sup-
ported by nRQL. Finally comes the conclusion and outlook. Throughout the
remaining paper we assume basic knowledge of description logic terminology
(e.g., we feel free to use notions like concept and role without defining them).

2 Informal Description of nRQL

Let us describe nRQL’s main language features as well as the core design prin-
ciples we have followed. We will use the KRSS-like native concrete nRQL /
RacerPro syntax, since this will enable readers of this paper to perform hands-
on experiments with nRQL immediately.

Basically, a nRQL query consists of a query head and a query body. For
example, the query

(retrieve (?x ?y) (and (?x woman) (?x ?y has-child)))

has the head (?x ?y) and the body (and (?x woman) (?x ?y has-child)).
It returns all mother-child pairs from the ABox which is queried.

In a nutshell, the nRQL language (to be distinguished from the nRQL engine,
see below) can be characterized as follows:

1. Variables and individuals can be used in queries. The variables range over
the individuals of an ABox (this is called the active domain assumption), and

must be bound against those ABox individuals which satisfy the query. The
notion of satisfaction used in nRQL is defined in terms of logical entailment.
This means, a variable will only be bound to an ABox individual iff it can be
proven by Racer that this binding will hold in all models of the knowledge base.
Returning to our example query body (and (?x woman) (?x ?y has-child)),
?x will only be bound to those individuals which are known to be instances of
the concept mother having a known child ?y in all models of the KB.

nRQL distinguishes variables which must be bound to differently named in-
dividuals (e.g. ?x, ?y cannot be bound to the same ABox individual) from
variables for which this does not hold (e.g., $?x, $?y). Individuals from an
ABox are identified by using them directly in the query, e.g. betty.

2. Different types of query atoms are available: these include concept query
atoms, role query atoms, constraint query atoms, and same-as query atoms. To
give some examples, the atom (?x (and woman (some has-child female)))

is a concept query atom, (?x ?y has-child) is a role query atom, (?x ?x

(constraint (has-father age) (has-mother age) =)) is a constraint query
atom (asking for the persons ?x whose parents have equal age), and (same-as

?x betty) is a same-as query atom, enforcing the binding of ?x to betty.

As the given example concept query atom demonstrates, it is possible to use
compound concept expressions within concept query atoms. Regarding the role
query atoms, the set of role expressions is more limited. However, it is possible
to use inverted roles (e.g., role expressions such as (inv R)) as well as negated
roles within role query atoms. Note that negated roles are not supported in the
concept expression language of ALCQHIR+(D−); thus, they are only available
in nRQL. For example, the atom (?x ?y (not has-father)) will return those
bindings for ?x, ?y for which Racer can prove that the individual bound to
?x cannot have the individual bound to ?y as a father. If the role has-father

was defined as having the concept male as a range, then at least all pairs of
individuals in which ?y is bound to a female person are returned, if male and
female can be proven to be disjoint.

3. Complex queries are built from query atoms using the boolean construc-
tors and, union, neg. We have already seen an example: (and (?x woman)

(?x ?y has-child)) is a simple conjunctive query. These constructors can be
combined in an arbitrary way to create compound queries. This is why we call
nRQL an orthogonal language.

The neg operator implements a negation as failure semantics (NAF): (neg
(?x woman)) returns all ABox individuals for which Racer cannot prove that
they are instances of woman. Thus, (neg (?x woman)) returns the complement
set of (?x woman) w.r.t. the set of all ABox individuals. If used in front of
a role query atom, e.g. (neg (?x ?y has-child)), then this returns the two-
dimensional set difference of (?x ?y has-child) w.r.t. the Cartesian product
of all ABox individuals, i.e. all pairs of individuals which are not in the extension

of has-child in all models.
The semantics of nRQL ensures that DeMorgan’s Laws hold:
(neg (and a1 . . . an)) is equivalent to (union (neg a1) . . . (neg an)),

and that the set difference using neg is well-defined for each basic query atom.
Please note that (?x (not woman)) has a different semantics from (neg (?x

woman)), since the former returns the individuals for which Racer can prove
that they are not instances of woman, whereas the latter returns all instances
for which Racer cannot prover that they are instances of woman. The same
line of argumentation applies to role and constraint query atoms, although NAF
negation of constraint query atoms is more involved in the presence of role
chains.

4. Support for retrieving told concrete domain values from the concrete
domain part of a Racer ABox: Suppose that age is a so-called concrete domain
attribute of type integer. Thus, the age attribute fillers of a certain individual
must be concrete domain values of type integer. We can use the following query
to retrieve all adults as well as their ages: (retrieve (?x (told-value (age

?x)) (?x (min age 18)))), and a possible answer might be (((?x michael)

((told-value (age michael)) 34))).
Since nRQL variables can only be bound to ABox individuals, but not to

concrete domain datatype values, nRQL includes a special set of so-called head
projection operators in order to support retrieval of concrete domain datatype
values. These operators are denoted in a functional style in the head of a query
- (told-value (age ?x)) is such an operator. Moreover, a concrete domain
value such as 34 can only be retrieved if it has been told to Racer - that is, the
value must be explicitly (syntactically) specified in the ABox. The rationale for
this is that Racer cannot compute the solutions of a concrete domain constraint
system, but only decide its satisfiability. Even if Racer could do so, there would
be no way to return these solutions as bindings to variables in the general case.
Therefore, nRQL does not offer variables which range over concrete domain
values. Allowing so would either destroy the orthogonality of nRQL, or make
the language unsafe - after all, the semantics of queries such as (retrieve (?x

?y) (and (?x ?y age) (?y (and integer (min 18))))) is rather question-
able. Note that concrete domain attributes are not roles; thus, (?x ?y age) is
syntactically invalid. For these reasons, querying for concrete domain values is
only supported by means of concept expressions and head projection operators.

Moreover, the constraint query atoms allow to “compare” the concrete do-
main attribute fillers of different individuals. Consider the query

(retrieve (?x (told-value (age ?x)))
(and (?x (and woman (an age))) (?x ?y has-child)

(?y ?y (constraint (has-father age) (has-mother age)
(< (+ age-1 8) age-2)))))

which returns the list of all woman and their ages, having children whose fathers

are at least 8 years older than their mothers. Note that (has-father age) de-
notes a “path expression”: starting from the individual bound to ?y we retrieve
the value of the concrete domain attribute age of the individual which is the
filler of the has-father role (feature) of this individual. In a similar way, the
age of the mother of ?y is retrieved. These concrete domain values are then
used as actual arguments to evaluate the compound concrete domain predicate
(< (+ age-1 8) age-2). Here, age-2 refers to (has-mother age), and age-1

to (has-father age). Note that the suffixes -1, -2 have been added to the
age attribute in order to differentiate the two values. Obviously, this mechanism
is not needed in case the two chains are ended by different attributes.

5. Special support for querying OWL documents, e.g., retrieving told datatype
value fillers of OWL datatype and OWL annotation properties. Retrieval of
these datatype values is supported in a similar style as in the concrete domain
case, by means of concept query atoms and head projection operators.

Since concept expressions such as (min age 18) are useful in concept query
atoms for specifying constraints on the datatype values to be retrieved, we have
extended the Racer concept expression syntax to allow for similar concept query
atoms containing datatype properties instead of attributes. This means, the
concrete domain constraint expression language of Racer has been extended to
also cover OWL datatype properties in addition to attributes. Thus, if age

is not a concrete domain attribute, but now an OWL datatype property, then
the previous query would work as well. However, querying for filler values of
annotation properties is rather limited. The rationale is that, unlike datatype
properties, annotation properties are not used for reasoning (the only serve doc-
umentary purposes). Thus, using concept query atoms, we can only query for
the (non)existence of fillers of annotation properties of individuals. This means,
if AP is an annotation property, then only concept query atoms such as (?x (an

AP)) and (?x (no AP)) will work w.r.t. annotation properties. However, the
filler annotation values of these individuals ?x can then be retrieved by means
of the annotations head projection operators as well (see syntax specification).

6. nRQL also offers a body projection operator. Sometimes this operator
is required in order to reduce the “dimensionality” of a tuple set, for example,
before computing a set difference with an n-dimensional set. This is exactly
what happens if neg is used.

Let us motivate the necessity for such an operator: consider (retrieve

(?x) (and (?x mother) (?x ?y has-child))). This query returns all moth-
ers having a known child in the ABox. Now, how can we query for mothers
which do not have a known child?

Our first attempt will be the query (retrieve (?x) (and (?x mother)

(neg (?x ?y has-child)))). A bit of thought and recalling that (neg (?x

?y has-child)) returns the complement set of (?x ?y has-child) w.r.t. the
Cartesian product of all ABox individuals will reveal that this query doesn’t solve

the task. In a second attempt will would probably try (retrieve (?x) (neg

(and (?x mother) (?x ?y has-child)))). However, due to DeMorgan’s Law
and nRQL’s semantics, this query is equivalent to (retrieve (?x) (union

(and (neg (?x mother)) (?y top)) (neg (?x ?y has-child)))) – first the
union of two two-dimensional tuple sets is constructed, and then only the pro-
jection to the first element of these pairs (?x) is returned. Obviously, this set
contains also the instances which are not known to be mothers, what is wrong as
well. Thus, the need for the projection operator becomes apparent: (retrieve
(?x) (and (?x mother) (neg (project-to (?x) (?x ?y has-child)))))

solves the task. This body projection operator was not present in earlier ver-
sions of nRQL, special syntax was introduced to address these problems, namely
the unary special atoms (?x (has-known-successor has-child)), (?x NIL

has-child) and (NIL ?X child-of). These atoms (which still work) can
now be seen as “syntactic sugar” for the bodies (project-to (?x) (?x ?y

has-child)), (neg (project-to (?x) (?x ?y has-child))) and
(neg (project-to (?x) (?y ?x has-child))). The project-to operator
can be used at any position in a query body.

7. nRQL also offers defined queries. These can be understood as a simple
macro mechanism. For example, (defquery mother (?x) (and (?x woman)

(?x ?y has-child))) can be used to define a query mother which can be sub-
sequently used in calls such as (retrieve (?x) (?x mother)) or in subsequent
definitions, e.g. (defquery married-mother (?x) (and (?x mother) (?x ?y

has-spouse))). The definitions must be acyclic.

3 Syntax and Semantics of nRQL

Definition 1 (Syntax of nRQL) A nRQL query has a head and a body . A
head can contain the following:

head := (head entry∗)
object := variable | individual

variable := a symbol beginning with “?”
individual := a symbol

head entry := object | head projection operator
head projection operator := (cd attribute object) |

(told-value (cd attribute object)) |
(told-value (datatype property object) |
(annotations (annotation property object))

The body is defined as follows:

body := atom | ({and | union | neg | inv} body∗) |
(project-to (object∗) body)

atom := (object concept expr) | (object object role expr) |
(object object (constraint chain chain constraint expr)) |

(same-as variable individual)
chain := (role expr ∗ cd attribute)

The other constructs we defined in [2, 3] are expressible by the constructs we
just gave (e.g., (?x (has-known-successor R)) = (project-to (?x) (?x ?y

R)), etc.) The “bridge” to the Racer syntax is given by the following rules:
concept expr := a Racer concept, with some extensions for OWL

role expr := a Racer role | (inv role expr) | (not role expr)
constraint expr := a (possibly compound) Racer concrete domain

predicate, e.g. (< (+ age-1 20) age-2)

cd attribute := a Racer concrete domain attribute
datatype property := a Racer role used as OWL datatype property �

Definition 2 (Semantics of nRQL) Let A be a Racer ABox, and TA denote
its associated TBox. Denote the set of individuals used in A with IndsA.

Let q be a nRQL query body. The function vars(q) is defined inductively:
vars((x concept expr)) =def {x}, vars((x1 x2 role expr)) =def {x1, x2},
vars((x1 x2 (constraint ...))) =def {x1, x2},
vars(({ and | union | neg | inv } q1 . . . qm)) =def

⋃
1≤i≤m vars(qi), BUT

vars((project-to (x1 . . . xm) . . .)) =def {x1 . . . xm}. Thus, vars “stops at pro-
jections”. This is important.

Assume that 〈x1,q, . . . , xn,q〉 is a lexicographic enumeration of vars(q). Denote
the ith element in this vector with xi,q, indicating its position in the vector.

Let T be a set of n-ary tuples 〈t1, . . . , tn〉 and 〈i1, . . . , im〉 be an index vector
with 1 ≤ ij ≤ n for all 1 ≤ j ≤ m. Then we denote the set T ′ of m-ary
tuples with T ′ =def { 〈ti1 , . . . , tim〉 | 〈t1, . . . , tn〉 ∈ T } = π〈i1,...,im〉(T), called the
projection of T to the components mentioned in the index vector 〈i1, . . . , im〉.
For example, π〈1,3〉{〈1, 2, 3〉 , 〈2, 3, 4〉} = {〈1, 3〉 , 〈2, 4〉}.

Let ~b = 〈b1, . . . , bn〉 be a bit vector of length n, bi ∈ {0, 1}. Let m ≤ n. If ~b
is a bit vector which contains exactly m ones, and B is a set, T is a set of m-ary
tuples, then the n-dimensional extension T ′ of T w.r.t. B and ~b is defined as
T ′ =def { 〈i1, . . . , in〉 | 〈j1, . . . , jm〉 ∈ T , 1 ≤ l ≤ m, 1 ≤ k ≤ n

with ik = jl if bk = 1, and bk is the lth one (1) in ~b,
otherwise, ik ∈ B }

and denoted by χB,〈b1,...,bn〉(T). For example, χ{a,b},〈0,1,0,1〉({〈x, y〉}) = {〈a, x, a, y〉 ,
〈a, x, b, y〉 , 〈b, x, a, y〉 , 〈b, x, b, y〉}. We denote an n-dimensional bit vector having
ones at positions specified by the index set I ⊆ 1 . . . n as ~1n,I . For example,
~14,{1,3} = 〈1, 0, 1, 0〉. Moreover, with IDn,B we denote the n-dimensional identity
relation over the set B: IDn,B =def { 〈x, . . . , x〉︸ ︷︷ ︸

n

| x ∈ B }.

The semantics of a nRQL query is given by the set of tuples it returns if
posed to an ABox A. This set of answer tuples is called the extension of q and

denoted by qE . We claim that the given semantics in terms of “tuple spaces” is
substantially easier to grasp for users than logic-based semantics (i.e., the one
we gave for the older versions of nRQL in [2, 3]).

In order to simplify the specification of the semantics, the query body q first
undergoes some syntactical transformations: In a first step, q is rewritten by
consistently replacing all its individuals with new representative fresh variables
throughout the body. If the individual i has been replaced with the vari-
able xi, then we also add the conjunct (same-as xi i) to q, yielding a body
of the form (and q (same-as xi i) (same-as . . .) . . .). In a second step, the
role chains eventually present in constraint query atoms are decomposed. This
means they are replaced by conjunctions of role query atoms such that only the
concrete domain attributes remain in the chains of the constraint query atoms.
Fresh anonymous variables are used for this purpose. E.g., the atom (?x ?y

(constraint (has-father age) (has-mother age) =)) is replaced with the
body (and (?x ?ano1-x-father has-father) (?y ?ano2-y-mother)

(?ano1-x-father ?ano2-y-mother (constraint age age =))). Let q′ be the
transformed query.

We can now define the semantics of the different query atoms, being part of
q′. Keep in mind that 〈x1,q′ , . . . , xn,q′〉 is the variable vector of q′ and that n is
the total number of variables returned by vars(q′). For the sake of brevity we
only consider variables which do not prevent the binding of an ABox individual
to multiple variables (but the semantics can be easily extended). Thus, the
semantics for the different nRQL query atoms is given as:

(q ′xi concept expr)E =def χIndsA,~1n,{i}
(concept instances(A, concept expr))

(q ′xi q ′xj rolen expr)E =def χIndsA,~1n,{i,j}
(role pairs(A, role expr)), if i 6= j

(q ′xi q ′xi role expr)E =def χIndsA,~1n,{i}
(role pairs(A, role expr) ∩ ID2,IndsA)

(same-as q ′xi ind)E =def χIndsA,~1n,{i}
({ind})

(q ′xi q ′xj (constraint attrib1 attrib2 P))E =def

χIndsA,~1n,{i,j}
(predicate pairs(A, attrib1, attrib2, P)), if i 6= j

(q ′xi q ′xi (constraint attrib1 attrib2 P))E =def

χIndsA,~1n,{i}
(predicate pairs(A, attrib1, attrib2, P) ∩ ID2,IndsA)

This definition uses some auxiliary functions, providing the bridge to the clas-
sical ABox retrieval functions offered by Racer. These bridge functions have
the standard DL semantics in terms of logical entailment. However, as already
mentioned, a nRQL role expression (role expr) can also be a negated (or in-
verse) ALCQHIR+(D−) role. A predicate (P) can be denoted as a lambda
expression and is made from the vocabulary which Racer offers for building lin-
ear (in)equalities. For example, (< (+ 20 age-1) age-2) can be expressed as
P = λ(age1, age2).age1 + 20 < age2:

concept instances(A, concept expr) =def

{ i | i ∈ IndsA, (A, TA) |= concept expr(i) }

role pairs(A, role expr) =def

{ 〈i, j〉 | i, j ∈ IndsA, (A, TA) |= role expr(i, j) }
predicate pairs(A, attrib1, attrib2, P) =def

{ 〈i, j〉 | i, j ∈ IndsA, (A, TA) |=
∃x, y : attrib1(i, x) ∧ attrib2(j, y) ∧ P (x, y) }

The semantics of compound nRQL bodies can be defined easily now:
(and q1 . . . qi)

E =def

⋂
1≤j≤i q

E
j

(union q1 . . . qi)
E =def

⋃
1≤j≤i q

E
j

(neg q)E =def (IndsA)n \ qE

(inv q)E =def inv(qE), where inv reverses all tuples
(project-to (xi1,q . . . xik,q) q)E =def π〈i1,...,ik〉(q

E)

So far we have specified the semantics of a query body. To get the answer of a
query, the head has to be considered. This can be seen as a further projection of
qE to the variables mentioned in the head. If the head contained an individual,
then this individual has also been replaced by the representative variable in
the head (see above). In case a head projection operator is encountered, the
functional operator is applied to the binding of the argument variable. The
value is included in the query answer (producing nested binding lists). In case
of OWL datatype fillers, the projection operators will eventually return a list of
datatype values. A formal definition of this process is omitted here due to space
limitations. �

4 The nRQL Engine

The nRQL query answering engine implements the nRQL language as part of
the RacerPro 1.8.0 system. Let us describe the features of this engine:

1. The engine offers different querying modes: basically, a synchronous set-
at-a-time mode and an asynchronous tuple-at-a-time mode. In the set-at-a-time
mode, a call to a querying function such as retrieve works synchronously.
The client has to wait, the whole answer set is delivered in a bunch. How-
ever, many client applications prefer an asynchronous API: the tuple-at-a-time
mode allows for incrementally loading the answer tuple by tuple. Thus, a call
to retrieve will return immediately with a so-called query identifier. This
identifier, say :query-123, can then be used as argument to functions such
as (get-next-tuple :query-123). Functions like (get-next-n-tuples 10

:query-123) are also provided. A similar way of client-server interaction is also
presupposed in the OWL-QL query answering dialog. Thus, nRQL supports the
OWL-QL query answering dialog quite well in this respect.

The incremental tuple-at-a-time mode can be used either lazy or eager : in
the lazy mode, the next tuples will not be computed before requested by the
client, unlike the eager mode, which pre-computes the next tuple(s) and puts
them into a queue for future requests. In principle, there can be more than

one running query at a time. The nRQL engine allows for concurrent querying.
When a query is executed, a thread from a pool of threads is acquired and put to
work. The engine can process up to a few hundred queries simultaneously, and
serializes and minimizes the calls to the basic Racer ABox retrieval functions
(e.g., concept-instances), by using locking techniques and dedicated index
structures. Nearly all answers from Racer are cached, but the index structures
are automatically invalidated if changes to the ABox (or TBox) occur. If a KB
changes while queries are still active, then nRQL can be advised to deliver a
KB-has-changed-warning token to the clients.

2. The degree of completeness of query answering in nRQL is configurable:
If ABoxes get very big, it becomes impossible to use Racers ABox retrieval
functions for query answering. Even the required ABox consistency check will
fail. Thus, nRQL can no longer be used in its complete mode. The incomplete
modes can help, if “complete enough” for the application. These modes can still
achieve a great deal of completeness. For example, using the incomplete nRQL
mode “2”, we observed in [3] that nRQL is still more complete than “DLDB”
on the LUBM and achieves a comparable performance, even for “ABoxes” with
a few 100.000 individuals.

Having incomplete modes available gives nRQL the ability to distinguish be-
tween cheap and expensive tuples. It is possible to advise nRQL first to deliver
a set of cheap tuples, yielding an incomplete answer (“phase one”), and then
to turn on Racers expensive ABox retrieval functions to deliver the remaining
expensive tuples (“phase two”). We talk of two-phase query processing modes.
Again, nRQL can be advised to deliver a warning token before phase two starts,
informing the client that computation of the remaining tuples will eventually be
expensive. The client can then chose to retrieve these additional tuples or not.

3. The engine supports full life-cycle management for queries: queries can
be prepared, made active, be suspended or aborted, eventually terminate, can
be resurrected, etc. Runtime resources are configurable (size of thread pool,
maximum bound on the number of answer tuples setable, timeout setable, tuple
permutations can be excluded, etc.).

4. Another important feature of the engine is the built-in query optimizer.
The basic idea is to reorder the query atoms in a conjunctive query in such a way
as to heuristically minimize the number of generators required to compute can-
didate bindings for the variables. For example, for the query (and (?x ?y R)

(?y D) (?x C)), the execution plan (?x c), (?x ?y R), (?y D) is preferable
over the plan (?x C), (?y D), (?x ?y R), since the second plan has to com-
pute a Cartesian product, whereas the first plan can, once a binding for ?x has
been established, simply enumerate the R successors of ?x for ?y candidate gen-
eration, which is much more “local”. In order to decide whether (?y D), (?y

?x (inv R)), (?x C) might even be better, nRQL uses ABox statistics and
information from previously evaluated queries in order to implement the “most

constrained generator first” heuristics.
5. nRQL can be advised to maintain a so-called query repository. This

DAG records query subsumption relationships. nRQL will exploit cached answer
sets of previously answered subsuming and subsumed queries. Reasoning with
queries (e.g., consistency checking and computation of query subsumption) is
incomplete in nRQL, but does not effect the usefulness of this cache.

6. The nRQL engine also offers so-called complex TBox queries, as well as
a simple rule mechanism. However, no rule application strategy is presupposed.
The antecedent of a rule is basically a nRQL query, and the consequence consists
of a set of generalized ABox assertions.

7. nRQL also offers a set of so-called data substrate representation layers.
Associating an ABox with such a layer enables users to associate “data values”
with ABox individuals and role relationships, similar to OWL annotation prop-
erties. For example, it becomes possible to ask for the annotation values from
an OWL document which contain the substring “name”. Such a query is im-
possible on the ABox side. nRQL supports so-called hybrid queries which can
be used to retrieve and combine information from the ABox with information
from the corresponding substrate layer [6].

5 Related Work & Conclusion

nRQL has been influenced by the query language of LOOM [7]. However, unlike
the LOOM query language, nRQL is specified in a formally rigorous way.

Basic conjunctive query languages for less expressive description logics than
ALCQHIR+(D−) (or OWL) have been been formally investigated in [8]. There,
so-called distinguished as well as non-distinguished variables were introduced.
The distinguished variables correspond to nRQL’s variables. The non-distin-
guished variables are purely existential variables. For example, if !y denotes
such a non-distinguished variable, then the query (and (?x c) (?x !y R))

is basically equivalent to (?x (and c (some r top))). This observation also
suggests a technique for “removing” non-distinguished variables, the so-called
“rolling up” technique. However, this procedure only works for acyclic queries,
and becomes more technically involved if more than one non-distinguished vari-
able is present in the query. These theoretical techniques have been used as a
basis for the implementation of an experimental DQL (DAML Query Language)
server [9]. DQL is the predecessor of OWL-QL, and quite similar in many re-
spects. However, this server can only handle acyclic conjunctive queries.

OWL-QL [4], like DQL, offers must-bind (= distinguished), may-bind, and
do-not-bind (= non-distinguished) variables. An OWL QL query contains a so-
called query pattern which is a collection of OWL statements (a conjunction) in
which some URI references or literals have been replaced by variables. May-bind
variables are a “mixture” of must- and do-not-bind variables and are expected
to return bindings if satisfying instances are known (otherwise they are treated

as do-not-binds). Since OWL statements not only represent ABox assertions,
but also axioms analog to TBox axioms, this implies that OWL-QL queries
can also be used to retrieve the subconcepts of a concept (so-called “structural
queries”), etc. Variables therefore not necessarily range over OWL instances
(ABox individuals). An OWL-QL implementation which uses nRQL as a ba-
sis could exploit the complex nRQL TBox queries in order to answer some of
these structural queries. In principle, we believe that the semantic differences of
must-bind, do-not-bind and may-bind variables will be rather hard to compre-
hend for end users of such systems. The lack of do-not-bind variables in nRQL
can be compensated for in most cases by using existential role restrictions con-
cepts in concept query atoms. An automatic “rolling-up procedure” is not yet
implemented in nRQL.

References

[1] Haarslev, V., Möller, R.: RACER System Description. (In: Int. Joint Conference
on Automated Reasoning, IJCAR ’01)

[2] Haarslev, V., Möller, R., Straeten, R.V.D., Wessel, M.: Extended Query Facilities
for Racer and an Application to Software-Engineering Problems. (In: Proc. of the
Int. Workshop on Description Logics, DL ’04)

[3] Haarslev, V., Möller, R., Wessel, M.: Querying the Semantic Web with Racer +
nRQL. (In: Proc. of the KI-04 Workshop on Applications of Description Logics
2004, ADL ’04)

[4] Fikes, R., Hayes, P., Horrocks, I.: OWL-QL - A Language for Deductive Query
Answering on the Semantic Web. Technical Report KSL-03-14, (Knowledge Sys-
tems Lab, Stanford University, CA, USA)

[5] Galinski, J., Kaya, A., Möller, R.: Development of a Server to Support the Formal
Semantic Web Query Language OWL-QL. (In: Proc. of the Int. Workshop on
Description Logics, DL ’05)

[6] Wessel, M.: Some Practical Issues in Building a Hybrid Deductive Geographic
Information System with a DL Component. (In: Proc. of the 10th Int. Workshop
on Knowledge Representation meets Databases, KRDB ’03)

[7] MacGregor, R., Brill, D.: Recognition Algorithms for the Loom Classfier. (In:
Proc. of AAAI’92, Thenth Conference on Artificial Intelligence)

[8] Horrocks, I., Tessaris, S.: Querying the Semantic Web: a Formal Approach. (In:
Proc. of the 13th Int. Semantic Web Conf. ISWC ’02)

[9] Glimm, B., Horrocks, I.: Query Answering Systems in the Semantic Web. (In:
Proc. of the KI-04 Workshop on Applications of Description Logics 2004, ADL
’04)

