
Detection of Related Semantic Datasets Based
on Frequent Subgraph Mining

Mikel Emaldi1, Oscar Corcho2, and Diego López-de-Ipiña1
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Abstract. We describe an approach to find similarities between RDF
datasets, which may be applicable to tasks such as link discovery, dataset
summarization or dataset understanding. Our approach builds on the
assumption that similar datasets should have a similar structure and
include semantically similar resources and relationships. It is based on
the combination of Frequent Subgraph Mining (FSM) techniques, used
to synthesize the datasets and find similarities among them. The result
of this work can be applied for easing the task of data interlinking and
for promoting data reusing in the Semantic Web.

1 Introduction

Since the creation of Linked Open Data Cloud3 initiative in 2007 with 12 datasets,
to its last update in 2014 with 570 datasets, the number of Linked Datasets has
grown enormously. This growth trend suggests that in few years, selecting ap-
propriate datasets to link our datasets to, is going to become harder and harder.
The same applies to the task of finding the dataset that may contain useful
information for us, according to our needs. The work presented in this paper is
focused on providing some steps forward into some of the aforementioned limi-
tations: finding datasets to link to, finding datasets that provide support to our
needs or understanding or summarizing datasets.

Our main contribution is an approach to find similarities among RDF datasets
based on their graph structure, which can be used for solving the aforementioned
problems. The main challenge that we have to deal with stems from the fact that,
due to the size of many of the graphs derived from these RDF datasets, a direct
comparison among their complete structure is not applicable. Therefore, a Fre-
quent Subgraph Mining (FSM) based approach is proposed. FSM techniques,
widely used in the domains of chemistry and biology to find similarities and
correlations among different chemical compounds and molecules [2, 4, 11], allow
extracting the most frequent subgraphs from a single graph or a set of graphs.

3 http://lod-cloud.net/



Given that RDF datasets are graphs, we think that the combination of tech-
niques based on the summarization of RDF graphs and the identification of the
most frequent subgraphs can provide good results on finding related datasets.

An example of an application of the work proposed in this paper is related
to dataset interlinking. As stated in section 2, when using existing dataset inter-
linking tools, the user have to select the input datasets whose links are going to
be searched. Nowadays, there are two main approaches to select these datasets:
applying the brute force for applying all the possible pairs of datasets to the
interlinking tool; or requesting the user for selecting the most suitable datasets
under her/his beliefs, a task that is becoming harder and harder because of the
growth of the Linked Open Data Cloud. Proposed solution can ease this task
suggesting a subset of related datasets, with the consequent reduction of the
search space.

In summary, in this work a new approach for synthesizing and finding sim-
ilarities among RDF datasets is presented. Specifically, this approach proposes
the use of FSM techniques to synthesize these datasets. The approach proposed
in this work can be used for easing the task of interlinking new datasets, and for
improving data reuse through finding similar datasets.

The rest of the paper is organized as follows. In Section 2 the previous works
in semantic dataset browsing, interlinking and summarization, and Linked Data
source discovery are presented. In Section 3 some definitions and concepts about
graph mining are explained. Section 4 describes our new approach based on
FSM. In Section 5 proposed approach is evaluated against a set of datasets from
Linked Open Data Cloud. At last, in Section 6, conclusions and future research
challenges are explained.

2 Related Work

There are four research fields related to possibles usages of the work presented
in this paper: semantic dataset browsing, interlinking and summarization, and
Linked Data source searching.

Semantic Dataset Browsing. Works under this field provide search capabil-
ities over linked datasets. From a set of terms, these browsers find resources in
which these terms appear. Most of these works use techniques given from infor-
mation retrieval field like TF-IDF (term frequency-inverse document frequency),
and some works offer more complex techniques for refining the results. However,
these works do not apply a previous filter on the datasets against they search the
terms given by the user. Proposed work can be useful in this area when a term
is found in a dataset, for prioritizing related datasets when searching for more
results. In this field works like Swoogle [5], Falcons [3], Sindice [17] or Sig.ma
[18] can be categorized.

Semantic Dataset Interlinking. The aim of works under this category is
about given a pair of datasets, establishing links between them, based on a set



of rules defined by the user. Most of these works use different properties from
resources within a dataset for establishing owl:sameAs links among them. One
of the most important lacks of works in this area is that the user has to select
the pair of datasets to establish new links between them. The solution proposed
in this paper can be used to select these input datasets. Most remarkable works
in this field are Silk [19] and LIMES [15].

Semantic Dataset Summarization. Although dataset summarization is not
the final goal of this work, we have considered interesting to analyse most remark-
able works in this field, although they are oriented for creating human-readable
data summaries, instead of machine-readable summaries that are used in the
proposed work. In [1], after detecting patterns in a graph, they extract labels
from vertices and edges for elaborating a summary. [6] applies NER (Named
Entity Recognition) techniques over literals of graphs for finding them in DBPe-
dia. Once correspondent resources from DBPedia are found, they extract their
categories for elaborating a summary.

Linked Data Source Searching These works try to find candidate datasets
for interlinking. Works under this category are the most related with the work de-
scribed in this paper. In [16], they extract literals from rdfs:label, foaf:name
or dc:title properties. They search these literals in Sig.ma and group the results
by source dataset. They consider that more instances a source has, more chances
to be linked with original dataset has. The mayor weakness of this approach is
that Sig.ma is no longer harvesting new data, so it is no a suitable solution
for recently published datasets. [13] uses naive Bayes classifiers for establishing
a ranking of related datasets based on correlations among them. Through this
ranking the search space can be reduced. At last, in [14] they use already existing
links for establishing new links among datasets. As previously mentioned, one of
the objectives of our work was to solve the cold-starting problem when searching
related datasets.

3 Background

The main objective of FSM is to extract all frequent subgraphs from a single
graph or a set of graphs. We assume the definitions from [10]:

– Labeled graph: A labeled graph can be represented as G(V,E, LV , LE , ϕ),
where V is a set of vertices, E ⊆ V ×V is a set of edges; LV and LE are sets
of vertex and edge labels respectively; and ϕ is a label function that defines
the mappings V → LV and E → LE . G is a directed graph if ∀e ∈ E, e is
an ordered pair of vertexes.

– Subgraph: Given two graphs G1(V1, E1, LV1
, LE1

, ϕ1) and G2(V2, E2, LV2
,

LE2
, ϕ2), G1 is a subgraph of G2, if G1 satisfies: i) V1 ⊆ V2, and ∀v ∈

V1, ϕ1(v) = ϕ2(v), and ii) E1 ⊆ E2, and ∀(u, v) ∈ E1, ϕ1(u, v) = ϕ2(u, v).



Multiple state-of-the-art tools implement FSM. In Table 1 a summary of the
most relevant features of each solution is shown. These features are the following
ones:

– Single graph/Transactions: according to [10] there are two different FSM
problem formulations. In the first one, single graph based FSM, only a single
very large graph is analyzed. In graph transaction based FSM the common
substructures are extracted from a set of medium-size graphs (named trans-
actions).

– Directed graphs: applying directionality to graphs increases computa-
tional cost considerably. For this reason, many of the solutions do not im-
plement this feature.

– Labeled vertexes: solution allows (or not) labeled vertexes in input graphs.
– Labeled edges: solution allows (or not) labeled edges in input graphs.

As shown in Table 1 only SUBDUE and DPMine cover all features to be
suitable for dealing with the characteristics of RDF graphs. As in this approach
we want to extract the most common subgraph from each dataset, the solution
that supports single graphs has been selected, i.e. SUBDUE.

Table 1: Summary of relevant features of each FSM solution. A complete de-
scription and comparison among them can be found at [10].

Solution
Single Graph /
Transactions

Directed
Graphs

Labeled
Vertexes

Labeled
Edges

SUBDUE Single Graph 4 4 4

AGM Transactions 4 8 4

FSG Transactions 8 4 4

DPMine Transactions 4 4 4

MoFA Transactions 8 4 8

gSpan Transactions 8 4 4

FFSM Transactions 8 4 4

GREW Single Graph 8 4 4

Gaston Single Graph 8 4 4

gApprox Transactions 8 8 8

(h/v)SiGraM Single Graph 8 4 4

Given a single, directed and labeled graph, SUBDUE [9] extracts the most
frequent substructures. SUBDUE defines the most frequent subgraph as the
subgraph that once replaced by a single node, compresses most the original
graph. Assuming that G is the original graph, S is the candidate subgraph to
be evaluated, size(G) and size(S) are the size of G and S respectively and
size(G|S) is the size of G compressed by S, the total compression rate can be
calculated as:

value(S,G) =
size(G)

(size(S) + size(G|S))
(1)



where:

size(G) = (|vertex(G)|+ |edges(G)|) (2)

SUBDUE can be parameterized to adapt its behavior to the different input
graphs. To facilitate the understanding of the application of SUBDUE in Section
4 some of these parameters are explained:

– inc: this parameter allows the incremental analysis of large graphs, avoiding
the consumption of all the memory of the system by large graphs and allow-
ing the preview of partial results. To perform the incremental analysis, the
input graph has to be split in different and numbered files. SUBDUE anal-
yses these files in order, aggregating results of the files previously analyzed
to the current file.

– limit: limits the number of candidate substructures that SUBDUE takes in
consideration in each iteration. The default value is |edges|

2 .
– prune: prunes the graph discarding useless substructures.

4 Frequent Subgraph Mining Approach

4.1 RDF Graph Synthesis Model

In order to apply the RDF graph synthesis model presented in this paper, some
modifications have been done to the original RDF graph model. It is important to
note that these transformations do not preserve the meaning of the RDF model,
but we do not consider that property important for our approach. However, after
applying these transformations, a proper interpretation of the graph can be done.
As can be seen in this section, the aim of these transformations is to simplify the
graph for easing the task of extracting the most common substructures. From the
triples shown in Listing 1, represented graphically in Figure 1, transformations
are applied to ensure the correct understanding of the presented model.

The first transformation applied to RDF graphs consists in replacing URIs
from the subjects of resources from datasets. Since they are unique identifiers
of resources, URIs in subjects will generate a large amount of unique nodes
which do not belong to any candidate substructure, increasing the difficulty of
finding frequent subgraphs. To avoid this, these URIs have been replaced by the
ontological class (or classes, if it is represented by more than one class) of the
resource represented by the rdf:type property if any, as can be seen in Figure 2.
If a resource has no a rdf:type predicate associated, this resource is discarded.

The next transformation is about managing interlinked resources. Establish-
ing links among resources from different datasets is one of the most important
features in Linked Data publication. For this reason, a large amount of inter-
nal and external links can be found in linked datasets. Managing external links,
adds to the computational cost generated by the analysis of each triple, the de-
lay generated by retrieving the information pointed by them through the Web.
Furthermore, one of the challenges of this work was to solve the cold start prob-
lem when looking for related datasets. For these reason, external links have been



1 @prefix : <http://example.org/resource/> .

2 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

4 @prefix dcterms: <http://purl.org/dc/terms/> .

5 @prefix aktors: <http://www.aktors.org/ontology/portal/> .

6

7 :Tim_Berners-Lee rdf:type foaf:Person ;

8 foaf:name "Tim Berners-Lee" ;

9 foaf:mbox "timbl@w3.org" ;

10 foaf:homepage <http://www.w3.org/People/Berners-Lee> .

11

12 :pub1 rdf:type aktors:Article-Reference ;

13 aktors:has-title "The Semantic Web" ;

14 dcterms:creator :Tim_Berners-Lee ;

15 aktors:published-by "Scientific American" .

Listing 1: RDF triples used in the example model.

:Tim_Berners-Lee

"Tim Berners-Lee"

"timbl@w3.org"
<http://www.w3.org/People/Berners-Lee/>

foaf:homepage

dcterms:creator

rdf:type
foaf:name foaf:mbox

foaf:Person

aktors:has-title

:pub1

aktors:Article-Reference

rdf:type

"The Semantic Web" "Scientific American"

aktors:published-by

Fig. 1: Resultant graph from the triples in Listing 1.

removed. Despite this, in Section 6 the influence of existing links is briefly ana-
lyzed. In Figure 3, the resulting model after elimination of external links can be
seen. In this model a structure representing a publication and its author can be
seen, as a synthesis of triples presented in Listing 1.

Regarding to the literals, although they have been maintained in proposed
model, there are no literals in any of most frequent structures extracted during
the evaluation. The explanation of this situation is similar to the explanation
given about the URIs in subjects: with so much variety of different literals, the
probability to form part of a candidate substructure is minimal.



foaf:Person

"Tim Berners-Lee"

"timbl@w3.org"
<http://www.w3.org/People/Berners-Lee/>

foaf:homepage

dcterms:creator

foaf:name foaf:mbox

aktors:has-title

aktors:Article-Reference

"The Semantic Web" "Scientific American"

aktors:published-by

Fig. 2: Resultant graph after replacing URIs with the ontological class of the
resource.

foaf:Person

"Tim Berners-Lee"

"timbl@w3.org"

dcterms:creator

foaf:name foaf:mbox

aktors:has-title

aktors:Article-Reference

"The Semantic Web" "Scientific American"

aktors:published-by

Fig. 3: Resultant graph after removing external links.

4.2 Extraction and Comparison of Most Frequent Subgraphs

We apply SUBDUE to the graph obtained as a result of the previous transfor-
mations. According to [10], SUBDUE’s runtime and resource consumption do
not grow linearly with the size of the input graphs, making it hard to do an
estimation of the total runtime or knowing whether the process is going to final-
ize in a reasonable amount of time. The ideal parameters for getting a balance
between affordable runtime and obtaining an appropriate number of candidate
substructures are still subject of experimentation, but limiting the number of
candidate substructures to 5, applying the incremental analysis capabilities and
pruning the input graph seem to be appropriate parameters to start finding this
balance.

Once the most frequent substructures from different datasets are extracted,
the comparison among them has been done through SUBDUE’s gm (Graph
Matcher). Given a pair of graphs, this utility computes the cost of transforming
the largest graph into the smallest one, returning the number of transformations



done. In this case, all transformations (addition, removal or replacing of a node)
have the same cost. As this number of transformations is not normalized by
default (it depends on the size of the input graphs), the normalization shown in
Equation 3 has been applied to the result. Finally, the similarity between both
substructures is calculated as can be seen in Equation 4.

Costnormalized =
Cost

|vertexeslargestGraph|+ |edgeslargestGraph|
(3)

Similarity = 1− Costnormalized (4)

4.3 Implementation

This work has been implemented following the workflow explained next. The
different stages of this workflow have been implemented as independent tasks:

– Generation of IDs and replacement of subjects: as can be seen in
listing 2, SUBDUE has its own format for representing graphs. This format
requires to assign an unique ID to each vertex. At this first step, the RDF
graphs are iterated, replacing the subject of each resource by its ontological
class if the property rdf:type is presented and an unique and consecutive
IDs are assigned to each generated vertex.

– SUBDUE file generation: once the IDs are assigned, the relationships
among generated vertices are analysed in order to generate edges. Once these
edges are generated, the final SUBDUE file of each graph is generated.

– Most frequent subgraph extraction: at these step the most frequent
subgraph of each RDF graph is extracted with SUBDUE and previously
generated input files.

– Graph matching: at last, similarities among these subgraphs are found
with SUBDUE’s Graph Matching (gm) tool.

The implementation of this work and baselines (subsection 5.2) can be found
at https://github.com/memaldi/lod-fsm.

5 Evaluation

Presented approach has been evaluated against datasets from Linked Open Data
Cloud. The development of the evaluation follows these steps. First, a gold stan-
dard has been created for determining the effectiveness of both developed system
and baseline solutions in terms of precision and recall. These baseline solutions
(or baselines) are simple solutions that solve proposed problem in a simple way,
with the aim of establishing a baseline to be surpassed by the new solution.
At last, the results given from proposed solution are compared with the results
given by baseline solutions. The evaluation has been done only in terms of effi-
cacy because the developed work has been designed to be launched in batch and
without the interaction of the end-user, so that, the efficiency is not considered
a key factor to be evaluated.



1 v 1 foaf:Person

2 v 2 "Tim Berners Lee"

3 v 3 "timbl@w3.org"

4 v 4 aktors:Article-Reference

5 v 5 "The Semantic Web"

6 v 6 "Scientific American"

7 e 1 2 foaf:name

8 e 1 3 foaf:mbox

9 e 4 1 dcterms:creator

10 e 4 5 aktors:has-title

11 e 4 6 aktors:published-by

Listing 2: Representation of the graph from figure 3 in SUBDUE. In files 1-6 the
vertices are represented while in files 7-11 the edges are represented.

5.1 Gold Standard

For constituting the gold standard, two different sources have been checked. The
first source, inspired by [13], consists on checking already existing links among
datasets used in this evaluation. The links among these datasets have been ex-
tracted through the property links:<target dataset id> from The Datahub4

entry of each dataset, as this property is requested for publishing datasets in the
LOD Cloud. But, when evaluating the proposed solution, many links that are
not described in The Datahub were discovered. These links could not appear in
The Datahub for many reasons: related dataset have been published after the
publication of the source dataset and the publisher has not checked them, or
simply, the publisher did not know the existence of these related datasets. The
absence of these valid links could provoke a situation in where the developed
system could recommend datasets that, in fact, are valid results but considered
as false positives by the gold standard.

To solve this issue, a second source have been used to form the gold standard.
This source consisted on surveying different researchers on Semantic Web and
Linked Data for determining the validity of these new relations among datasets.
These surveys have been performed through a web application5 that shows to
researchers different pairs of datasets, to determine if there was any possible rela-
tionship between them. These datasets were represented by the title, description
and resources published in their The Datahub’s entry. Three options were al-
lowed for each pair of datasets: “yes” if they consider that there was a possible
relationship between them, “no” if they consider the opposite, and “undefined”
if they were not sure about the possible relationships. Each pair of datasets have
been evaluated by three different researchers. This approach arises another issue:
the number of different pairs resulting from the combination of all the datasets

4 http://datahub.io
5 https://github.com/memaldi/ld-similarity-survey



employed during the evaluation ups to 2,3466. Considering that each pair have
to be evaluated three times, this number increases to 7,038 evaluations to be
done by selected researchers. Considering that this number of evaluations is too
high, the number of dataset pairs have been reduced considering the evidence
proposed by [6]. The authors of this work consider if a pair of datasets have
common links to the same datasets, they could be related. From these evidence,
only datasets that are linked to common datasets have been included, reducing
the number of evaluations to 594. Once all the evaluations have been done, the
Fleiss’ Kappa [7] coefficient reveals an agreement among the reviewers of 41%,
which means a moderate agreement according to [12]. At last, for constituting
the gold standard, relations extracted from The Datahub have been comple-
mented with relations which in the survey have been approved by at least two
reviewers.

At the time of writing, an unique gold standard has been created for evaluat-
ing the developed system. However, a more suitable solution could be to develop
a different gold standard depending on the topic of the datasets whose similari-
ties are going to be extracted (biology, statistical government data, academical
publications, etc.). This work is going to be attempted in the future work.

5.2 Baselines

For weighting the results given by proposed solution, three baselines have been
developed. The first baseline is based on the evidence that as more ontologies
are shared between a pair of datasets, more related they are. The relation degree
between a pair of datasets is calculated as follows, being N the set of ontologies
used to describe the dataset D:

score(D1, D2) =
N1 ∩N2

max(|N1|, |N2|)
(5)

The second baseline, similarly to the first one, takes the common ontologies
between a pair of datasets to establish their relation degree, but establishing a
ranking based on the usage of the classes and properties of each ontology used
within each dataset. The distance between different pair of rankings have been
calculated through a normalized Kendall’s Tau:

K(τ1, τ2) =
∑
i,j∈P

K̄i,j(τ1, τ2) (6)

At last, the third baseline calculates the relation degree between a pair of
datasets calculating the Jaccard distance among all the triples of each dataset.
Being T1 and T2 the pair of datasets to be compared, the Jaccard distance is
calculated as follows:

6 The complete list of used datasets can be found at http://apps.morelab.deusto.

es/iesd2015/datasets.csv



dJ(T1, T2) =
|T1 ∪ T2| − |T1 ∩ T2|

|T1 ∪ T2|
(7)

5.3 Results

In figure 4, the results of both proposed solution and baselines are shown, in
terms of precision, recall, F1-score and accuracy. As can be seen, in terms of
precision, the proposed solution clearly overcomes the baselines, overpassing a
value of 0.8 from a threshold of 0.4; reaching a maximum value of 0.9. On the
other hand, the maximum value of recall is about 0.51, decaying from a threshold
of 0.3, offering a result that is not as good as expected and being surpassed by one
of the baselines. This situation is promoted by the fact that higher the threshold
is, the requested similarity between pair of graphs is higher too. Thus, there are
pairs of datasets detected as related by our solution but their relation degree is
not as high as expected. These results show that recommendations done by the
proposed solution are valid in a high percentage (low number of false positives),
although there still are many related datasets that the solution omits.
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Fig. 4: Comparison among the results obtained by proposed solution and base-
lines.



Regarding to the good results obtained by the first baseline, there is a clari-
fication to be done. As can be seen, many datasets used in the evaluation where
produced by the RKB Explorer project [8]. These datasets have been published
using the same ontologies and methodology, so they share the same ontologies in
similar proportion. As exposed in section 6, providing a more diverse evaluation
set is one of the key tasks for the future work.

6 Conclusion and Future Work

In this work, a solution for recommending related datasets and easing the task of
dataset linking has been presented. As exposed in Section 5, proposed solution
provides precise recommendations of candidate datasets to be linked. Although
the recall is not as good as expected, given that nowadays the help that a data
publisher has at time of selecting related datasets for linking his datasets is
very limited, we consider that is more important to recommend valid candi-
date datasets for interlinking, although these datasets are not all the available
datasets. However, the results given by the recall are an issue in which we are
currently working. At the present time, for avoiding false negatives provoked by
related datasets described by different ontologies, string similarity techniques are
being introduced, achieving an increase of recall between 0.10 and 0.30 regarding
to the work exposed in this paper. Another task to be done in the future work is
to analyse how the links generated by the own system can be used for improving
the results in an iterative way. At last, regarding to the evaluation, an important
future task is to include more diverse datasets in the evaluation set for avoiding
the overfitting of the proposed model or any of the baselines and developing a
different topic-based gold standard.

In conclusion, the promising results obtained show that most frequent sub-
graph mining techniques can be used to ease the task of interlink datasets from
the Semantic Web.

Acknowledgments. This work has been developed within WeLive project,
founded by the European Union’s Horizon 2020 research and innovation pro-
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