Sorry, I only speak natural language: a
pattern-based, data-driven and guided approach
to mapping natural language queries to SPARQL

Mariano Rico' *, Christina Unger?, and Philipp Cimiano?

! Ontology Engineering Group (OEG)
Universidad Politécnica de Madrid
mariano.rico@upm.es
http://oeg-upm.net
2 Semantic Computing Group
Bielefeld University
{cunger, cimiano}@cit-ec.uni-bielefeld.de
http://www.sc.cit-ec.uni-bielefeld.de/

Abstract. We present a new interface based on natural language to
support users in specifying their queries with respect to RDF datasets.
The approach relies on a number of predefined patterns that uniquely
determine a type of SPARQL query. The approach is incremental and
assisted in that it guides a user step by step in specifying a query by
incrementally parsing the input and providing suggestions for completion
at every stage. The methodology to specify the patterns is informed by
empirical distributions of SPARQL query types as found in standard
query logs. So far, we have implemented the approach using two patterns
only as proof-of-concept. The coverage of the pattern library will be
extended in the future. We will also provide an evaluation of the approach
on the well-known QALD dataset.

Keywords: SPARQL queries, natural language, pattern based, data
driven, guided systems, lemon model

1 Introduction

SPARQL is the query language for the Web of data, but it suffers from a high
adoption barrier by end users. Mastering the SPARQL syntax is a problem for
users lacking IT skills. But even knowing the SPARQL syntax, a more severe
problem remains: the need to know the underlying vocabulary of the queried
dataset. Thus, querying RDF data remains a barrier not only for lay people but
also for technically skilled users. There are different approaches to alleviate this
barrier and to support users in the task of querying RDF data.

One approach consists in guiding users in writing SPARQL queries by some
interface, e.g. SindiceTech’s Qakis [I] or SparQLed [2], in which you see the

* Supported by LIDER (EU FP7 proj. 610782) and projects JCI-2012-12719, TIN2013-
46238-C4-2-R (4V), UNPM13-4E-1814 (INFRA)

http://oeg-upm.net
http://www.sc.cit-ec.uni-bielefeld.de/

2 Rico, M., Unger, C., Cimiano P. IESD 2015

SPARQL query but you are assisted to avoid syntactic errors. Such approaches
remove the first problem mentioned above.

Another type of approach uses visual metaphors to support writing queries,
abstracting from the SPARQL syntax, e.g. Rhizomer [3], GoRelations [4], Rel-
Finder [5] or SPEX [6]. The third type of approach relies on natural, or con-
trolled natural language as query interface. A user writes a query in natural
language and the interface systems needs to map this natural language query
into SPARQL, thus completely hiding the SPARQL query language from the
user. Examples of the latter category are PowerAqua [7] and others.

The systems in the third category are typically not incremental in the sense
that they require a user to enter a full query before it is processed. Thus, the
user has no guidance on how to write the query. Exceptions are systems such
as Attempto-OWL [§] or GINO [9], which rely on controlled natural language.
Such approaches define a controlled language in a top-down fashion, without
empirically looking at the types of queries users actually make.

We present a novel approach to guided natural language querying that is
incremental in the sense that it interprets the question while the user is typing
it and can thus provide guidance by proposing possible completions of the query
to the user. The approach relies on a number of patterns that have been defined
to cover the most frequent types of SPARQL queries. So far, only two patterns
have been implemented to provide a proof-of-concept, but the long-term goal
is to continue adding natural language patterns iteratively to cover the most
frequent types of SPARQL queries sent by users to SPARQL endpoints. In fact,
it has been shown that the the SPARQL queries made to SPARQL endpoints
follow a power-law distribution [I0] (at least for the DBpedia and the Spanish
DBpedia).

Figure [1] shows the number of queries for each type (left y-axis) and the
percentage of the total number of queries (right y-axis). One can see that the
first query type (the most used) was used by 1.2 million queries, corresponding to
42% of the total number of queries. The top-20 queries cover 95% of all queries.
This figure was built using 3 months of DBpedia logs (USEWOD 2014 dataset).
A specific question of a user might be:

“Give me movies by Tarantino”
The corresponding natural language pattern would be the following:
Give me Noun Preposition Instance
The corresponding SPARQL query type would be the following:
SELECT ?s WHERE {?s prop instance}
And the actual SPARQL query would look as follows:
SELECT ?s WHERE {?s dbpedia:director dbpedia:Tarantino}

Our long-term goal is to have an approach that covers 90% of all queries. By
guiding the user, one ensures that only such queries are typed in that can actually

Lecture Notes in Computer Science: Authors’ Instructions 3

Fos
1,400,000 | - 90
-85
1,200,000 |

- 80

1,000,000 —|
75

Number of queries for that query type
Coverage (percentage of total)

800,000 L 70
L 65
600,000
)
400,000] L 55
200,000 - 50

L 45

L 40

Query type (ordered by frequency)

Fig.1. Pareto distribution of query types for DBpedia (USEWOD 2014 queries
dataset).

be processed by the system, thus reducing errors and increasing robustness of
the system. With this method we can cover quickly the most frequent query
types, but covering the long tail would require implementing hundreds of query
types. Our system is intended to allow an incremental way of adding new query
types.

An important challenge is to have a system with high lexical coverage that
covers as many alternative ways of referring to one given property, class or indi-
vidual as possible. We rely on ontology lexica as modeled by the lemon model [I1]
to make such lexicalizations explicit. We exploit existing lexicalizations of DB-
pedia which relate vocabulary elements in DBpedia to the lexical entries that
verbalize these via the lemon model [I2]. In this way, for instance, we can look
up in the lexicon that dbpedia:starring can be verbalized by ¢ ‘movie with’’
and that the property dbpedia:producer is verbalized by ¢ ‘movie by’’, etc.
The lexicalization relation is clearly not 1:1, as one vocabulary element can be
verbalized by different lexical entries, and one lexical entry can be ambiguous
and potentially refer to different vocabulary elements. A possible methodology
here would be to prioritize the creation of lexical entries in a way that is informed
by frequency of use of types (classes) and properties in the given dataset.

A further challenge is to have a real-time response so that query completion
is immediate from the users’ point of view. This can be achieved by appropriate
inverted indexes that return for a class which properties are associated to this
class, which instances stand in the subject or object of a particular property, etc.

4 Rico, M., Unger, C., Cimiano P. IESD 2015

We rely on an index [13]E] that provides a quick response to intensive SPARQL
queries like select 7type where {?s dbpedia:starring ?v . ?s a 7type}
(type of the subject in triples with property dbpedia:starring). Table [1{shows
the result of the previous query, but ordered by usage (triples with subjects of
that type). With this information we provide to the user a list of options starting
with work, followed by film and television show, etc.

Table 1. Subject types for triples with property dbpedia:starring in the Spanish
DBpedia SPARQL endpoint, ordered by usage.

Subject class Count %triples
http://dbpedia.org/ontology/Work 155,508 100.0%
http://dbpedia.org/ontology /Film 118,887 76.45%

http://dbpedia.org/ontology/TelevisionShow 36,621 23.55%

2 Approach by example

We illustrate our approach by one example shown in Figure [} We distinguish
between query pattern types and NL patterns. One query pattern type can be
expressed by different NL patterns. We show two query patterns with different
NL patterns below:

— Query Pattern Type 1. This pattern corresponds to the query type
SELECT 7s WHERE {?s prop instance}

NL patterns that can be used to express this query pattern type are:
What is the Noun of Instance?
e.g. What is the capital of England?, mapping to the SPARQL query

SELECT 7s WHERE {dbpedia:England dbpedia:capital ?s}

or Give me Noun Preposition Instance
e.g. Give me movies by Tarantino, mapping to the SPARQL query

SELECT ?s WHERE {?s dbpedia:director dbpedia:Tarantino}
— Query Pattern Type 2. Corresponds to the query type:

SELECT 7s WHERE {?s a class
?s property instance}

NL patterns that express this query pattern type are for example:
What Noun Verb Instance?
e.g. What movies starred John Travolta?, mapping to the SPARQL query

3 See http://loupe.linkeddata.es/loupe/

http://loupe.linkeddata.es/loupe/

Lecture Notes in Computer Science: Authors’ Instructions 5

SELECT ?s WHERE {?s a dbpedia:Film .
?s dbpedia:starred dbpedia:John_Travolta}

or Which Noun Verb Preposition Instance?
e.g. Which river passes through London?, mapping to the SPARQL query

SELECT ?s WHERE {?s a dbpedia:River .
?s dbpedia:crosses dbpedia:London}

Overall, NL patterns thus represent slotted and typed patterns into which
elements can be inserted to be completed. Once all elements have been inserted
into an NL pattern, the SPARQL query is determined.

Figure [2| shows two NL patterns. Each NL pattern represents a sequence of
so called Parseable Elements. Each element parses or recognizes one part of the
input. A question is parsed by applying all NL patterns available and deter-
mining which ones match or recognize the input. This is determined iteratively
by checking for each parseable element whether it recognizes or matches the
corresponding part of the question. In general, multiple patterns will match a
question at any time. We distinguish the following types of parseable elements:

Type your query Type your query
what is the capif which is the capital of G|
capital of Guam
Grece
Gabon
Ghana
Germany
{
NLP [TextElem ||[TextElem | [TextElem |[__PNElem |{[InstElem |
1 - -
NLP [TextElem ||[CNElem][VElem][InstElem |
2
Type your query Type your query
wh| what movies starred John Ty
who John Trent
what John Travers
which John Travolta

Fig. 2. Use case for two NL query patterns NLP; and NLP»

6 Rico, M., Unger, C., Cimiano P. IESD 2015

— TextElements: These elements are responsible for recognizing constant
filler elements (e.g. ‘what’, ‘who’; etc.)

— PropertyNounElements: These elements are responsible for recognizing
a noun that denotes a property (e.g. ‘capital’)

— ClassNounElements: These elements are responsible for recognizing a
noun that denotes a class (e.g. ‘river’)

— VerbElements: These elements are responsible for parsing a verb that de-
notes a property (e.g. ‘passes’)

— InstanceElements: These elements are responsible for parsing an instance
(e.g. ‘London’, ‘John Travolta’), etc.

For each pattern, the system checks whether it accepts the input query. It it-
erates through the sequence of parseable elements that constitute an NL pattern
and verifies for each parseable element whether it recognizes the corresponding
part of the sentence. A simple lookahead method is used to compute possible
completions of the question by showing the user the inputs that the following
parseable element will accept. Choices made by the user are propagated to future
elements of the sequence as needed and modeled by corresponding dependencies
between the parseable elements in the sequence. In the example depicted in Fig-
ure , the user has typed in what, which matches both patterns. Then, the
system proposes completions for both patterns. The user can delete any number
of previous selections to return to a previous point and the system continues the
process from that point.

3 Architecture of the system

The architecture of the system is depicted in Figure [3| The main components of
the architecture are the following ones:

DBpedia
endpoint

Web Server

interQA

Y\ P

=~
‘A A

end user
(multilingual)

lexicalization

Fig. 3. Key components in the interQA system for the DBpedia use case.

Lecture Notes in Computer Science: Authors’ Instructions 7

1. SPARQL endpoint: As any user interface, a quick response is a fundamen-
tal issue. In order to avoid an excessive number of requests to the endpoint,
we create an index with the results of a specific set of extractive queries.
Therefore, we need a privileged access to the endpoint. In our experiments
we have used the Spanish DBpedia. Other endpoints could run the indexer
in low-demand periods (by night) or with small pagination (the smaller the
pagination size, the longer time to create the index).

2. SPARQL endpoint index: This index is available online as a REST ser-
vice. For the case of the Spanish DBpedia see (http://loupe.linkeddata.
es/loupe).

3. Question Interpretation component: the componentﬂ that incremen-
tally interprets the user’s input by matching it to the patterns and returns
possible completions. It is described in the next section.

4. Frontend: A web server running a web application to interact with the user.

5. Lexicon: a lexicon that contains information about how the vocabulary
elements of the dataset are lexicalized in natural language. The system cur-
rently uses the lexicon for DBpedia in three languages (Spanish, English,
German).

4 Question Interpretation component

Figure 4] shows the java classes diagram of the component (and their methods) as
well as class dependencies. In short, there are two basic interfaces (ParseableEle-
ment and QAPattern). There are 4 classes that implement the methods defined
by ParseableElement: StringElement, InstanceElement, PropertyNoun and
ClassNoun. In this exampe we define two classes implementing the QAPattern
interface: QueryPatternl and QueryPattern2. The QueryPatternManager class
manages the query patterns and sequentially requests the possible values to show
(as a list) to the user (method getNext()). If several query patterns are avail-
able at that point, they will be merged and shown to the user. Once the user
selects a list item, the whole string is parsed (method parse()). Depending on
the user selection some patterns will be discarded. At the end of the process at
least one query pattern will be available.

5 Conclusions

We have presented a preliminary system that interprets natural language ques-
tions with respect to SPARQL and has three key features: i) it is pattern-based
in the sense that it exploits a number of patterns that cover the most frequent
types of SPARQL queries, ii) it is data-driven in the sense that it is grounded
in an analysis of frequent query types and in that it uses indices to anticipate
possible completions of a query in real time, and iii) it is guided in the sense
that it computes potential completions and displays these to the user. In this

4 See http://github.com/ag-sc/InterQA

http://loupe.linkeddata.es/loupe
http://loupe.linkeddata.es/loupe
http://github.com/ag-sc/InterQA

P. IESD 2015

1miano

Rico, M., Unger, C., C

ploA (Buiyawossay =, i

159 [1abeueyuIaRgAIaND) ®

0A12nd1DYVdSI0 W
(xeN3eb @

(Buis)sasied

(BuLns ‘BuLns)uLio4sn|diediuouediosadueisunab wf

Tusanedkiand (3

4

v
\72 Bupns
Buing 0A1nd1DYVdSI0 @
<bus>isn
<bus>1sn (1xeN19b @ poa (uRnedYD)uINEedAIaNDPPE (i)
uesjooq
uea|oo Buiis)sasied i 1)
|ooq (Buing): w J1abeuepusanedhiand (5 <Bugosn
zusapeghisnd (3
SEEEEE ' i
1 [1 1 1 1 ! ! !
| | | | | | | |
1 1 1 1 1 H H H
1 1 1 1 1 | 1 1
! | | | | 1 |
E— ! i i i ' «oydoioy
| | | | 1
1 ! : 1 1
| | I— | |
| | “
«o1ge10» ¥ Y
] ploA (yuawsa|3buLs)uonisodaidias
i L ploa (JUBWI|FIOUR)SU])SIIURISUNIDS (Wi
|
i 4 A4 <Buiys>1sn ()sanadoidiab @
— buns 0K12nDTOYVdSIB @
<B(<buis>1si7)peayesoo <buns>1sn (Buins)sadueysupab
<buis>isn (»en3eb i
| buiis (Bus)asied <Anuzjesixa>1si (Buins ‘Buins)Anu3jesixeeb w
galo» uesjooq (Buing)sased @
unonsse|) (3 - <bus>1sn (<Bums>3s7)peayexoo) i
[uwienedvd (1 bums (Buins)asied
i ' 4 ploa (Anu3jeoixa1 ‘Buiys)bulisa|qeasiedppe i
|
m unoNApadold 51
| i
|
I 1 3 m
e — !
| _
! |
“) ' | "
\2 Lo V i
<bums>1si (<bus>1si)peayexoo) i /_\ G
bus (Bus)asied <B(<buis>1si7)peayeoo|
ploa (Bus)ppe (i buuys (Buins)asied
ueajooq (Bums)saydiew JUBWB|FADUBISY] (5

w
Juawa|3buls (5

v

v I

V- R—

vy

<B (<Buins>1si7)peayexoo|

Buus

(Buwng)asied (i

JUsWa33|qesied 1

Fig. 4. Class diagram of the Question Interpretation component.

Lecture Notes in Computer Science: Authors’ Instructions 9

way, one ensures that only such queries are entered into the system that are also
valid and can be processed and interpreted by the system, thus reducing errors
and increasing robustness. Future work includes increasing the coverage of the
system with more patterns, improving the indexes and covering languages other
than English. An evaluation of the approach remains to be done.

References

1.

10.

11.

12.

E. Cabrio, J. Cojan, A. P. Aprosio, B. Magnini, A. Lavelli, and F. Gandon,
“QAKIiS: an Open Domain QA System based on Relational Patterns,” in Proc.
of 11th International Semantic Web Conference. Poster € Demostrations Track,
2012.

S. Campinas, T. E. Perry, D. Ceccarelli, R. Delbru, and G. Tummarello, “Introduc-
ing RDF Graph Summary with Application to Assisted SPARQL Formulation,”
in Proc. of 23rd International Workshop on Database and Expert Systems Appli-
cations (DEXA), pp. 261-266, IEEE, 2012.

R. Garcia, J. M. Gimeno, F. Perdrix, R. Gil, and M. Oliva, “The Rhizomer Seman-
tic Content Management System,” in Proc. of First World Summit on the Knowl-
edge Society. Emerging Technologies and Information Systems for the Knowledge
Society. LNCS 5288, pp. 385—-394, Springer, 2008.

L. Han, T. Finin, and A. Joshi, “GoRelations: An Intuitive Query System for
DBpedia,” in Proc. of Joint International Semantic Technology Conference (JIST).
LNCS 7185, pp. 334-341, Springer, 2011.

S. Lohmann, P. Heim, T. Stegemann, and J. Ziegler, “The RelFinder User Interface:
Interactive Exploration of Relationships between Objects of Interest,” in Proc. of
15th International Conference on Intelligent User Interfaces, pp. 421-422, ACM,
2010.

S. Scheider, A. Degbelo, R. Lemmens, C. van Elzakker, P. Zimmerhof, N. Kostic,
J. Jones, and G. Banhatti, “Exploratory querying of SPARQL endpoints in space
and time,” Semantic Web Journal (to appear), 2015.

V. Lopez, M. Ferndandez, E. Motta, and N. Stieler, “PowerAqua: Supporting users
in querying and exploring the Semantic Web,” Semantic Web Journal, vol. 3, no. 3,
pp- 249-265, 2011.

N. E. Fuchs, K. Kaljurand, and T. Kuhn, “Attempto Controlled English for Knowl-
edge Representation,” in Proc. of 4th International Summer School. Reasoning
Web. LNCS 5524, pp. 104-124, Springer, 2008.

A. Bernstein and E. Kaufmann, “GINO-A Guided Input Natural Language On-
tology Editor,” in Proc. of 5th International Semantic Web Conference (ISWC).
LNCS 4273, pp. 144-157, Springer, 2006.

M. Rico and A. Gémez-Pérez, “The Pareto principle also rules SPARQL queries,”
Journal of Web Semantics (in preparation), 2015.

J. McCrae, D. Spohr, and P. Cimiano, “Linking Lexical Resources and Ontologies
on the Semantic Web with Lemon,” in Proc. of 8th Extended Semantic Web Con-
ference (ESWC). Part 1. The Semantic Web: Research and Applications. LNCS
6643, pp. 245—259, Springer, 2011.

C. Unger, J. McCrae, S. Walter, S. Winter, and P. Cimiano, “A lemon lexicon for
DBpedia,” in Proc. of 1st International Workshop on NLP and DBpedia, co-located
with the 12th International Semantic Web Conference (ISWC). CEUR Vol-1064,
2013.

10 Rico, M., Unger, C., Cimiano P. IESD 2015

13. N. Mihindukulasooriya, M. Rico, and R. Garcia-Castro, “An Analysis of Quality
Issues of the Properties Available in the Spanish DBpedia,” in Proc. of Conference
of the Spanish Association for Artificial Intelligence (CAEPIA), LNCS (to appear),
Springer, 2015.

	IESD 2015
	Introduction
	Approach by example
	Architecture of the system
	Question Interpretation component
	Conclusions

