
A formalization of Ashok Goel’s SBF concept of
function

Stefano Borgo1, Massimiliano Carrara2, Pawel Garbacz3, and Pieter E.
Vermaas4

1 Laboratory of Applied Ontology, ISTC CNR, Trento, Italy
stefano.borgo@cnr.it

2 FISPPA Department – Section of Philosophy, University of Padua, Italy
massimiliano.carrara@unipd.it

3 Philosophy Department, John Paul II Catholic University of Lublin, Poland
garbacz@kul.lublin.pl

4 Philosophy Department, Delft University of Technology, The Netherlands
p.e.vermaas@tudelft.nl

Abstract. We formalize within the dolce foundational ontology the
Structure-Behavior-Function model (sbf) proposed by Ashok K. Goel
and colleagues. Our work focuses in particular on the notion of function.
This work on sbf is part of a larger project that includes the formaliza-
tion of the concepts of function by Chandrasekaran and Josephson and
by Stone and Wood. The overall goal is to make engineering functional
descriptions of technical artifacts based on different concepts of function,
exchangeable by separately formalizing these different concepts in a sin-
gle ontological framework. The formalization is a necessary step towards
the development of an integrated information system for engineering de-
sign.

Keywords: function, formal ontology, sbf model, Ashok K. Goel, dolce.

Introduction

The aim of this contribution is to formalize the concept of function of technical
artifacts as advanced by Ashok K. Goel and his colleagues [10] as part of the
Structure-Behavior-Function (sbf) model. The sbf concept of function is devel-
oped in [10, pp. 25-26], [11] from the so-called Functional Representation (fr)
approach towards modeling functions, proposed by Chandrasekaran and Joseph-
son [8]. The sbf model extends this original modeling, for instance, by describing
the structure of technical artifacts in terms of components and substances, and
by adding the assumption that there exists a limited set of primitive functions.

Given the relationship between the sbf model and the fr approach we ar-
rive at a formalization of the sbf concept of function using as a starting point
our earlier formalization of the fr approach. The formalization of sbf functions
includes also formal characterizations of the sbf concepts of structure and be-
havior: we take a behavior in sbf to be a discrete sequence of states, and an



sbf function to be an sbf behavior with a fixed input state and a fixed out-
put state, both specified by a set of values for state parameters (pre-conditions
and post-conditions). An sbf function is then formalized as constraints on these
parameters of states.

A central starting point in our larger project is to formalize all engineering
concepts of function within the same ontology, seen as a unifying structure for
the analysis and the formalization of these concepts, namely the Descriptive
Ontology for Linguistic and Cognitive Engineering (dolce) [12].

The paper opens in section 1 with a brief description of our larger project.
Section 2 outlines the central concepts of dolce. Then, in Section 3, we describe
the sbf model in some detail and relate it with the fr approach. In section 4
we focus on the formalization of the sbf concept of function.

1 The larger project

This work on sbf functions is part of a larger project aimed at making engineer-
ing functional descriptions of technical artifacts (based on different concepts of
function) interoperable. This is obtained by separately formalizing the main dif-
ferent concepts within a single ontological framework. The approach is described
and argued for in [5]:

[It] does not aim directly at a single concept of function, but tries to re-
construct the main meanings that engineers attach to this term by means
of a series of formalizations within one single formal framework. In this
strategy one focuses still on well-defined and specific concepts of func-
tion, which are taken as classical concepts, but now different [meanings]
of such concepts are formalized. [It] is also in conformance with engi-
neering practice by describing and formalizing the concepts of function
used. [. . . ] Yet this [. . . ] strategy disambiguates functional descriptions
only in a weak sense. Each meaning that is formalized on this strategy
is analyzed in detail, assessed for consistency, and if needed at points
corrected. And if such corrections are not feasible, particular meanings
may even be discarded as untenable ones [. . . ]. Yet, after formalization
it still amounts to different concepts of function that co-exist in one for-
mal system. By their co-existence in one formal system, these functional
concepts may be compared and related, just as any other set of concepts
can be compared and related. [. . . ] [5, p. 152]

In our larger project we thus accept the co-existence of different meanings of
function as a feature of engineering [15], and proceed by formalizing those differ-
ent meanings. In [1] we formalized the concept of function by Chandrasekaran
and Josephson [8], which represents the fr approach towards modeling functions.
In [2] we formalized the Stone and Wood [14] concept of functions, representing
the fb modeling approach. And in [9] we provided a formal comparison between
these two formalizations and showed how automatic exchange of functional de-
scriptions originating in these approaches may look like. With this contribution



we proceed in our project by including a formalization of Goel’s sbf concept of
function.

2 A very brief introduction to DOLCE

2.1 The general structure of DOLCE

Dolce is a foundational ontology of particulars with a clear cognitive bias since
its categories are obtained by analyzing the surface structure of language and
cognition. Consequences of this approach are that dolce’s categories are at the
so-called mesoscopic level, the level of the middle-sized objects we, as humans,
perceive. The Dolce’s taxonomic structure is pictured in Figure 1. Each node in
the graph is a category of the ontology. A category that is a direct subcategory
of another is depicted by drawing the latter higher in the graph and linking them
with an edge. Particular is the top category. The set of direct subcategories
of a given category forms a partition unless dots are inserted.

Q
Quality

PQ
Physical
Quality

AQ
Abstract
Quality

TQ
Temporal
Quality

PD
Perdurant

EV
Event

STV
Stative

ACH
Achievement

ACC
Accomplishment

ST
State

PRO
Process

PT
Particular

R
Region

PR
Physical
Region

AR
Abstract
Region

TR
Temporal
Region

T
Time

Interval

S
Space
Region

AB
Abstract

SetFact…

… … …

TL
Temporal
Location

SL
Spatial

Location

… … …

ASO
Agentive

Social Object

NASO
Non-agentive
Social Object

SC
Society

MOB
Mental Object

SOB
Social Object

F
Feature

POB
Physical
Object

NPOB
Non-physical

Object

PED
Physical
Endurant

NPED
Non-physical

Endurant

ED
Endurant

SAG
Social Agent

APO
Agentive
Physical
Object

NAPO
Non-agentive

Physical
Object

…

AS
Arbitrary

Sum

M
Amount of

Matter

… … … …

Fig. 1. The dolce taxonomy (from [12]).

The dolce ontology category endurant comprises objects, e.g., a hammer,
and amounts of matter, e.g., the amount of water in this glass, the amount of gold
in my wedding ring, while the category perdurant comprises events like making
a hole or a soccer game, that is, things that happen in time. The term ‘object’ is
used in the ontology to capture a notion of unity as suggested by the partition
of the class physical endurant into classes amount of matter, feature,
and physical objects (see Figure 1). Among those we need to explain in more



detail the dolce notion of feature. In dolce, features are dependent entities
which are wholes, thus distinguished from individual qualities:

Typical examples of features are “parasitic entities” such as holes,
boundaries, surfaces, or stains, which are generically constantly depen-
dent on physical objects (their hosts). All features are essential wholes,
but, as in the case of objects, no common unity criterion may exist for
all of them. However, typical features have a topological unity, as they
are singular entities. Some features may be relevant parts of their host,
like a bump or an edge, or places like a hole in a piece of cheese, the
underneath of a table, the front of a house, which are not parts of their
host. [12, p. 16]

2.2 DOLCE categories and relations we focus on

In this section we present the categories of dolce in Figure 1 that are relevant
to our work. Note that the terminology adopted departs sometimes from that
in engineering design, knowledge representation, and conceptual modeling since
affected in part by the philosophical literature.

ED(x) stands for “x is an endurant”. An endurant is an entity that is wholly
present at any time it is present. It is physical if located in space and time: a
hammer #321, a mover machine #111, an amount of plastic, and the cavity in
which a piston moves.

PED(x), a subcategory of ED, stands for “x is a physical endurant. A hammer,
a mover machine, an amount of plastic, and the cavity in which a piston moves,
are all examples of physical endurants. We will use two subcategories of physical
endurants: physical objects POB and features F.

NPED(x) stands for “x is a non-physical endurant.” NPED is a subcategory of
ED that includes mental objects, e.g., beliefs, intentions, etc., and social objects
(SOB), e.g., norms, shares, peace treaties.

PD(x) stands for “x is a perdurant”, i.e., an entity that is only partially
present at any time that is present. For instance, consider the perdurant produc-
ing an item of type #234 that consists of riveting two metal pieces and painting
the resulting piece. While the painting goes on, the (temporal) part correspond-
ing to riveting is no longer present and when this is present, the painting still has
to come. We will use also the basic distinction between events (EV) and states
(ST) among perdurants. A perdurant is stative or eventive according to whether
it holds of the mereological sum of two of its instances, i.e., if it is cumulative
or not. A sitting is a state since the sum of two sittings is still a sitting, while a
sitting down is an event since the sum of two sitting downs is not a sitting down.

Among the ontological relations in dolce we will make use of the parthood
relation: “x is part of y”, written P(x,y). The formal theory based on parthood
is called mereology [13]. In dolce the parthood relation applies to pairs of en-
durants and to pairs of perdurants. For instance, if a = ‘writing article A’ and
b = ‘writing the introduction to article A’, then P(b,a) holds. For endurants,
the relation of parthood is temporalized since an endurant may loose and gain



parts throughout its existence: P(e, e′, t) says that the endurant e is part of the
endurant e′ at the instant or interval t. In the setting of sbf holds the sim-
plifying assumption that the time interval is fixed: consequently, the temporal
relativization of mereological parthood between endurants is here neglected.

A number of auxiliary definitions, like proper part, overlap and sum, can be
introduced from P . (Symbol , indicates a definition.)

PP(x, y) , P(x, y) ∧ ¬P(y, x) (1)

A perdurant is a proper part (PP ) of another if it is part of the second and not
vice versa. Example: Reading this section is a proper part of reading the paper.

O(x, y) , ∃z(P(z, x) ∧ P(z, y)) (2)

Two perdurants overlap (O) if a perdurant exists which is simultaneously part of
both. Example: ‘My drinking on the couch’ and ‘my watching TV on the couch’
have ‘my sitting on the couch’ as part of both. Regarding mereological sum (+),
a perdurant z is the sum of x and y provided that x, y are parts of z, and that
whatever overlaps z also overlaps x or y. Formally,

x + y , ιz ∀w(O(w, z)↔ (O(w, x) ∨ O(w, y))) (3)

This definition can be easily extended for ternary, quaternary, etc., operations.

3 Functions in the SBF model and in the fr approach

Here we report the terminology from [10] and connect the concepts used in the
sbf model and the concepts advanced in the fr approach. In Section 4, when we
formalize sbf concepts, we add more details to the description of these concepts.

An sbf model of an artifact includes submodels of the artifact’s structure,
behavior and function. These submodels are characterized as follows:

The structural submodel of an artifact consists of a description of the ele-
ments of the artifact and the connections between these elements. In these struc-
tural models a distinction is made between elements that are components and
elements that are substances. The connections between components are called
connecting points.

The behavioral submodel captures the behavior of an artifact in terms of
transitions between states of the artifact, where these states refer to properties
of the connecting points of the artifact, that is, of the artifact’s structure. The
behavioral submodel moreover gives causal explanations of these transitions.

Finally, sbf functions describe the role an element in an artifact plays in the
operation of the artifacts; an sbf function gives a purpose of the element and
refers to a behavior by which the element realises the purpose. Some primitive
functions are listed, e.g., ‘create’, ‘destroy’, ‘expel’, ‘allow’, ‘pump’ and ‘move’.

Let us now bring in the fr approach as described in [8]. In this approach
the term behavior is undestood to have five engineering meanings and the term
function to have two. The meanings of behavior are characterized with the help
of the primitive notion of state variable (the examples are from [8]):



1. the value of some state variable of the artifact or a relation between such
values at a particular instant.

2. the value of a property of the artifact or a relation between such values.

3. the value of some state variable of the artifact over an interval of time.

4. the value of some output state variable of the artifact at a particular instant
or over an interval.

5. the values of all the described state variables of the artifact at a particular
instant or over an interval.

Note that for all meanings, a behavior of a technical artifact is in part objective
and in part subjective. Objective because it eventually depends on the prop-
erties or features of the artifact. Still, the very same behavior depends on the
designer(s) and, indirectly, on engineering practice for the choice of the variables.

The two meanings of function in the fr approach are called device-centric
and environment-centric meanings. A device-centric function of an artifact is a
behavior of the artifact that is selected and intended by some agent. The function
is described in terms of the properties and behaviors of the artifact only; an
example is “making sound” in the case of an electric buzzer. An environment-
centric function is in turn an effect or impact of this behavior of the artifact
on its environment provided this effect or impact is selected and intended by
some agent. This kind of function is conceptually separated from the artifact
that performs or is expected to perform this function; “enabling a visitor to a
house to inform the person inside the house that someone is at the door” is an
environment-centric function of the buzzer.

When comparing the concepts advanced in the sbf model and the fr ap-
proach, it can be noted that the notions of behavior are fairly similar. Moreover,
functions are derived notions in both: functions give the agent’s viewpoint on
behaviors although agents are only implicit in the sbf framework.

In a nutshell: in sbf and in fr functions provide the purpose of an entity in a
given situation while the entity’s behavior is the way the purpose is accomplished.
The distinction device-centric and environment-centric functions is not part of
sbf. Here, we will consider the sbf concept of function as typically an fr device-
centric function, since – as we will see – sbf functions refer to sbf behaviors
and purposes of components that are typically described in terms of properties
of the artifact itself, a specification given in fr to device-centric functions.

As concerns behavior : in fr the behavior of a technical artifact is the specific
way in which the artifact occurs in an event, it is specified by the meanings (1-5)
given above, and characterized using the primitive notion of state variable; in
sbf behavior is also conceived as a specific way in which a technical artifact
occurs in an event. Differently from fr, in sbf there is an emphasis on the
state-transition construction of behaviors.

Finally, the notion of structure is in sbf somewhat more complex than in fr
since there is in sbf, and not in fr, a basic distinction between the elements of
a device and the connections between the elements.



4 Formalizing SBF Functions

We now develop the formalization of the sbf model starting from our previous
work on the fr approach [1], and then extend it to cover the sbf system including
the notion of function. The notion of technical artifact (or device) is introduced
in sbf without a specific characterization as it happens in fr and the notion of
behavior is developed from similar assumptions. Note, however, that the different
setting of sbf will later lead us to make some alternative formalization choices.

We identified the following main categories of sbf

– (technical) device and its physical components
– substances
– connections and connection points
– devices’ states and behaviors
– functions

Following the methodology described in [5] we first align these categories to
the dolce taxonomy.

4.1 Ontological categorization

sbf uses a notion of device which is richer than that exploited by fr. sbf can
describe to some extent the structure of the device itself. In particular, a basic
distinction is set between elements (parts) of the device and connections among
them. Elements are clearly divided in: a) physical components, i.e., the physical
parts of a device, and b) substances, like fluids and forces. Ontologically these
entities are dolce’s endurants (⊕ stands for the exclusive disjunction):

Elem(x)→ PhComp(x)⊕ Subst(x) (4)

Elem(x)→ ED(x) (5)

More specifically, a physical component is a rigid or semi-rigid material object
of a subclass (called RigidPOB) of physical objects (POB). We do not attempt
to constrain this class here since the distinction is not clarified by the authors
and does not play a role in the system. A substance can be characterized as
an amount of matter (M) or a non-physical endurant (NPED), although not a
NPOB, i.e., it is neither a mental nor a social object.

PhComp(x)→ RigidPOB(x) (6)

RigidPOB(x)→ POB(x) (7)

Subst(x)→ M(x) ∨ [NPED(x) ∧ ¬NPOB(x)] (8)

Components, and not substances, may have connection points (ConnPt) with
which to be connected to other components. In dolce these connection points
are classified as features (F):

ConnPt(x)→ F(x) (9)



Two connection points in two components can be connected. There is a fixed
number of possible connection types depending on how force can be transferred
across the connection points: parallel, series, touching, adjoining, bolted, fused,
hinged, jointed, tied, telescoped, threaded, frictionally embedded, sewn, nailed,
clipped, ball&socket installed and glued. Since connections are relationships
needed to discuss force transfer or lack of it, in dolce we look at their tem-
poral behavior and classify them in the category of states (ST). Thus by stating
that there is a connection of type X between two points we mean that their
two components are in a state to exchange force in as much as allowed by the
type X of the connection. Classifying connections as states we implicitly add
a temporal parameter to the connections. However, as anticipated, we do not
exploit temporal information in this formalization.

To capture this, we introduce a ternary relation Connect(x, y, z) whose in-
tended reading is “connection x holds between connection points y and z (in
this order).”

Connect(x, y, z)→ ST(x) ∧ ConnPt(y) ∧ ConnPt(z) (10)

It goes without saying that connections relate different connection points:

Connect(x, y, z)→ y 6= z (11)

As said, behaviors in fr and sbf are similar but the state-transition construc-
tion in sbf leads to a somewhat different formalization of behavior, in particular
to include causes or explanations for the transitions, an important aspect of sbf.
Starting from the notion of behaviour in fr, in the formalization of sbf we add
a notion of system behavior (SysBeh), namely a perdurant which is a non-empty
sequence of states describing at least a connection and at least one transition.
We classify transitions as achievements or accomplishments, i.e., in the even-
tive category EV, see Figure 1. (An interesting alternative would be to model
transition types as simplified descriptions of events, this choice would amount
to introduce transitions as black box entities.) We use relations BehStart and
BehEnd to indicate the initial and final states of a transition, respectively, i.e.,
“BehStart(x,y)” (“BehEnd(x,y)”) means that x is the initial (final) state of y.

SysBeh(x)→ Transition(x) (12)

Transition(x)→ EV(x) (13)

BehStart(x, y) ∨ BehEnd(x, y)→ ST(x) ∧ Transition(y) (14)

We are now ready to discuss functions in sbf. Functions are embedded in the
sbf language via a precise list of primitives inspired by the work of Bylander
[4]: create, destroy, expel, allow, pump and move. While functions are taken as
intended input-output relationships, resembling once again the fr approach,
there is an explicit commitment to interpret the behaviors from these elements.

To capture the specific role of these primitives, we add the following axioms
(where Func(x) stays for “x is an sbf function”):

[Create(x) ∨Destroy(x) ∨ Expel(x) ∨Allow(x) ∨ Pump(x) ∨Move(x)]

→ Func(x)(15)



However, these functions are not taken as exhaustive in the sbf language, not
even in the sense that any other function should or could be seen as a spe-
cialization or a combination of these. Indeed, SBF allows the user to add new
functions without restrictions. A basic separation in functional types is given by
the mandatory classification of function in achievement (Achieve), maintenance
(Maintain), prevention (Prevent) and negation (Negate).

Func(x)→ [Achieve(x)⊕Maintain(x)⊕ Prevent(x)⊕Negate(x)] (16)

From the sbf’s examples, these special cases and functions can be classified as
social objects in the terminology of dolce:

Func(x)→ SOB(x) (17)

However, differently from fr the sbf system makes no direct reference to agents.

4.2 Ontological description

In this section we provide a more detailed ontological characterization of sbf in
terms of the four relationships that relate:

1. physical components with physical components: PhCompOf
2. physical components with connection points: HasConnPt
3. physical components with functions: HasFunc
4. functions with behaviors: FBCorr

We add relation PhCompOf(x, y), stating that x is a component of (device or
component) y, to make explicit the components’ structure. We also enforce the
existence of a maximal component, namely, the device itself (axiom (20) makes
explicit that the sbf models are contextualized to the chosen device). Then,
we enforce each component to refer to only one larger component so that the
component hierarchy is a tree as requested by sbf:

PhCompOf(x, y)→ PP(x, y) (18)

PhCompOf(x, y)→ PhComp(x) ∧ PhComp(y) (19)

∃x∀y¬PhCompOf(x, y) (20)

PhCompOf(x, y1) ∧ PhCompOf(x, y2)→ y1 = y2 (21)

There is no real difference between components and devices in sbf, thus we
do not introduce a specific predicate for devices. The distinction is a matter of
focus: components are seen as (functional) parts of larger devices. A component
is itself a device from the perspective of any of its subcomponents. Since sbf
always concentrates on a single device, any other element in the modeling is a
component and components can be nested.

Since the notion of connection point (ConnPt) involves the relation of having
a connection point, and HasConnPt(x, y) means that x has y as a connection
point, we can define the former in terms of the latter:

ConnPt(x) , ∃y HasConnPt(y, x) (22)



In turn, it seems that HasConnPt(x, y) is ontologically subsumed by the relation
of parthood:

HasConnPt(x, y)→ PP(y, x) (23)

Note that definition 22 and axioms (6), (7), (9) imply, in dolce system, that
HasConnPt(x, y) → ¬PhComp(y). Since components, and not substances, may
have connection points, we need:

HasConnPt(x, y)→ PhComp(x) (24)

Recall that connection points are features, axiom (9), and that substances are
material (M) or non-physical endurants (NPED), axiom (8), thus it follows from
dolce that connection points and substances are distinct.

To relate physical components with their functions we introduce HasFunc(x, y)
to mean that component x has function y.

HasFunc(x, y)→ PhComp(x) ∧ Func(y) (25)

Func(x)→ ∃y HasFunc(y, x) (26)

PhComp(x)→ ∃y HasFunc(x, y) (27)

As said above, in both sbf and fr functions are derived notions: they select a
“reading” of behaviors, and so (perhaps implicitly) provide the agent’s viewpoint.
The reading is given by selecting the purpose of an entity in a given situation and
by considering the entity’s behavior as the way that purpose is accomplished.
We already stated in (25) that each component in sbf has a function. We can
now state a correspondence (FBCorr) between functions and behaviors:

FBCorr(x, y)→ Func(x) ∧ SysBeh(y) (28)

Func(x)→ ∃y FBCorr(x, y) (29)

FBCorr(x, y1) ∧ FBCorr(x, y2)→ y1 = y2 (30)

Finally, we provide a further characterization of the sbf notion of behavior.
Axiom (31) states that a system behavior is the event sum of the states of
‘behavior start’ and ‘behavior end’ plus the transition event between them (the
sum is ordered since they have a temporal dimension). Axiom (32) states that
these system behaviors are uniquely identified by their input and output states.

SysBeh(x)→
∃y, v, z [BehStart(y, x) ∧ BehEnd(v, x) ∧ Transition(z) ∧ x = y + z + v](31)

(BehStart(x, z1) ∧ BehEnd(y, z1)) ∧ (BehStart(x, z2) ∧ BehEnd(y, z2))→
z1 = z2(32)

Note that the transition (an event in dolce) is naturally directed from the initial
state to the ending state and provides the information on how the state change
happens, that is, it also includes the causal explanation(s) requested by sbf.



Further formal characteristics. Our ontological characterization of sbf has
modeled the explicit ontological aspects of sbf. Below we characterize some key
sbf notions in more detail, but this is rather an extension than an explication.

Since PhCompOf is subsumed by the relation of parthood, following [6] we
assume that it is a (strict) partial order:

¬PhCompOf(x, x) (33)

PhCompOf(x, y) ∧ PhCompOf(y, z)→ PhCompOf(x, z) (34)

Furthermore, while the system seems to be extensional, it is unclear whether
the mereological reconstruction of these notions requires more specific principles
like, e.g., strong supplementation [13, p. 29].

We know that PhComp and HasConnPt are related via axiom (24), but there
seem to be an implicit relationship among them stating that each physical com-
ponent has at least one connection point:

PhComp(x)→ ∃y HasConnPt(x, y) (35)

Together, they amount to the following equivalence which is easily justified
within the engineering perspective:

PhComp(x)↔ ∃y HasConnPt(x, y) (36)

Another implicit assumption seem to bind connection points to unique bearers:

HasConnPt(x1, y) ∧ HasConnPt(x2, y)→ x1 = x2 (37)

5 Conclusions

We have studied the concepts underlying Goel’s sbf model and proposed a
formalization of the system within the dolce foundational ontology. The for-
mal characterization of the sbf concepts aimed to cover three key elements:
structure, behavior and function. The analysis and the subsequent formalisation
show that notions like component, substance and connection point, are only par-
tially characterized and that further information should be collected from other
sources, for instance by directly analyzing sbf software packages on component
and functional information. We have not investigated this type of material here.

While there are strong connections between the sbf and fr models of func-
tion, our analysis shows some important differences which have not been high-
light in the literature. The notion of function in sbf does not admit a direct
dependence on agents as in fr and, while remaining compatible with the latter,
seems to carefully introduce a framework where agents have no explicit role.
Furthermore, sbf introduces a short list of functions, showing that function
classification is relevant for the framework, but does not include the general dis-
tinction between device-centric and environment-centric functions which is at
the core of the fr model. Finally, sbf provides the tool for a mereological de-
scription of the structure of devices by introducing components and connection



ports, while fr focuses mainly on the relations between the devices and their
environment.

With this analysis and formalization we are now in the position to formally
compare the sbf concept of function with other engineering concepts of func-
tion and to extend the means for interoperability across engineering functional
descriptions of technical artifacts based on different concepts of function. This
will be a subject of future research.

References

1. Borgo, S., Carrara, M., Garbacz, P., Vermaas, P. E., (2009), “A Formal Ontolog-
ical Perspective on the Behaviors and Functions of Technical Artifacts”, Artificial
Intelligence for Engineering Design, Analysis and Manufacturing, 23 (1), 3-21.

2. Borgo, S., Carrara, M., Garbacz, P., Vermaas, P. E., (2011), “A Formalization of
Functions as Operations on Flows”, Journal of Computing and Information Science
in Engineering, 11, 031007-031020.

3. Borgo, S., and Leitão, P., (2007), Foundations for a Core Ontology of Manufacturing,
in Ontologies: A Handbook of Principles, Concepts and Applications in Informa-
tion Systems, Integrated Series in Information Systems Vol. 14, ed. by Kishore R.,
Ramesh R., Sharman R., Springer, New York, pp. 751-776.

4. Bylander, T., (1991), “A Theory of Consolidation for Reasoning about Devices”,
Man-Machine Studies, 35, 467-489.

5. Carrara, M., Garbacz, P., Vermaas, P. E., (2011), “If Engineering Function is a
Family Resemblance Concept: Assessing Three Formalization Strategies”, Applied
Ontology, 6 (2), 141-163.

6. Casati, R., Varzi, A. C., (2003), Parts and Places: The Structures of Spatial Rep-
resentation, MIT Press, Cambridge, MA.

7. Chandrasekaran, B., (2005), “Representing Function: Relating Functional Repre-
sentation and Functional Modeling Research Streams”, Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, 19 (2), 65-74.

8. Chandrasekaran, B., Josephson, J. R., (2000), “Function in Device Representation”,
Engineering with Computers, 16 (3/4), 162-177.

9. Garbacz, Borgo, S., Carrara, M., Vermaas, P. E., (2011), “Two Ontology-Driven
Formalisations of Functions and Their Comparison”, Journal of Engineering Design,
22, 733-764.

10. Goel, A. K., Rugaber, S., Vattam, S., (2009), “Structure, Behavior, and Function
of Complex Systems: The Structure, Behavior, and Function Modeling Language”,
Art. Intelligence for Engineering Design, Analysis and Manufacturing, 23 (1), 23-35.

11. Goel, A. K., (2013), “One Thirty Year Long Case Study; Fifteen Principles: Im-
plications of an AI Methodology for Functional Modeling”, Artificial Intelligence
for Engineering Design, Analysis and Manufacturing, 27 (3), 203-215.

12. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A., Schneider, L.,
(2002), WonderWeb Deliverable D18. Ontology Library (final), WonderWeb Euro-
pean Project, 2003. http://wonderweb.man.ac.uk/deliverables/documents/D18.pdf

13. Simons, P., (1987), Parts: A Study in Ontology, Oxford University Press, Oxford.
14. Stone, R., Wood, K., (2000), “Development of a Functional Basis for Design”,

Journal of Mechanical Design, 122 (4), 359-370.
15. Vermaas, P. E., Eckert, C., (2013), “My Functional Description is Better!”, Arti-

ficial Intelligence for Engineering Design, Analysis and Manufacturing, 27, 187-190.


