
Models@run.time for Object-Relational
Mapping Supporting Schema Evolution

Sebastian Götz and Thomas Kühn

Institut für Software- und Multimediatechnik
Technische Universität Dresden, Germany,

D-01062, Dresden, Germany
sebastian.goetz@acm.org, thomas.kuehn3@tu-dresden.de

Abstract. Persistence of applications written in an object-oriented lan-
guage using a relational storage system has been investigated for a long
time [4]. In this paper, two problems of current approaches to object-
relation mapping are addressed. First, their high configuration effort,
and second, their lacking support for continuous development. To ad-
dress these problems, we introduce a novel object-relational mapping
approach, that uses a runtime model of the system. The runtime model
is utilized in two ways. First, to derive mapping information from the
runtime state of the application, that usually has to be provided by de-
velopers. Second, to allow for lossless application schema evolution. That
is, we present an approach, that reasons about design time and runtime
information to relieve developers from configuration details of the object-
relational mapping and show how to utilize the same information to allow
for continuous schema evolution of applications.

Keywords: object-relational mapping, object-roles, schema evolution

1 Introduction

The transformation of domain objects between object-oriented systems and re-
lational databases has been investigated for a long time, resulting in industry-
wide accepted standards for object-relational mappers (ORM), like the Java
Persistence API (JPA). In consequence, software engineers got a sophisticated
abstraction layer for persistence. Common ORM relieve software engineers from
manually creating database schemata, but instead derive the relational from the
object-oriented schema.

In this paper, two problems of current approaches to object-relation mapping
are addressed. First, their high configuration effort, and second, their lacking
support for continuous development.

The high configuration effort is due to the lack of taking runtime informa-
tion into account for the automated mapping. Current ORMs either use con-
figuration files or annotations to specify, which classes and attributes have to
be persisted in which way. Both approaches only refer to the object-oriented
schema of the application, but do not take runtime information into account.

This runtime information can, e.g., reveal the cardinality of an N:M collection.
Another example, is the approach to be used for mapping inheritance to the
relational schema. Which approach is best, depends on how many objects exist
or are instantiated for which classes in the hierarchy. Current ORM require the
developer to provide such additional information about the expected runtime of
the application.

In other words, ORMs do not support a continuous development process.
Changes to the schema of an application typically lead to the loss of data col-
lected during running older versions of the application. This imposes additional
efforts on the developers during continuous development, because for each new
version of the application, they either have to manually update the database
schema or to backup and migrate the data from the old to the new schema.

Thus, this paper aims at a novel approach to object-relational mapping, based
on the models@run.time paradigm, (i) to use runtime information in addition to
design time information to automatically infer the relational schema and (ii) to
support lossless schema evolution.

The paper is structured as follows. In the next section related work is out-
lined, followed by the main concepts of our approach in Sect. 3. We conclude the
paper in Sect. 4.

2 Related Work

Object-relational mapping is a well discussed research topic [4]. The Java Per-
sistence API, part of the EJB 3.0 specification from JSR 220, forms a standard
for object-relational mappers in the context of Java. Many implementations of
this standard exist, for example Hibernate1. Ports of these approaches to the
.NET environment — for example NHibernate2 — and further approaches, like
Microsoft’s Entity Framework exist. Current object-relational mappers provide
transparency to the developers by relieving them of specifying the database
schema manually. Instead developers write configuration files or annotate their
code to describe, which classes have to be mapped in which way to the database.
Some information, like the type of an attribute, is extracted by static code in-
spection to keep the configuration files lean. Nevertheless, not all mappings can
be derived using static code inspection. For example, the kind of a relationship
between two classes referencing each other (1:N vs N:M) or the optimal map-
ping of an inheritance hierarchy (table per class, table per hierarchy, ...) with
regard to the trade-off between data redundancy and performance. Our approach
utilizes runtime information of the application (i.e., knows about the dynamic
object structure) to derive further mapping information, like the two examples
described above.

Beside frameworks for object-relational mapping, object-relational DBMS
(ORDBMS) [8] (e.g. PostgreSQL) have been developed. They offer a rich query-
ing language and allow to store data in complex, object-oriented structures.

1 http://www.hibernate.org
2 http://www.nhforge.org

Many concepts of ORDBMS have been incorporated into SQL99, that is sup-
ported only partially by major DBMS. Oracle, IBM, Microsoft and Sybase sup-
port (parts of) SQL99 with varying degree (e.g., Sybase ASE does not support
table inheritance).

Schema evolution is another well discussed research topic. We address a spe-
cial kind of schema evolution, namely co-evolution of object-oriented applications
and their generated database schema, which has rarely been discussed. MeDEA
[3] is an approach using manual specifications of how application schema changes
are translated into database schema changes. In [9] changes to the application
are reflected as changes of the mapping between applications and storage, which
allows for automatic co-evolution. Our approach uses change descriptions to
build the required select, insert and update queries to store and restore ob-
jects. Removals and complex changes (e.g., rename, move, ...) are handled by
our approach without affecting the database. Only additive changes (added at-
tributes, classes, etc.) are applied to the database schema. In consequence, time-
consuming changes, like splitting a class, are not propagated to the storage.
Instead the change descriptions are used to translate between application and
storage schema. Hence, our approach shifts performance penalties from change
to data access time. If part of the data is accessed frequently, our approach al-
lows persisting the changes affecting that data. Nevertheless, the focus of this
paper with regard to schema evolution is on using change descriptions to avoid
or postpone time-consuming propagation of application changes to the storage
by generating the required queries based on the change descriptions. In [5], a
language for systematic database evolution is presented. This approach allows
to systematically evolve the database including its data. Approaches to auto-
matically evolve database queries such as Prism [2] exist, too. Such approaches
provide means to evolve queries in accordance to changes in the database schema.
Contrarily, queries in our approach evolve in accordance to changes in the ap-
plication schema. Moreover, we generate queries, whereas approaches like Prism
focus on the evolution of manually written queries.

In summary, open challenges for object-relational mapping are (i) effective
means to reduce the configuration efforts and (ii) means to handle lossless schema
evolution to support continuous development. How we addressed these two chal-
lenges is described in the succeeding section.

3 Concepts

For our object-relational mapping approach based on models@run.time with
support for schema evolution, we propose a novel architecture as depicted in
Figure 1. The principle idea is to enrich applications at load time with code
that exposes the existence and state of all objects subject to persistence. By
this, in addition to schematic information, the application’s runtime state can
be covered in a runtime model, that is used to derive configuration information.

The process, as depicted in Figure 1, comprises 5 steps.

Prolog

Persistence
Manager

Bytecode
Transformer

DB
Prolog

fact base

Runtime

Running
Application

Startup

Original Application

Sublimated Application

1

2
3

4
5

Fig. 1. Overview of Architectural Parts and their Connection.

(1) The application is transformed by a Bytecode Transformer that is intro-
ducing an explicit persistence-related event stream by weaving notification
calls into the application.

(2) The transformer additionally inspects the applications schema and translates
it to a Prolog fact base, dedicated to schema information (schema fact

base). When a new version of the application is started, schema changes
are identified by the transformer and are noted in that fact base, too. Using
Prolog we are able to derive further information, like the transitive closure
of inheritance hierarchies, using logical rules.

(3) If the developer decided to persist application schema changes, adjustments
to the database are triggered at load time.

(4) Whenever the value of an attribute is changed or a new object is instanti-
ated, e.g., in a constructor or in getter and setter methods, it will notify the
Persistence Manager that keeps a runtime model of the current applica-
tion’s state in form of a Prolog fact base (runtime fact base).

(5) The Persistence Manager furthermore provides means to store, search and
restore domain objects. All these activities force the Persistence Manager

to connect and communicate with the database. When the Persistence

Manager connects to the database for the first time, it creates the complete
database schema. Otherwise only changes are applied or change descriptions
are added.

For example, as depicted in Figure 2, imagine the concept Student in a uni-
versity management system. During development, such a concept is likely to
change often. In a first version, the class Student associated to persons com-
prises the attributes studentID, address and curSemester, which denotes the
current semester of the student. The class Person contains the attribute name.
The next development iteration leads to the removal of address, due to pri-
vacy constraints, and the addition of the attribute birthday. The corresponding
change operations are denoted as facts in the schema fact base, shown in the
right upper side, too.

Thus, the four major architectural parts of our approach are the Bytecode

Transformer, the Persistence Manager, the runtime and the schema fact

base. Figure 3 depicts the interconnection of these parts and the Prolog fact
bases, defined by five steps, which will be described in the following.

Sublimate. Persisting domain objects of applications means to store a snapshot
of the application in the database. To derive such a snapshot all domain objects
need to unfold their state. For that purpose the implementation of all annotated
classes is enriched with additional code, so every change of an attribute is sig-
naled as an event at runtime to the persistence manager. The creation of objects
is signaled as an event, too. Thus, the implicit dataflow in the application is
made explicit in form of an event stream. Technically, event notifications are
realized as method calls, which are woven into constructors and after attribute
assignment statements3. The listener to these events will be described in step
Trace. The bytecode transformer has been implemented as a Java agent, that
permits class modifications at load time, using the Javassist library [1] to analyze
bytecode and to insert statements.

Extract and Compare. At load time of the application’s classes, their schema is
extracted to the schema fact base. If no previously extracted fact base exists,
the schema will be extracted completely, whereby the existence of each class and
attribute is noted as a separate fact. The relations between classes by inheritance
and delegation are noted as predicates, too.

3 e.g., this.message = "Hello" fires a valueChanged event for the message attribute

Person

name

Person

name

Student

name studID curS.

Egon 1 4

Alex 2 2

Paul 3 7

- address

+ birthday

Student

studentID
curSemester
address

Student

studentID
curSemester
address
birthday

removedAttr(Student,

address)

addedAttr(Student,

birthday)

CRUD

add.

Berlin

Ulm

Sost

Student

name studID curS.

Egon 1 4

Alex 2 2

Paul 3 7

add.

Berlin

Ulm

Sost

birth.

null

null
null

Fig. 2. Schema Evolution Example.

1 Sublimate 2 Compare

3 Adjust4 Trace

5 React runtime schema

Fig. 3. Cycling Steps of our Approach with Fact-Base Connection.

If a formerly extracted schema already exists at application startup, the facts
are compared. That is, for every fact which is extracted from the new schema its
existence will be checked. If the fact already existed, there has been no change
to this part of the structure. If the fact does not exist, it has either been changed
or removed. It is not always possible to determine, whether the fact has been
removed or changed. Facts of attributes can be changed in three ways: altering
their type, their name or both. If only the type has been changed, the change can
be identified by the name of the attribute, which needs to be unique for the class.
This does not work, if the name has been changed. The root of these problems
is, that the intention of the developer cannot be reconstructed. It might be,
that the developer removed the old attribute and added a new one of the same
type or he removed an old attribute and added a new one with a different type,
but the same name. The same holds for facts about the existence of classes.
Thus, changes to facts are recognized as removals and additions. By default
the name will be used to identify changes. To cover the developers intent, we
provide annotations (@Renamed(old), @Moved(old) and @SplittedClass(old)

to name but a few), that can be used by the developer to demarcate changed
methods from newly added ones and thereby expressing the semantic correlation
of corresponding removals and additions. To relieve the developer from explicitly
stating his intent, the refactoring log of the used development environment could
be used for that purpose as, for example, shown in [7].

The information derived from the comparison needs to be noted, too. This is
because either the database schema (if the developer decided to persist changes)
or queries against that schema need to be adjusted to the changed application
schema, as will be described in the Adjust step.

Changes to the application are collected until the developer decides to com-
mit them, i.e., removed attributes, classes, roles and so on are not removed
from the database until the developer decides to apply the changes in a non-
recoverable manner by marking the application as a milestone. At the next
application startup all changes aggregated in the schema fact base are applied
to the database schema. Additive changes to the application schema (new class,
attribute, role, ...) are immediately applied to the database schema.

Leaving columns of removed attributes in the database schema could lead
to problems, if for example, an attribute of the same name is added to the
same class or (in case of table per hierarchy mappings) any subclass of it. Our

approach avoids such problems, because the fact, that there was an attribute
that has been removed, is stated in the schema fact base and, thus, can be taken
care of, e.g., by (internally) using a different name for the new attribute.

Adjust. As all changes can be seen as additions, removals or combinations of
both, the fact base is extended with facts, representing the changes in this way.
This knowledge enables to react to changes at runtime in a flexible way. When
restoring objects, the projection of the respective select queries has to be ad-
justed. Storing objects requires default values for removed attributes. For exam-
ple, knowing, that an attribute has been removed, is reflected by removing it
from the projection part of all related select queries and adding a default null
value for the removed attribute, when storing the object. Splitting a class C into
C1 to CN leads to new select queries, that project only attributes required by
each new class, respectively. Storing objects is reflected by N insert statements,
one for each Ci.

The addition of classes leads to the extension of the corresponding relational
schemata. The removal of them does not lead to their deletion from the database
schema. They will be kept in the database, like attributes, until the developer
marks the application version as milestone release.

Trace. As described before, the implicit dataflow is transformed into an explicit
event stream, capturing the state of the domain objects and their life cycle.
Furthermore, schema information is noted in the schema fact base. This way
design and runtime information is available for static and dynamic structure
analysis. In consequence, lots of information, that usually has to be provided
in configuration files, can be derived using logical rules like, e.g., multiplicities
of relationships (1:1, 1:N or N:M) or an optimal mapping of an inheritance
hierarchy for the current data. We will illustrate this by example in the following
paragraph.

Consider a class StudentGroup, referencing a collection of students. Class
Student declares a reference to the group. Whether a student can be a member of
more than one group is “hidden” in the code to manage the collection. Depending
on the kind of relationship (1:N vs. N:M) a different relational mapping is used.
The more general case leads to a separate relation pointing to Student and
StudentGroup, whereas else only a column is added to Student, pointing to
the StudentGroup. To detect the kind of relation one can look at the dynamic
object structure. Two instances of Student pointing to the same StudentGroup

indicate an N:M relation. This approach requires a set of objects to analyze,
which might not exist when the system is started. Hence, if not enough data
is available to defer valuable information from the dynamic object structure,
the more specific case is used in the first place. In particular, in the example
above, only an additional column is added to class Student. If it turns out later,
that the system allows for the more general case, the mechanism for schema
evolution of the approach is utilized. That is, the required table for the mapping
of students to groups and vice versa is added, but the data is not migrated. The
additional column remains in the table for class Student. The runtime utilities

take care of accessing the mapping relation, handling new mappings and editing
existing ones by generating the corresponding queries appropriately.

A further benefit of having static and runtime information as Prolog fact
base is, that it allows for automatic normalization. To normalize a schema, its
functional dependencies need to be identified. For this purpose, more than just
the schema is needed, but runtime information, too. Unfortunately, fully auto-
matic normalization of real-world schemata is very time-consuming. For exam-
ple, classes, having 20 or more attributes, have an enormous amount of possible
functional dependencies4, that have to be evaluated. Optimizations to the nor-
malization algorithm allow deriving the normalized schema with limited memory
space and in shorter time, but still the required processing time is far away from
viable usage at runtime.

React. This final step contains the listener of the event stream from the step
Sublimate. Besides forwarding the events to the trace utility, described in the
previous step, it provides utilities to store and restore domain objects.

When an object is to be stored, can be chosen from a set of persistence strate-
gies by the developer. They effect data consistency in multi-user environments
as well as transactional security in terms of checkpoints:

1. Manual — the developer proactively handles transactions
2. Application Level — all objects are stored at application shutdown
3. Instance Level — all objects are stored, whenever a new object is instantiated
4. Value Level — single objects are stored, whenever one of its values is changed

First, the developer may manually invoke the store-process. In other terms,
he proactively commits a transaction. The transformer injects this method, if
the developer annotated a method for that purpose. The other three strategies
weave this call into the appropriate places, e.g. into the handler of value changes
for value-level persistence.

Second, with application level persistence all objects are only stored, when
the application shuts down. This leads to the lowest runtime-penalties, because
there is no database interaction while the application is running. In contrast,
multiple users working concurrently on the same data do not see each others
changes until they restart the application. Hence, data consistency cannot be
ensured. A transaction in this strategy is of little use, as it spans the time from
startup to shutdown of the application. Hence, the user has only two checkpoints
during his work, which in case of a system crash leads to the loss of all changes
since the application has been started. Notably, storing all objects does not need
the data to be fully available in main memory. This is because the fact bases
containing the data are (text) files and iteratively storing each single object (or
groups of them) requires only part of them to be held in main memory.

Third, instance level persistence updates the database, whenever a new ob-
ject is instantiated. Multiple users, working concurrently on the same data, see

4 Each subset of the 20 or more attributes may functionally depend on each other
subset of the 20 or more attributes.

course-grain changes of each other. Also course-grain transactions are supported.
That is, checkpoints exist, whenever an object was created. This comes for the
cost of lower application performance, because now the application interacts
with the database while the application is running.

Finally, value level persistence is the most fine-grained strategy. Whenever a
value is changed, this change will be reflected in the database, leading to high
performance penalties, but fine-grained multi-user support and transactional
security. To restore objects a search mechanism is required. That is, a query
language like RSQL [6] is needed to search for objects to be restored.

The reconstruction of found objects is technically challenging, which is mostly
due to the absence of explicit setter methods for all attributes of a class. The
bytecode transformer weaves in special constructors and setters for that purpose.

In summary, our approach reduced the configuration efforts for developers
by collecting static as well as runtime data of the application in Prolog fact
bases to derive information about the dynamic structure, which else has to be
provided by the developer. Our approach allows for application schema evolution
by using change descriptions to generate the required select, update and insert
queries. The only changes, that need to be directly propagated to the database
are additive changes, posing no problem to the majority of RDBMS.

4 Conclusion

We presented a novel approach for object-relational mapping. We reduced the
configuration efforts for developers by extracting the application schema and,
using bytecode transformations, the dataflow of the application’s domain ob-
jects into Prolog fact bases, that allow to reason about the static and runtime
structure of the application. Support for schema evolution is achieved by using
change descriptions to generate the required queries to store and restore ob-
jects. This shifts performance penalties from change time to data access time. In
consequence, changes to those parts of the schema defining frequently accessed
data can become performance bottlenecks. To handle such cases, our approach
utilizes (existing) mechanisms to persist changes (i.e., applies the changes to the
database schema).

As future work, the practicality and scalability of the approach have to be
investigated using case studies. Moreover, an empirical analysis to decide when
schema changes should be persisted and until when the overhead due to not
persisting the changes is acceptable, should be conducted.

Acknowledgments

This work is funded by the German Research Foundation (DFG) within the
Research Training Group “Role-based Software Infrastructures for continuous-
context-sensitive Systems” (GRK 1907) and in the Collaborative Research Cen-
ter 912 “Highly Adaptive Energy-Efficient Computing”.

References

1. S. Chiba. Javassist — a reflection-based programming wizard for java. In Proceedings
of the ACM OOPSLA’98 Workshop on Reflective Programming in C++ and Java,
1998.

2. C.A. Curino, H.J. Moon, and C. Zaniolo. Graceful database schema evolution: the
prism workbench. Proceedings of the VLDB Endowment, 1:761–772, August 2008.

3. E. Dominguez, J. Lloret, A. Rubio, and M. Zapata. Evolving the implementation
of isa relationships in eer schemas. In Advances in Conceptual Modeling - Theory
and Practice, volume 4231 of Lecture Notes in Computer Science, pages 237–246.
Springer Berlin / Heidelberg, 2006.

4. R. Elmasri and S. B. Navathe. Fundamentals of Database Systems, 5th edition.
Addison-Wesley, 2007.

5. Kai Herrmann, Hannes Voigt, Andreas Behrend, and Wolfgang Lehner. Codel - a re-
lationally complete language for database evolution. In Proceedings of the 19th East-
European Conference on Advances in Databases and Information Systems (ADBIS),
2015.

6. Tobias Jäkel, Thomas Kühn, Hannes Voigt, and Wolfgang Lehner. Rsql - a query
language for dynamic data types. In Proceedings of IDEAS, pages 185–194, New
York, NY, USA, 2014. ACM.

7. Ilie Savga, Michael Rudolf, and Sebastian Götz. Rigorous and practical refactoring-
based framework upgrade. In Proceedings of 7th International Conference on Gen-
erative Programming and Component Engineering (GPCE’08), 2008.

8. M. Stonebraker, D. Moore, and P. Brown. Object-Relational DBMSs: Tracking the
Next Great Wave. Morgan Kaufmann, San Francisco, 1998.

9. J. Terwilliger, P. Bernstein, and A. Unnithan. Automated co-evolution of conceptual
models, physical databases, and mappings. In 29th International Conference on
Conceptual Modeling (ER 2010), volume 6412 of Lecture Notes in Computer Science,
pages 146–159. Springer Berlin / Heidelberg, 2010.

