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Abstract: 
 
In computer assisted liver surgery, the use of pre-operative 3D computer tomography (CT) images provides basic orien-
tation and valuable information about the patient liver. During the surgical intervention, the accuracy of this informa-
tion is reduced by motion and deformation of the organ. The fusion of intra-operative ultrasound (US) imaging with the 
pre-operative data is the next step in order to improve this situation. As pre-requisite, the identification of correspond-
ing structures in US and CT (such as blood vessels) is required. Within this paper, the integration of an ultrasound ves-
sel segmentation algorithm in a navigation system for liver surgery is presented. Initial results obtained on patients un-
dergoing liver resection are evaluated. 
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1 Problem 

Intra-operative ultrasound imaging is used during surgical interventions on the open liver, providing real-time informa-
tion about the organ inner structure. Moreover, new tumors may be detected and the surgical intervention shall eventual-
ly be adapted on site. Within our navigation system for liver surgery [1], [2], surgeons are provided with the pre-
operative 3D images, navigated US imaging and a set of optical trackers for the navigation of standard surgical tools. 
During the surgical intervention, the accuracy of the pre-operative images is reduced due to motions and deformations 
of the liver. Thus, updating the pre-operative images with the 3D information obtained from US imaging is an important 
step towards an increase of the navigation system accuracy.  
 
Registration of CT images with US imaging is usually performed by detecting corresponding features in both data 
types. A non-rigid transformation can then be computed and applied onto the CT images like in [3]. The most obvious 
common features between CT- and US- images are liver vessels. They are easily segmented pre-operatively in the CT 
images, whereas the segmentation of vessels in US images is more challenging as these images have a low signal-noise 
ratio. Furthermore, it is strongly desirable that the segmentation happens in real-time in order to provide surgeons with 
direct feedback on the quality of the acquired US information. Several groups have reported on US segmentation algo-
rithms in liver surgery [4] but most of them focused on tumor detection. Recently, [5] showed an algorithm for vessel 
segmentation and tracking, which requires an initial manual segmentation to start. A dynamic texture approach was pre-
sented in [6]. Good segmentation results are reported but again, user intervention is required for tissue classification. In 
[7] a vessel segmentation algorithm was developed and tested on several porcine livers under isolated perfusion. This 
segmentation algorithm gave promising results both in terms of efficiency and computational time and does not require 
user interaction. Within this paper we present the integration of this segmentation algorithm in our navigation system 
and the initial results of its use in real conditions.  
 
 
2 Methods 

A. Navigation System and Ultrasound Device 

The surgical navigation system is built as a transportable setup containing an NDI Vicra Camera (Northern Digital Inc, 
Canada), an integrated Terason T3000 ultrasound system with an 8IOA intra-operative probe (Teratech Corporation, 
USA) and a Shuttle barebone PC (Shuttle Inc, Taiwan) with a touch-screen monitor (ELO Touchsystems, USA). In-
strument tracking is enabled by a navigation toolset composed of adapters to the existing surgical tools (CUSA, ablation 
devices, US probe) and a pointer calibration unit. 
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B. Workflow 

Before each navigated liver surgery, pre-operative tri-phase CT data was processed by MeVis Distant Services. The 
MeVis analysis provides segmentation of all the important structures (vessels, tumors, surface) as well as several resec-
tion proposals. The resulting 3D models are evaluated by the surgeons and appropriate visualization models are selected 
and loaded into the navigation system.  
 
The navigated surgery starts by an initial rigid registration of the liver. Four landmarks are manually defined on the vir-
tual liver model. Then, the tip of the CUSA is calibrated with the pointer calibration unit. Using the CUSA tip, the 
surgeon points the four manually defined landmarks on the real liver, which are automatically recorded by the naviga-
tion system. Through the alignment of these two point sets, initial rigid registration is obtained. 
 
In a second stage, US images are acquired and segmented in real-time. The US probe is pre-calibrated using an US cali-
bration unit pre-operatively [8]. Using the probe, vessels are traced by the surgeon. The obtained segmentation and im-
ages are recorded with the corresponding position tracking information for further data analysis.  

C. Vessel Segmentation 

The vessel segmentation algorithm is based on the approach proposed by Dagon in [7] may be shortly described as: 
 

1. Vessel image mask generation 
2. Vessel seed point detection 
3. Vessel approximation using an elliptical model 
4. Outliers removal 

 
The vessel mask generation starts with a scale-space blob detection [9], which is performed by generating scale-space 
images Il with eight different scale levels Sl using a Gaussian Kernel of: 
 
 (1) 
 
The pixel intensities of the scale-space images are then summed in a scale-space map IMap with the following equation: 
 

(2) 
 
 
Thus, dark features in the US image that present a large scale-space lifetime are enhanced. A binary threshold tsc is then 
applied on the scale-space map to obtain the features binary mask IMask.  
 
The features mask is then cross-correlated with a binary circular mask of radius rc and normalized. A threshold tcorr is 
applied on the obtained image and a connected component labeling algorithm is run in order to identify the highest in-
tensity pixel in each region, which is then labeled as seed point.  
 
To approximate the blood vessel, an elliptical model is applied. To detect the vessel border, rays are regularly casted 
around the seed point on the initial scale-space mask IMask. The edge points are detected at the first value change in the 
ray intensity profile. The edge points are then used to initialize a direct least square ellipse fitting algorithm [10], [11].  
 
Finally, outliers are filtered by defining minimal and maximal ellipse axes ratio and axes average length.  
 
The C++ implementation of the segmentation algorithm was based on the code provided by Dagon [7] which was im-
proved by adding outlier removal in the vessel seed point detection step and by integrating a region of interest (ROI) 
provided by the direct interface to an US imaging device (described in Section 2.D)   

D. Software integration 

The segmentation algorithm was integrated into our navigation software [1],[2]. In this way, the segmentation is applied 
in real-time onto the images generated by the US probe. The obtained segmentation is visualized in both the 2D US im-
age and in the 3D world viewer. A touch-screen user interface was developed for easy use in the operation room envi-
ronment. The user can switch the segmentation algorithm on and off, change segmentation parameters and record both 
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US images and the obtained segmentation
ters respective influences (Fig. 1). The whole sequence can be loaded and segmented 
rameters.  

  Fig. 1: Navigation software: On the left side, the user interface 
mentation algorithm (original image, 
side, the 3D view shows the pre

E. Validation 

A validation application was developed for the result analysis. The recorded 
tained automatic vessel segmentation centers. 
correct, wrong (false positive) or missing
center classification. 

 
 Fig. 2: Typical vessel detection produced by the vessel segmentation a

are correct (+) and one is wrong

3 Results 

About 2’200 images (300x430 pixels) were recorded and segmented 
in Bern, Switzerland. The US probe parameters
values. The average time to process one image 
subsets including a total of 538 images 
ters. Table 1 and 2 present the results obtained with 
est: 193x371 pixels. 
  

d segmentations. The segmentation steps can be visualized to better understand the param
The whole sequence can be loaded and segmented again 

: On the left side, the user interface in detailed mode displays each step of the se
original image, ROI, scale-space, correlation, seed points, ellipse fitting)

pre-operative image, tracked US probe and the segmentation (yellow).

developed for the result analysis. The recorded US images are 
vessel segmentation centers. The user then manually defines whether the detected vessel centers are 

or missing (Fig. 2, right). The application then outputs the total number of each vessel 

Typical vessel detection produced by the vessel segmentation algorithm (left). Two segmented vessels 
and one is wrong (x) (right). 

were recorded and segmented during one surgical intervention at the Inselspital 
parameters for brightness, contrast and time gain control 

time to process one image was 70ms, which resulted in a frame rate of 7 frames per second. 
images were selected for post-operative analysis with optimized segmentation param

obtained with the parameters: tsc = 65, rc = 10 pixels, tcorr

The segmentation steps can be visualized to better understand the parame-
again later with different pa-

displays each step of the seg-
space, correlation, seed points, ellipse fitting). On the right 

probe and the segmentation (yellow). 

are loaded again with the ob-
detected vessel centers are 

. The application then outputs the total number of each vessel 

left). Two segmented vessels 

during one surgical intervention at the Inselspital 
brightness, contrast and time gain control were set to the default 
70ms, which resulted in a frame rate of 7 frames per second. Six 

ive analysis with optimized segmentation parame-
corr = 0.01, Region of Inter-
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 Processed images Expected vessel centers Correct centers Missing centers 
Set 0 109 551 250 301 
Set 1 42 107 55 52 
Set 3 147 463 223 240 
Set 6 73 265 73 192 
Set 10 13 26 22 4 
Set 12 154 408 278 130 

Table 1: Amount of correct- and missing- centers compared to the number of expected vessels. 

 
 Processed images Vessels detected Correct classification Wrong classification 
Set 0 109 374 250 124 
Set 1 42 158 55 103 
Set 3 147 421 223 198 
Set 6 73 228 73 155 
Set 10 13 25 22 3 
Set 12 154 295 278 17 

Table 2: Amount of correct- and wrong- centers compared to the number of detected vessels. 
 
The average value of correctly classified vessels is 60.03%. The average number of missing vessels per frame is 1.7 and 
the average value of wrongly classified vessels per frame is 1.1. 

4 Discussion 

The number of missing vessels per frame is relatively high and is mainly caused by small vessels. When the threshold 
value tsc is set to a low value, small vessels are better detected but the amount of wrongly classified vessels from image 
noise increases as well. Wrongly classified vessels come from homogeneous noise regions in the images and from arte-
facts lying under the liver borders as illustrated in Fig. 2. When comparing our results with the ones presented by Dagon 
[7], we see improved outcomes in the amount of correctly segmented vessels (40% by Dagon, 60% in this work). How-
ever, the results are not directly comparable as different image data and slightly different validation methodologies were 
used. The images used herein were acquired in real surgery on human patients where Dagon used an ex-vivo porcine 
liver specimen under isolated perfusion. The validation approaches differ in that the distance between the manual and 
automatic segmented vessel centers was not considered for the vessel classification within this work. The higher com-
putation time of 70ms vs 25ms in this work can be explained by the larger size of the US images used with the Terason 
imaging device and the added load due to the visualization of the segmentation steps as shown in Fig. 1.  
 
As we aim to use the segmentation results for intra-operative registration, a further reduction of wrongly classified ves-
sels is desirable. This should be partly solved by detecting the lower organ borders. Another way for reducing wrongly 
classified vessels is to use the 3D position information of the segmented vessels in the prior images to predict their posi-
tions in the next frame. In general, the large number of segmentation parameters made it difficult to obtain a good seg-
mentation while in the operating room. Reducing their number or an automatic adjustment of some parameters might 
solve this issue. 
 
Another effect observed when comparing the segmentation results from different acquisitions is the high sensitivity to 
the US image quality. We believe that by adjusting the US imaging parameters, in particular brightness, contrast and 
time gain control, the number of missing vessels per frame should decrease. The development of the vessel-based regis-
tration methods will show whether a reliable detection of large vessels or detection of smaller vessels with higher error 
rate are preferable.  
 
Finally, the computation time of 70ms per frame is not yet acceptable for a real-time application. Considering that there 
should be more processing for the registration afterwards. This should be improved by code optimization and/or using 
GPU computing or multi-threading. 
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