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Abstract

We propose a security price data cleaning
technique based on Reynold’s decomposi-
tion that uses T0 (the time period of inte-
gration) to determine the de-noise level of
the price data. The goal of this study is to
find the optimal T0 that reveals an under-
lying price trend, possibly indicating the
intrinsic value of the security. The DJIA
(Dow Jones Industrial Average) Index and
the thirty companies comprising the in-
dex are our fundamental interest. Pre-
liminary results suggest that the graphs of
↵ (a key percentage measure) versus T0

of the thirty companies and the DJIA In-
dex exhibit at least two properties: (1) ↵
drops exponentially as T0 increases when
T0 / order of magnitude of 100 days, and
(2) ↵ drops linearly as T0 increases when
T0 ' order of magnitude of 100 days. For
the DJIA Index itself, T0 is less than order
of magnitude of 100 days. The result of
applying our technique to each component
stock of the DJIA parallels the result of the
technique applied to the DJIA Index itself.

1 Introduction

Understanding and analyzing financial data in or-
der to forecast and make cost-effective decisions
is challenging because of the complex and volatile
nature of security prices. The most recent finan-
cial market meltdown in 2008-09 casted doubts
on financial data analysis and forecasting. In-
ability to recognize or acknowledge financial dis-
tress signaled by pertinent financial data was a sig-
nificant factor leading to these catastrophic eco-
nomic results (Kaur, 2015). Thus, veracity of fi-
nancial data takes priority in any data driven deci-
sion making. Like any big data infrastructure, ve-
racity includes validation, noise level, deception,

detection, relevance and ranking of data collected
(Goes, 2014). Depending on how collected finan-
cial data are captured and processed in an analysis,
generated assessments can vary greatly from real
financial market performance. One has to look no
farther than the recent settlement of $77 million
between the SEC and Standard & Poor credit rat-
ing agency to see an example of how data analysis
can be misleading (http://www.sec.gov/
news/pressrelease/2015-10.html).

Several financial computation models that
deal with cleaning financial data employ sim-
ilar methodologies, such as candlestick strate-
gies (Detollenaere and Mazza, 2014), multiple-
stage algorithm for detecting outliers in ultra high-
frequency financial market data (Verousis and ap
Gwilym, 2010), financial data filtering (http://
www.olsendata.com) and data-cleaning algo-
rithm (Chung et al., 2004a; Chung et al., 2004b).
Most data cleaning methodologies involve the de-
tection, distribution and/or the removal of outliers
(Shamsipour et al., 2014; Sun et al., 2013). How-
ever removing outliers in the dataset may have
a statistical distortion effect on the dataset itself
(Dasu and Loh, 2012).

To this end, we propose a data cleaning tech-
nique based on Reynold’s decomposition in order
to decompose the price data into a mean part and
a fluctuating part. Fluctuations in stock prices are
perpetual and irrational in time because the weak
form of market efficiency and different types of
market participants create a complex dynamic of
behavioral finance (Verheyden et al., 2015). Nev-
ertheless, our approach could minimize part of the
effect of irrational price fluctuations by incorpo-
rating and averaging fluctuation points (i.e., out-
liers) within a moving time period of integration,
T0. In essence, the length of T0 in the analysis
determines the level of veracity, with the larger
the T0, the lesser the influence of the fluctuation
points will be. We believe our data cleaning tech-
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nique is particularly applicable to security prices
due to the intense nature of security price changes
in relatively short periods, and it allows the user
to gauge different moving time periods of integra-
tion to produce a unique set of statistical data for
targeted analysis.

2 Reynold’s Decomposition

In the study of turbulence in fluid dynamics, each
component of the velocity is characterized by fluc-
tuations over time. One method to study the dy-
namics in this regime is to perform a Reynold’s
decomposition such that the mean part of the ve-
locity is separated from the fluctuations. We pro-
pose that this technique could also be used to study
financial data. In other words, we propose that the
price as a function of time, p(t), can be decom-
posed into the following:

p(t) = p̄(t) + p0(t) (1)

where p̄(t) is the mean portion and p0(t) is the fluc-
tuating portion of the price. We define p̄(t) to be
a moving time-average that can be found by per-
forming the following integral

p̄(t) =
1

T0

Z
t+T0/2

t�T0/2
p(t0)dt0 (2)

where T0 is the time period of integration. T0 must
be a time period that is greater than the time pe-
riod of the fluctuations, ⌧ , and less than the time
period of interest, T . T is dependent on each par-
ticular analysis; for example, T could be weeks,
months, or years. Thus, ⌧ < T0 < T . Further-
more, the time-averaged value of the fluctuating
portion over the entire time period of interest is
zero (Müller, 2006; Mills, 1999). As the time pe-
riod of integration increases, p̄(t) is farther away
from the actual p(t) and the magnitude of p0(t) in-
creases. Thus, the goal of this research is to find
the optimal time period of integration, T0, that ex-
cludes the miscellaneous fluctuations and captures
the essential trend of the price data.

3 Methods

In this study, we focus on the thirty compa-
nies comprising the Dow Jones Industrial Aver-
age (DJIA) as of May 13, 2015, and the DJIA
Index because, being the second oldest financial
index, the DJIA is the benchmark that tracks fi-
nancial market performance as a whole. Thus,

it represents a broad market, and its validity is
intensely scrutinized and followed by at least 10
Wall Street analysts (Lee and Swaminathan, 1999;
Moroney, 2012; Stillman, 1986). The ticker sym-
bols for the thirty companies that were studied in
this analysis are as follows: GS, IBM, MMM, BA,
AAPL, UTX, UNH, HD, DIS, CVX, NKE, TRV,
JNJ, MCD, CAT, XOM, PG, AXP, WMT, DD, V,
JPM, MRK, VZ, MSFT, KO, PFE, INTC, CSCO,
and GE. Because different companies can com-
prise the DJIA Index at any point in time, we only
focus on the index as a whole when performing the
analysis for the DJIA Index itself.

Figure 1: The histogram for GS with T0 = 130
days.

Daily adjusted close stock price data for the
thirty Dow Jones companies listed above from the
time of inception of the company to May 13, 2015,
are obtained from Yahoo! Finance. For the DJIA
Index, the daily adjusted close stock price data
from Jan. 29, 1985, to May 13, 2015, are also ob-
tained from Yahoo! Finance. The adjusted close
stock price is used because it accounts for stock
dividends and splits. Only days in which the stock
price is provided, i.e., business days, are consid-
ered in this study. Thus, the time from Friday to
Monday is taken as only one (business) day.

We estimate the time period of fluctuations to
be a day, ⌧ ⇠ 1 business day, and the time pe-
riod of interest to be the total number of business
days since the inception of the stock, T ⇠ 260 ⇥
n business days, where n represents the number of
years since the inception of the stock. Further, we
chose the following time periods of integration,
T0, for this study: 4 days, 10 days, 20 days, 30
days, 64 days, 130 days, 194 days, 260 days, 390
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Figure 2: Fitted curve ↵(T0) = a1 eb1 T0 + c1 ed1 T0 for the listed thirty stocks. a1, b1, c1, and d1 are
curve fitting parameters. The lowest goodness-of-fit measure R2 among the thirty stocks is 0.9909.

Figure 3: ↵ vs. T0 for the DJIA Index. The
goodness-of-fit measure R2 is 0.9707 for the fit-
ted curve.

days, and 520 days, which roughly represent the
following time periods: one week, two weeks, one
month, one-and-a-half months, a quarter of a year,
half of a year, three-quarters of a year, one year,
one-and-a-half years, and two years, respectively.
p̄(t) is calculated by only considering the anal-

ysis time period from T0/2 after the day of incep-
tion to T0/2 before May 13, 2015, such that for
each day p̄(t) is calculated, the full time period
of integration is used. To exemplify, consider the
case where T = 1000 days and T0 = 100 days.
Then the first 50 days (day 1 to day 50) are not in-
cluded in the analysis, and neither are the last 50

days (day 951 to day 1000). For each day in the
analysis time period, the integration stated in Eq.
(2) is performed numerically to find p̄(t) for that
day. p0(t) is found by subtracting p̄(t) from p(t),
the actual price, for that day.

For each specific T0, the statistics of p0(t) are
analyzed. Specifically, a histogram with 25 bins
of p0(t) is created for each T0. As an example,
Fig 1 shows a histogram for GS (The Goldman
Sachs Group Inc). Note that like Fig 1, most of
the histograms are centered around 0, which sug-
gests that most of the fluctuations for the stocks
are nearly zero. Therefore, the actual stock price
is near or nearly equal to the local time-average for
most of the time period analyzed. For most stocks,
as T0 increases, the maximum height achieved by
the histogram decreases and the histogram tails
become heavier. Thus, as T0 increases, there are
more observations away from the center of the dis-
tribution. This is observed because as the time
period of integration increases, more points are
considered in the average. Therefore, there is a
greater likelihood that p̄(t) is different from the
actual price.

To measure the fidelity of p̄(t) to p(t), the num-
ber of data points of p0(t) that are within 1 dol-
lar from zero are counted and divided by the to-
tal number of data points in the analysis period.
We will call this percentage measure ↵, and this
measure should be as close as possible to 100% to
reflect that p̄(t) is a good approximation of p(t).
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Figure 4: log10(�) vs. log10(T0) for the listed thirty stocks. Because each stock is a line in this plot, a
power law relationship exists between � and T0.

As stated previously, if p0(t) is near zero, that
means that p̄(t) is close to p(t) because p(t) =
p̄(t) + p0(t). As T0 increases, ↵ decreases be-
cause the mean is farther away from the actual
price when the integration period is larger. Us-
ing the MATLABr curve fitting tool, it is found
that for all of the thirty stocks the relationship be-
tween ↵ and T0 is best represented by the follow-
ing equation

↵(T0) = a1 e
b1 T0 + c1 e

d1 T0 (3)

where a1, b1, c1, and d1 are curve fitting parame-
ters. In fact, the lowest goodness-of-fit measure
R2 among all thirty stocks is 0.9909. As an exam-
ple, the curve fitting parameters for GS are a1 =
0.3613, b1 = �0.09018, c1 = 0.1034, and d1 =
�0.003687. The first derivative of this equation is

d↵

dT0
= a1 b1 e

b1 T0 + c1 d1 e
d1 T0 (4)

and the second derivative is

d2↵

dT 2
0

= a1 (b1)
2 eb1 T0 + c1 (d1)

2 ed1 T0 (5)

For most of the stocks, it was discovered that
when T0 is fewer than 100 days, the measure ↵
drops exponentially as T0 increases. However, the
second derivative (Eq. (5)) becomes near zero in
a range from 96 days to 387 days for the thirty
stocks analyzed, with the most common being ap-
proximately 125 days. Thus, when T0 is at least

an order of magnitude of 100 days, ↵ starts to
decrease linearly for nearly all of the stocks an-
alyzed. Fig 2 plots the curve fitted ↵(T0) for all
thirty analyzed stocks. As we can see, the general
trend among the thirty stocks is that ↵ drops ex-
ponentially when T0 is fewer than 100 days, but ↵
drops linearly when T0 is greater than 100 days.
An appealing fact is that the graph of ↵ against
T0 for the DJIA Index, Fig 3, also exhibits similar
trends in ↵, as shown in Fig 2. Note the differ-
ent scales of the vertical axes of Fig 2 and Fig 3,
which means that Fig 3 is much flatter than Fig 2.

Mathematically, we will define the point where
the slope is constant by the following

lim
T0!tc

d2↵

dT 2
0

= 0 (6)

where t
c

is the time period of integration at which
the second derivative of ↵ approaches zero. Thus,
for the thirty stocks analyzed, t

c

is in the follow-
ing range 96 days < t

c

< 387 days. Therefore,
for time periods of integration larger than t

c

, the
change in ↵ will be relatively small.

The standard deviation � of the fluctuations
p0(t), defined as

� =

vuut 1

N � 1

NX

i=1

(p0(t
i

)� p̄0(t))2, (7)

is also analyzed where N is the total number of
data points and p̄0(t) is the total time average of the
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fluctuations. A large � of the fluctuations reflects
that p̄(t) is not equal to p(t). To remove the mis-
cellaneous fluctuations of the price, � should be as
large as possible. As indicated by the straight lines
in the log-log plot in Fig 4, � and T0 are related by
a power law where the slope of the line indicates
the exponent.

Using the MATLABr curve fitting tool, we
fit the following equation for each of the thirty
stocks:

� = a2 T
b2
0 + c2 (8)

where a2, b2, and c2 are curve fitting parame-
ters. As an example, a2 = 2.194, b2 =
0.4317, and c2 = �1.425 for GS. The low-
est goodness-of-fit measure R2 among the thirty
stocks is 0.9849. b2, the exponent, varies from
0.35 to 0.69 for all thirty stocks. The average ex-
ponent is 0.5.

4 Results and Conclusions

This paper demonstrates preliminary results of
an ongoing security price data cleaning re-
search. We found that the graphs of ↵ ver-
sus T0 of the thirty companies and the DJIA
Index exhibit at least two properties: (1)
↵ drops exponentially as T0 increases when
T0 / order of magnitude of 100 days, and (2)
↵ drops linearly as T0 increases when T0 '
order of magnitude of 100 days. Thus, the opti-
mal T0 for the thirty companies studied is approx-
imately 100 days. For the DJIA Index itself, the
optimal T0 appears to be less than 100 days. One
of the possible explanations is that the DJIA Index
might show the counter measure effect of fluctu-
ation points among the thirty companies since the
DJIA is a composite of the thirty companies that
collectively provide a balance view of the market.
As a result, T0 might be even smaller for the sec-
ond derivative to approach zero. We also found
that � and T0 are related by a power law. As for
future research, we plan to define mathematical
metrics in our study of security price valuations
and trading strategies.
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