
Automation of process to load database from OSM for the design of public
routes

G. Bejarano, J. Astuvilca, P. Vega
Pattern Recognition and Applied Artificial Intelligence Group

Pontifical Catholic University of Peru
1801 Univesitaria Avenue, Lima, Peru

gissella.bejarano@pucp.edu.pe, {j.astuvilcaf, vega.pedro}@pucp.pe

Abstract

This paper presents an automatic process
to load the transport information of Lima -
Peru city as network and public transporta-
tion routes from OpenStreetMap (OSM)
to a PostgreSQL database. Moreover, this
work shows how OSM data is transformed
in two graphs and in several actual bus
routes. The work is a combination of SQL
commands and python programs to trans-
form OSM data and combine it with exter-
nal information to specific structures in a
final database. This information was nec-
essary for a second goal that was the ap-
proach and study of the Transit Network
Design Problem (TNDP). Since OSM is
a free collaborative tool, it is subject to
manual errors in the map that produce mis-
taken graphs and routes. These errors are
corrected daily because the area informa-
tion is updated frequently. The obtained
results confirm that this process could be
automated in a one-click step. Finally, we
tried other methods to upload OSM data
and none of them got an exact graph ex-
cept for osm2pgrouting.

1 Introduction

Until 2014, the city of Lima, capital of Peru, had
4031 formal routes, 1 Bus Rapid Transit2 (BRT)
line and 1 metro line. There are projects to build
a new BRT corridor3 and 5 more metro lines4,

1http://lima.datosabiertos.pe/home/
2https://www.itdp.org/library/

standards-and-guides/the-bus-rapid-
transit-standard/what-is-brt/

3http://archivo.larepublica.pe/11-04-
2015/municipalidad-de-lima-castaneda-
anuncia-ampliacion-de-la-ruta-lima-
norte-del-metropolitano

4http://www.aate.gob.pe/metro-de-lima/

in order to improve public transportation. Actu-
ally, some months ago, the number of formal bus
routes was reduced to 322 urban routes, 77 belt-
way routes and 15 routes in unattended zones5 be-
cause of the oversupply of routes that exist in the
city.

The task of deciding which set of bus routes
must continue in order to attend the public mo-
bility demand and to optimize the cost of the user
and the cost of the operator is a huge and full of
possibilities task (Farahani et al., 2013). For this
reason, a metaheuristic algorithm might be used
to find a nearly global optimal solution (Farahani
et al., 2013) to this problem defined by Fan and
Machemehl (2004) as the Transit Network Design
Problem (TNDP). Besides, according to Fan and
Machemehl (2004), metaheuristics are more suit-
able to work with practical and real cases. Nev-
ertheless, a real problem was to load a complete
network as an input to the algorithm and form a
graph by which a set of routes will pass. For this
reason, the purpose of this work is to implement
an automatic process that provides the necessary
data input to an algorithm that solves the TNDP.

For our algorithm, two levels of graphs would
be tested in order to find a solution progressively.
The first graph represents the adjacent Traffic
Zones (Agency, 2005), which we call minizones
because they can be smaller boundaries in the fu-
ture, while the second graph is the road and high-
ways network level. First, sequences of minizones
are created to generate general routes that satisfy
soft and hard restrictions. Then, using these first
routes, real bus routes are defined in a network of
roads level. Once we have all the necessary infor-
mation for the algorithm, the sequence and calls
of execution are organized in a single executable
command.

5http://www.elperuano.com.pe/
NormasElPeruano/2015/02/28/1205528-
1.html

99



This work is organized as follows. Section 2
explains the information sources for the database
created to keep the data needed and the solutions
produced by the algorithm for the TNDP. Section 3
describes the extraction and transformation pro-
cesses used to get the information mentioned and
load it to a default database. Section 4 explains the
organization of the files and instructions used in
the single process and the order in which they are
executed to automatically finish the process. Con-
clusions of this work are presented in Section 5
along with future recommendations.

2 Sources of Information

To solve a basic case of the TNDP, two sets of
data are needed as we can see in Mautone and
Uqhuart’s work (2009). The first group is the net-
work that generates one of the graphs required to
evaluate solutions at a network road level, and in-
formation about the edges of this graph like the
road owner of those edges and the road’s type. The
second group consists of the demand information,
the number of travels made from an origin zone
to a destiny zone and the adjacency graph among
zones. Using the Pair Insertion algorithm (PIA),
random routes that cover certain percentage of the
total demand of the zones are generated. Besides
those two sets of groups, Lima has an actual real
solution and that is why we decided to test this
one as an initial solution. The actual information
about routes would be combined using a genetic
algorithm in different forms in order to optimize
the set of routes that solve the TNDP in both lev-
els of graphs: zones and network.

The next two subsections describe the sources
for all the groups of data mentioned.

2.1 Road Network
The two sources analyzed to generate the public
transportation network are shown in Figure 1. The
first source was the one given by the Ministry of
Transportation and Communications of Peru. The
problem with this source was that it was difficult
to identify the edges and nodes of the network due
to the format of the file: shapefile6 (.shp), i.e. one
set of edges was represented as a single edge and
vice versa. In order to verify the correctness of
the shapefile, it was loaded into OSM and in some
cases, the roads were displayed crossing a block.

6Geospatial vector data format for Geographic Informa-
tion System (GIS) Software.

The second analyzed source was OSM, which has
user generated geographic content (Janssen and
Crompvoets, 2012). After some transformation,
OSM produces a valid, but not official, graph that
represents the public transportation network. This
network would be enough for our TNDP studies.
Besides, this contribution on OSM could be used
for future studies.

Figure 1: Difference among MTC Network (left)
and Network from OSM (right)

2.2 Routes

In order to get the actual public transportation
routes, two complementary sources were ana-
lyzed. The first source was the Metropolitan Lima
Municipality, which has one SHP file with the
whole set of routes. A process to get a SHP file per
route was made through the ogr2ogr7 command
and a batch program. After the command pro-
duces a comma separated values file (.csv) which
contains a WKT8 (or LineString9) for each route,
the batch program creates a SHP file from every
record of the CSV file. Once a route is individually
identified, it is drawn manually in the OSM inter-
face and matched with all the ways (set of edges)
by which it passes in order to maintain the geomet-
ric consistency with the road network. In this pro-
cess, a lot of errors are generated and they would
be solved thanks to daily reports that indicate their
coordinates and details.

7A command line utility from the “Geospatial Data Ab-
straction Library” (GDAL).

8Well-known text, markup language for representing vec-
tor geometry objects.

9Vector geometry object that represent a line.

100



2.3 Demand
Due to a study of demand and transportation in
Lima made by the Japan International Coopera-
tion Agency (2005), a set of 427 Traffic zones was
established in the city of Lima. This information
implied two types of data: polygons that represent
the zones and the number of travels made among
every pair of O-D zones (origin and destiny). The
polygons are used to delimit a set of edges for
which a route must pass by in order to satisfy the
demand of that zone (like an origin or destiny).

3 Transformation process

This section describes the steps followed to extract
data from OSM sources, upload it into a database
and transform it into a final database called routes.

3.1 Extraction from the sources
In order to get the OSM data about the public
transportation network and routes of Lima, the
files containing the information of Peru and the
boundary of Lima must be downloaded and used
in a command line. There is a server named Geo-
fabrik10 which has data extracts of countries of all
the continents and is updated daily (Zielstra and
Zipf, 2010). However, as this server provides the
information of the whole country, a boundary must
be applied to get the information of only the city
of Lima. This can be done through an OSM rela-
tion ID which can be obtained from the MapIt11

website, through the insertion of a coordinate (lat-
itude, longitude) of the objective city. After that,
the OSM relation ID is introduced in a polygons
generator page12 and the .poly file is downloaded.

Osmosis is the command line application from
OSM with which a file containing the information
of the primary, secondary and tertiary highways of
Lima is produced as well as the trunk, motorway,
residential and their links. Figure 2 shows how
the osmosis command takes as input the informa-
tion of Peru (peru-latest.osm.pbf) and the bound-
ary of Lima (lima-callao.poly) and produces the
lima-callao.osm file.

3.2 Default and final databases
Once the lima-callao.osm file is produced, it is
necessary to upload this information to a database
to manage the information. For this task, a tool

10http://download.geofabrik.de/
11http://global.mapit.mysociety.org/
12http://polygons.openstreetmap.fr/

Figure 2: Osmosis command to get .osm file

like osm2pgrouting13 was used. It provides a pro-
cess that converts OSM data into a topology and
it is uploaded in database. First, we must create a
database called pgrouting-workshop14. After that,
the command shown in Figure 3 must be executed.

Figure 3: Osm2pgrouting command to create
pgrouting-workshop database

This command filters the road types mentioned
in mapconfig.xml and create tables like ways
(edges), classes (types of roads), nodes, rela-
tions (routes for example), relation ways (which
relates the edges of a route), types, way tag,
way vertices pgr. The full schema for this
database is shown in Figure 4.

Certainly, there are other tools to import OSM
data into a local database (osm2pgsql, imposm and
osmosis). However, only osm2pgrouting builds an
exact graph with edges and nodes, and Section 3
will show how that makes a difference.

In order to have the direct information of the
sources and the information of the application or
algorithm separated, a new database routes is cre-
ated. Table 1 shows the source of every table in the
new database (from default pgrouting-workshop
database or from external data).

3.3 Transformation
In this section, a brief logic of the load of every
table would be shown. See the Figure 5 for more
details. every table would be shown.

The table road types contains the different types
of roads that are presented in Lima’s OSM data

13http://pgrouting.org/docs/tools/
osm2pgrouting.html

14ftp://ftp.remotesensing.org/
pgrouting/foss4g2010/workshop/docs/html/
chapters/topology.html

101



Figure 4: Pgrouting-workshop schema database

Figure 5: Routes schema database

102



Entity Database External File
RoadType Classes (default)
Road Ways (default)
Node Ways (default)
Edge Ways (defaut)
District i4 districts.csv
Minizone i8 census zones.csv
Demand demand matrix.csv
Route lima-callao.osm
RouteEdge Ways (default) list final routes.csv
RouteMinizone routes, routes edges, edges, transit zones (routes)

Table 1: Input and output of tables from routes database.

like primary, secondary and tertiary road among
others. Besides, this table has an additional field
(not from OSM) that indicates the maximum num-
ber of routes that would be used in the future when
solving the TNDP.

The table roads is filled from the table ways of
the pgrouting-workshop database, which contains
the longitude and latitude of both nodes that form
an edge (known as source and target). However,
as a road is formed by several edges or ways, a
distinct query by the name of the way is made to
obtain unique roads.

The table nodes is filled by searching every way
and saving each source or target as a unique key
in a hash table. Besides that, a function from
the PostGIS extension is applied to define which
minizone every node belongs to. Additionaly,
the edges table is similar to the table ways (on
pgrouting-workshop database) but the road id is
brought from the previous step (roads table) to
complete its load.

We use several steps to fill table routes. First, a
file is generated from the lima-callao.osm file con-
taining just the relations-routes from the users of
the project. After that, just the routes which do not
have any errors are listed in a CSV file and they
are finally uploaded to the table.

The process to define which edges belong to
certain route has been a continual feedback. First,
a hash table of different sources and targets nodes
from the table ways was created. Second, every
node was linked to its respective previous and next
node. Each node has its own edge’s gid15, relative
to the current edge. After that, a search is made to
identify which nodes (source or target) are used in
the graph.

15Road link if of the table ways.

Finally, a whole loop is made to search along
the hash table from the start node and get the
edge’s to which the actual node belongs to and its
respective order. It is important to mention that
there are some mistakes in this logic due to some
errors or missing information in the direction of
the ways (edges).

Based on the filling of the route’s edges, the
logic to fill the table routes minizones is to analyze
the source and target node of every edge that form
the route. As every node belongs to a minizone,
a list of every minizone that contains a route’s
nodes is made. Moreover, this list is ordered by
the edge’s order calculated in the previous step as
an attribute of the table routes edges. This list is
grouped by the minizone id to avoid the repetition
of a minizone on different edges. This logic is ap-
plied using some functions of the PostGIS exten-
sion like ST Contains(polygon, point) that decides
whether a point is contained in a polygon or not
and ST SetSRID(point, system) that sets the 4326
system reference16 of a point. This logic is better
shown in Figure 6.

When nodes are on the limit of the polygon like
the boundary of a demand zone, they could belong
to more than one zone. However, this work did not
analyzed which minizone is selected by the func-
tion ST Contains from the PostGIS extension.

4 Results: Automatic process
organization

Before getting a stable database in which you
can execute an algorithm to the TNDP, several
databases loads must be done in order to evaluate
the accuracy of the routes drawn manually. That

16http://suite.opengeo.org/opengeo-
docs/glossary.html

103



Figure 6: SQL script to fill table minizones

is the reason why an automatic process was set to
run daily. In Figure 7, a sequence of programs,
commands, input and output files are shown to ex-
plain the process of downloading the information
from OSM, combine it with external information
and load them to a final database.

Figure 7: Content of executable final.sh

Some tools must be installed in the server and
the local computer before executing this process.
These are: gdal, osmosis, PostGIS, pgrouting17

and psycopg2.
The automated process has a series of steps

called from an executable file (final.sh) in Linux.
It lasts 30 minutes approximately and the topology
(graph) size is about 150000 edges and 100000
nodes; the number of routes is 300. The con-
tent and the structure of the commands and pro-
cess called from final.sh are shown in Figure 8.
Also, the process generates error reports about the
current drawn routes, for each one evaluates how
many edges exist in each node, so if more than
two edges exist in one node, then it reports that
the route has an error. This process was carried out
daily until no error is found in the routes. It is im-
portant to mention that this process is recommend-
able when working in a local database where the
password could be stored in files to allow the inter-
action of calculus inside and outside the database.

17http://pgrouting.org/

Figure 8: Diagram of process of downloading
data, transforming it and uploading it to the

database (Tool: Bizagi)

5 Conclusions and recommended work

This section presents the conclusions after imple-
menting an automated process for uploading OSM
data combined with external information. One of
them was the confirmation of a tool that generates
the topology of the map or graph rather than other
tools that also upload the same data but in a differ-
ent scheme.

5.1 Conclusions
In subsection 3.1, it was mentioned that there were
other tools to upload OSM data. Osm2pgsql and
imposm, after installed and executed, generate a
table where the information of ways can be found.
However, the field that represents the geometry
does not generate the sequences of edges. Actu-
ally, osm2pgsql generates edges that are not nec-
essary for the graph and make impossible to dis-
tinguish which ones are. We could have worked
with edges that were not required but it would
have been an unnecessary addition of data to a
problem that is already complex. In addition to
that, imposm generates the same edges composed
of only the first and last node of the way. The
manner these edges are stored in these schemes
(osm2pgsql and imposm) hinders the recognition
of edges in a way as seen in Figure 9 where just
three edges (osm2pgrouting) should be generated
from the selected way instead one (imposm) or
seven (osm2pgsql).

On the other hand, there are a lot of routing ap-
plications that use OSM data to combine it with
other type of information at some point (Amat et
al., 2014)(Vetter, 2010). However, some of them

104



Figure 9: Shows the numbers of nodes counted in
one way: Argentina avenue - Lima, Peru

(Obtained from OSM and modified) (Tool:
Bizagi)

are implemented just for certain cities, for other
routing problems like private cars and bicycles or
just do not work very well18. We found some com-
mercial routing applications but obviously they do
not public the process to combine their sources
into a unique database.

5.2 Recommended work
As OSM is a free collaborative tool, more analysis
is recommended in order to establish several log-
ics that allow us to maintain the coherence of the
data despite of new errors.

A full review of the possible scheme obtained
and filled from osmosis should be finished in order
to know if there is a faster and simpler way of load-
ing the information. However, it seems that there
is no direct form to identify the relations routes
with the osmosis’ scheme. This is because of the
different order that the route tag has in a field to
recognized that a relation is a public transportation
route.

There is also another tool that seems to convert
OSM data into a graph topology that must be an-
alyzed: OSM2PostGIS19. However, it is still in an
early development.

References
Japanese International Cooperation Agency. 2005.

Plan maestro de transporte urbao para el área
metropolitana de lima y callao en la república del
perú fase 1–9. problemas y temas actuales del trans-
porte urbano.

18http://wiki.openstreetmap.org/wiki/
Routing/online_routers#Route_service_
comparison_matrix

19http://pgrouting.org/docs/tools/
osm2PostGIS.html

Guillermo Amat, Javier Fernandez, Álvaro Arranz, and
Angel Ramos. 2014. Using open street maps data
and tools for indoor mapping in a smart city sce-
nario.

Wei Fan and Randy B Machemehl. 2004. Optimal
transit route network design problem: Algorithms,
implementations, and numerical results. Technical
report.

Reza Zanjirani Farahani, Elnaz Miandoabchi,
WY Szeto, and Hannaneh Rashidi. 2013. A
review of urban transportation network design prob-
lems. European Journal of Operational Research,
229(2):281–302.

Katleen Janssen and Joep Crompvoets. 2012. Ge-
ographic Data and the Law: Defining New Chal-
lenges. Leuven University Press.

Antonio Mauttone and Marı́a E Urquhart. 2009. A
route set construction algorithm for the transit net-
work design problem. Computers & Operations Re-
search, 36(8):2440–2449.

Christian Vetter. 2010. Fast and exact mobile naviga-
tion with openstreetmap data. Master’s thesis, Karl-
sruhe Institute of Technology.

Dennis Zielstra and Alexander Zipf. 2010. A compar-
ative study of proprietary geodata and volunteered
geographic information for germany. In 13th AGILE
international conference on geographic information
science, volume 2010.

105


