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Abstract 

With the data volume that does not stop 
growing and the multitude of sources that 
led to diversity of structures, data pro-
cessing needs are changing. Although, re-
lational DBMSs remain the main data 
management technology for processing 
structured data, but faced with the massive 
growth in the volume of data, despite their 
evolution, relational databases, which 
have been proven for over 40 years, have 
reached their limits. Several organizations 
and researchers turned to MapReduce 
framework that has found great success in 
analyzing and processing large amounts 
of data on large clusters. In this paper, we 
will discuss MapReduce and Relational 
Database Management Systems as com-
peting paradigms, and then as completing 
paradigms where we propose an integra-
tion approach to optimize OLAP queries 
process. 

1 Introduction 
The data is growing at an alarming speed in both 
volume and structure. The data explosion is not a 
new phenomenon; it is just accelerated in an in-
credible way and has an exponential number of 
technical and application challenges. Data gener-
ation is estimated of 2.5 trillion bytes of data every 
day. In addition, an IDC study predicts that over-
all data will grow by 50 times by 2020.  

Data is the most precious asset of companies 
and can be mainspring of competitiveness and in-
novation. As presented in (Demirkan and Delen, 
2013), many organizations noticed that the data 
they own and how they use it can make them dif-
ferent than others. That is why organizations need 
to be able to rapidly respond to market needs and 

changes, and it has become essential to have effi-
cient and effective decision making processes 
with right data to make the decision the most 
adapted at a given moment. This explain the ne-
cessity to choose the right technology for pro-
cessing and analyzing data.   

As presented in (Ordonez, 2013), for more than 
forty, the relational database management sys-
tems have been the dominating technology to 
manage and query structured data.  

However, the voluminous data which does not 
stop growing and the multitude of sources which 
led to diversity of structures challenge the needs 
of data processing. With these changes, the 
database world has been evolved and new models 
are presented. MapReduce is one such framework 
that met a big success for the applications that pro-
cess large amounts of data. It is a powerful pro-
graming model characterized by its performance 
for heavy processing to be performed on a large 
volume of data that it can be a solution to have the 
best performance. 

Several studies have been conducted to com-
pare MapReduce and Relational DBMS. Some 
works present the MapReduce model as a replace-
ment for the relational DBMSs due to its flexibil-
ity and performance, and other confirm the effi-
ciency of the relational databases. In the other 
hand, many research works aim to use the two ap-
proaches together. In this environment of data ex-
plosion and diversity, the question that arises is 
what technology to use for data process and anal-
ysis for a particular application, how to benefit the 
data management systems diversity? 

The aim of this work is to provide a broad com-
parison of the two technologies, presenting for 
each one its strengths and its weaknesses. Then, 
we propose an approach to integrate the two par-
adigms in order to optimize the online analytical 
processing (OLAP) queries process by minimiz-
ing the input/output cost in terms of the amount of 
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data to manipulate, reading and writing through-
out the query’s execution process. 

The remainder of this paper is organized as fol-
lows. In section 2, we introduce MapReduce. In 
section 3, we describe Relational DBMS. In sec-
tion 4, we present our proposed integration ap-
proach for optimizing the online analytical pro-
cessing (OLAP) queries Input/Output execution 
cost. Finally, section 5 concludes this paper and 
outlines our future work. 

2 MapReduce 
MapReduce is a programming model completed 
by Google, which was introduced by Dean and 
Ghemawat (2004). It was designed for processing 
large data sets with a parallel, distributed algo-
rithm on a cluster. 

MapReduce was created in order to simplify 
parallel processing and distributed data on a large 
number of machines with an abstraction that hides 
the details of the hardware layer to programmers: 
it hides the details of parallelization, fault-toler-
ance, locality optimization, and load balancing. 
Google uses the MapReduce model to deploy 
large variety of problems such as: generation of 
data for Google’s production web search service, 
data mining, machine learning, etc. 

The MapReduce programming model has been 
successfully used for many different purposes. 
These included: parallelizing the effort; distrib-
uting the data; handling node failures.  

The term MapReduce actually refers to two 
separate and distinct tasks: Map and Reduce. The 
mapper is responsible for reading the data stored 
on disk and process them; it takes a set of data and 
converts it into another set of data: reads the input 
block and converts each record into a Key/Value 
pair. The reducer is responsible for consolidating 
the results from the map and then write them to 
disk; it takes the output from a map as input and 
combines those data tuples into a smaller set of 
tuples. 

At first, Google developed their own DFS: the 
Google File System (GFS). As described in 
(McClean et al., 2013),  MapReduce tasks run on 
top of Distributed File Systems (DFS). The dis-
tributed storage infrastructure store very large vol-
umes of data on a large number of machines, and 
manipulate a distributed file system as if it were a 
single hard drive. The DFS deals with data in 
blocks. In order to prevent data loss, each block 
will be replicated across several machines to over-

come a possible problem of a single machine fail-
ure. So, this model allows the user to focus on 
solving and implementing his problem.  

Nevertheless, the lack is that the MapReduce is 
independent of the storage system, it can not take 
into account all the input data for an available in-
dex. This explains the critics mainly from the da-
tabase community. As described in (Gruska and 
Martin, 2010), the database community sees the 
MapReduce as a step backwards from modern da-
tabase systems, in view of the MapReduce is a 
very brute force approach and it lacks the optimiz-
ing and indexing capabilities of modern database 
systems. 

MapReduce, the powerful tool characterized by 
its performance for heavy processing to be per-
formed on a large volume of data that it can be a 
solution to have the best performance hence 
makes it very popular with companies that have 
large data processing centers such as Amazon and 
Facebook, and implemented in a number of 
places. However, Hadoop, the Apache Software 
Foundation open source and Java-based imple-
mentation of the MapReduce framework, has at-
tracted the most interest. Firstly, this is due to the 
open source nature of the project, additionally to 
the strong support from Yahoo. Hadoop has its 
own extensible, and portable file system: Hadoop 
Distributed File System (HDFS) that provides 
high-throughput access to application data.  

Since it is introduced by Google, a strong inter-
est towards the MapReduce model is arising. 
Many research works aim to apply the ideas from 
multi-query optimization to optimize the pro-
cessing of multiple jobs on the MapReduce para-
digm by avoiding redundant computation in the 
MapReduce framework. In this direction, 
MRShare (Nykiel et al., 2010) has proposed two 
sharing techniques for a batch of jobs. The key 
idea behind this work is a grouping technique to 
merge multiple jobs that can benefit from the shar-
ing opportunities into a single job. However, 
MRShare incurs a higher sorting cost compared to 
the naive technique . In (Wang and Chan, 2013) 
two new job sharing techniques are proposed: The 
generalize d grouping technique (GGT) that re-
laxes MRShare's requirement for sharing map 
output. The second technique is a materialization 
technique (MT) that partially materializes the map 
output of jobs in the map and reduce phase. 

On the other hand, the Pig project at Yahoo (Ol-
ston et al., 2008), the SCOPE project at Microsoft 
(Chaiken et al., 2008), and the open source Hive 
project 2 introduce SQL-style declarative lan-
guages over the standard MapReduce model, aim 
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to integrate declarative query constructs from the 
database community into MapReduce to allow 
greater data independence. 

3 Relational DBMS 
Since it was developed by Edgar Codd in 1970, as 
presented in (Shuxin and Indrakshi, 2005), the re-
lational database (RDBMS) has been the domi-
nant model for database management. RDBMS is 
the basis for SQL, and is a type of database man-
agement system (DBMS) that is based on the re-
lational model which stores data in the form of re-
lated tables, and manages and queries structured 
data. Since the RDBMSs focuse on extending the 
database system’s capabilities and its processing 
abilities, RDBMSs have become a predominant 
powerful choice for the storage of information in 
new databases because they are easier to under-
stand and use. What makes it powerful, is that it is 
based on relation between data; because the pos-
sibility of viewing the database in many different 
ways since the RDBMS require few assumptions 
about how data is related or how it will be ex-
tracted from the database. So, an important feature 
of relational systems is that a single database can 
be spread across several tables which might be re-
lated by common database table columns. 
RDBMS also provide relational operators to ma-
nipulate the data stored into the database tables. 
However, as discussed in (Hammes et al., 2014), 
the lack of the RDBMS model resides in the com-
plexity and the time spent to design and normalize 
an efficient database. This is due to the several de-
sign steps and rules, which must be properly ap-
plied such as Primary Keys, Foreign Keys, Nor-
mal Forms, Data Types, etc. Relational Databases 
have about forty years of production experience, 
so the main strength to point out is the maturity of 
RDBMSs. That ensure that most trails have been 
explored and functionality optimized. For the user 
side, he must have the competence of a database 
designer to effectively normalize and organize the 
database, plus a database administrator to main-
tain the inevitable technical issues that will arise 
after deployment.  

A lot of work has been done to compare the 
MapReduce model with parallel relational data-
bases, such as (Pavlo et al., 2009), where experi-
ments are conducted to compare Hadoop MapRe-
duce with two parallel DBMSs in order to evalu-
ate both parallel DBMS and the MapReduce 
model in terms of performance and development 
complexity. The study showed that both databases 
did not outperformed Hadoop for user-defined 

function. Many applications are difficult to ex-
press in SQL, hence the remedy of the user-de-
fined function. Thus, the efficiency of the 
RDBMSs is in regular database tasks, but the 
user-defined function presents the main ability 
lack of this DBMS type. 

A proof of improvement of the RDBMS model 
comes with the introduction of the Object-Ori-
ented Database Relational Model (ORDBMS). It 
aims to utilize the benefits of object oriented the-
ory in order to satisfy the need for a more pro-
grammatic flexibility. The basic goal presented in 
(Sabàu, 2007) for the Object-relational database is 
to bridge the gap between relational databases and 
the object-oriented modeling techniques used in 
programming languages. The most notable re-
search project in this field is Postgres (Berkeley 
University, Californie); Illustra and PostgreSQL 
are the two products tracing this research. 

4 MapReduce-RDBMS: integrating par-
adigms 

In this section, the use of relational DBMS and 
MapReduce as complementary paradigms is con-
sidered. 

It is important to pick the right database tech-
nology for the task at hand. Depending on what 
problem the organization is trying to solve, it will 
determine the technology that should be used. 

Several comparative studies have been co 
ducted between MapReduce and parallel DBMS 
such as (Mchome, 2011) and (Pavlo et al., 2009). 
MapReduce has been presented as a replacement 
for the Parallel DBMS. While each system has its 
strengths and its weaknesses. However, an inte-
gration of the two systems is needed, and as pro-
posed in (Stonebraker et al., 2010), MapReduce 
can be seen as a complement to a RDBMS for an-
alytical applications, because different problems 
require complex analysis capabilities provided by 
both technologies.  

In this context, we propose a model that inte-
grates the MapReduce model and a relational  
DBMS PostgreSQL presented in (Worsley and 
Drake, 2002), in a goal of queries optimization. 
We suggest an OLAP queries process model in a 
goal of minimizing Input/Output costs in terms of 
the amount of data to manipulate, reading and 
writing throughout the execution process. 

The basic idea behind our approach is based on 
the cost model to approve execution and selectiv-
ity of solutions based on the estimated cost of ex-
ecution. To support the decision making process 
for analyzing data and extracting useful 
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knowledge while minimizing costs, we propose to 
compare the estimates of the costs of running a 
query on Hadoop MapReduce compared to Post-
greSQL to choose the least costly technology. 

As the detailed analysis of the queries execu-
tion costs showed a gap mattering between both 
paradigms, hence the idea of the thorough analy-
sis of the execution process of each query and the 
implied cost. So, to better control the cost differ-
ence between costs of Hadoop MapReduce versus 
PostgreSQL on each step of the query's execution 
process, we propose to dissect each query for a set 
of operations that demonstrates the process of ex-
ecuting the query and in order to control the dif-
ferent stages of the execution process of each 
query (decomposing the query to estimate the 
costs on each system for each individual opera-
tion). In this way, we can check the impact of the 
execution of each operation of a query on the 
overall cost and we can control the total cost of 
the query by controlling the partial cost of each 
operation in the information retrieval process. For 
this purpose, we suggest to provide a detailed ex-
ecution plan for OLAP queries. This execution 
plan allows zooming on the sequence of steps of 
the process of executing a query. It details the var-
ious operations of the process highlighting the or-
der of succession and dependence. In addition, it 
determines for each operation the amount of data 
involved and the dependence implemented in the 
succession of phases. These parameters will be 
needed to calculate the cost involved in each op-
eration. 

Having identified all operations performed dur-
ing the query execution process the next step is 
then to calculate the cost implied in each operation 
independently, in both paradigms PostreSQL and 
MapReduce with the aim of controlling the esti-
mated costs difference according to the operations 
as well as the total cost of query execution. At this 
stage we consider each operation independently to 
calculate an estimate of its cost execution on 
PostreSQL on one hand then on MapReduce on 
the other hand. For this goal, we propose to relay 
on a cost model for each system PostgreSQL and 
Hadoop MapReduce in order to estimate the I/O 
cost of each operation execution on both system 
independently.  

We aim to estimate how expensive it is to pre-
process each operation of each query on both sys-
tems. Therefore, controlling the cost implied by 
each operation as well as its influence on the total 
cost of the query, allows the control of the cost of 
each query to support the decision making process 

and the selectivity of the proposed solutions based 
on the criterion of cost minimization.  
Based on a sample workload of OLAP queries, 
and having identifying the cost of each operation 
for each query executed on both systems inde-
pendently, the results analysis can be useful to de-
duct a generalized smart model that integrates the 
two paradigms to process the OLAP queries in a 
cost minimization way. 

5 Conclusion 
Given the exploding data problem, the world of 
databases has evolved which aimed to escape the 
limitations of data processing and analysis. There 
has been a significant amount of work during the 
last two decades related to the needs of new sup-
porting technologies for data processing and 
knowledge management, challenged by the rise of 
data generation and data structure diversity. 

In this paper, we have investigated the MapRe-
duce model in one hand, then the Relational 
DBMS technology in the other hand, in order to 
present strengths and weaknesses of each para-
digm. 

Although MapReduce was designed to cope 
with large amounts of unstructured data, there will 
be advantages in exploiting it in structured data 
processing. In this fashion, we have proposed in 
this paper a new OLAP queries process model in-
tegrating an RDBMS with the MapReduce frame-
work in a goal of minimizing Input/Output costs 
in terms of the amount of data to manipulate, read-
ing and writing throughout the execution process. 

Combining MapReduce and RDBMS technol-
ogies has the potential to create very powerful sys-
tems. For this reason, we plan to investigate other 
types of integration for different applications. 
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