
MapReduce and Relational Database Management Systems:
competing or completing paradigms?

Dhouha Jemal
LARODEC / Tunis

dh.jemal@gmail.com

Rim Faiz
LARODEC / Tunis

rim.faiz@ihec.rnu.tn

Abstract

With the data volume that does not stop
growing and the multitude of sources that
led to diversity of structures, data pro-
cessing needs are changing. Although, re-
lational DBMSs remain the main data
management technology for processing
structured data, but faced with the massive
growth in the volume of data, despite their
evolution, relational databases, which
have been proven for over 40 years, have
reached their limits. Several organizations
and researchers turned to MapReduce
framework that has found great success in
analyzing and processing large amounts
of data on large clusters. In this paper, we
will discuss MapReduce and Relational
Database Management Systems as com-
peting paradigms, and then as completing
paradigms where we propose an integra-
tion approach to optimize OLAP queries
process.

1 Introduction
The data is growing at an alarming speed in both
volume and structure. The data explosion is not a
new phenomenon; it is just accelerated in an in-
credible way and has an exponential number of
technical and application challenges. Data gener-
ation is estimated of 2.5 trillion bytes of data every
day. In addition, an IDC study predicts that over-
all data will grow by 50 times by 2020.

Data is the most precious asset of companies
and can be mainspring of competitiveness and in-
novation. As presented in (Demirkan and Delen,
2013), many organizations noticed that the data
they own and how they use it can make them dif-
ferent than others. That is why organizations need
to be able to rapidly respond to market needs and

changes, and it has become essential to have effi-
cient and effective decision making processes
with right data to make the decision the most
adapted at a given moment. This explain the ne-
cessity to choose the right technology for pro-
cessing and analyzing data.

As presented in (Ordonez, 2013), for more than
forty, the relational database management sys-
tems have been the dominating technology to
manage and query structured data.

However, the voluminous data which does not
stop growing and the multitude of sources which
led to diversity of structures challenge the needs
of data processing. With these changes, the
database world has been evolved and new models
are presented. MapReduce is one such framework
that met a big success for the applications that pro-
cess large amounts of data. It is a powerful pro-
graming model characterized by its performance
for heavy processing to be performed on a large
volume of data that it can be a solution to have the
best performance.

Several studies have been conducted to com-
pare MapReduce and Relational DBMS. Some
works present the MapReduce model as a replace-
ment for the relational DBMSs due to its flexibil-
ity and performance, and other confirm the effi-
ciency of the relational databases. In the other
hand, many research works aim to use the two ap-
proaches together. In this environment of data ex-
plosion and diversity, the question that arises is
what technology to use for data process and anal-
ysis for a particular application, how to benefit the
data management systems diversity?

The aim of this work is to provide a broad com-
parison of the two technologies, presenting for
each one its strengths and its weaknesses. Then,
we propose an approach to integrate the two par-
adigms in order to optimize the online analytical
processing (OLAP) queries process by minimiz-
ing the input/output cost in terms of the amount of

117

data to manipulate, reading and writing through-
out the query’s execution process.

The remainder of this paper is organized as fol-
lows. In section 2, we introduce MapReduce. In
section 3, we describe Relational DBMS. In sec-
tion 4, we present our proposed integration ap-
proach for optimizing the online analytical pro-
cessing (OLAP) queries Input/Output execution
cost. Finally, section 5 concludes this paper and
outlines our future work.

2 MapReduce
MapReduce is a programming model completed
by Google, which was introduced by Dean and
Ghemawat (2004). It was designed for processing
large data sets with a parallel, distributed algo-
rithm on a cluster.

MapReduce was created in order to simplify
parallel processing and distributed data on a large
number of machines with an abstraction that hides
the details of the hardware layer to programmers:
it hides the details of parallelization, fault-toler-
ance, locality optimization, and load balancing.
Google uses the MapReduce model to deploy
large variety of problems such as: generation of
data for Google’s production web search service,
data mining, machine learning, etc.

The MapReduce programming model has been
successfully used for many different purposes.
These included: parallelizing the effort; distrib-
uting the data; handling node failures.

The term MapReduce actually refers to two
separate and distinct tasks: Map and Reduce. The
mapper is responsible for reading the data stored
on disk and process them; it takes a set of data and
converts it into another set of data: reads the input
block and converts each record into a Key/Value
pair. The reducer is responsible for consolidating
the results from the map and then write them to
disk; it takes the output from a map as input and
combines those data tuples into a smaller set of
tuples.

At first, Google developed their own DFS: the
Google File System (GFS). As described in
(McClean et al., 2013), MapReduce tasks run on
top of Distributed File Systems (DFS). The dis-
tributed storage infrastructure store very large vol-
umes of data on a large number of machines, and
manipulate a distributed file system as if it were a
single hard drive. The DFS deals with data in
blocks. In order to prevent data loss, each block
will be replicated across several machines to over-

come a possible problem of a single machine fail-
ure. So, this model allows the user to focus on
solving and implementing his problem.

Nevertheless, the lack is that the MapReduce is
independent of the storage system, it can not take
into account all the input data for an available in-
dex. This explains the critics mainly from the da-
tabase community. As described in (Gruska and
Martin, 2010), the database community sees the
MapReduce as a step backwards from modern da-
tabase systems, in view of the MapReduce is a
very brute force approach and it lacks the optimiz-
ing and indexing capabilities of modern database
systems.

MapReduce, the powerful tool characterized by
its performance for heavy processing to be per-
formed on a large volume of data that it can be a
solution to have the best performance hence
makes it very popular with companies that have
large data processing centers such as Amazon and
Facebook, and implemented in a number of
places. However, Hadoop, the Apache Software
Foundation open source and Java-based imple-
mentation of the MapReduce framework, has at-
tracted the most interest. Firstly, this is due to the
open source nature of the project, additionally to
the strong support from Yahoo. Hadoop has its
own extensible, and portable file system: Hadoop
Distributed File System (HDFS) that provides
high-throughput access to application data.

Since it is introduced by Google, a strong inter-
est towards the MapReduce model is arising.
Many research works aim to apply the ideas from
multi-query optimization to optimize the pro-
cessing of multiple jobs on the MapReduce para-
digm by avoiding redundant computation in the
MapReduce framework. In this direction,
MRShare (Nykiel et al., 2010) has proposed two
sharing techniques for a batch of jobs. The key
idea behind this work is a grouping technique to
merge multiple jobs that can benefit from the shar-
ing opportunities into a single job. However,
MRShare incurs a higher sorting cost compared to
the naive technique . In (Wang and Chan, 2013)
two new job sharing techniques are proposed: The
generalize d grouping technique (GGT) that re-
laxes MRShare's requirement for sharing map
output. The second technique is a materialization
technique (MT) that partially materializes the map
output of jobs in the map and reduce phase.

On the other hand, the Pig project at Yahoo (Ol-
ston et al., 2008), the SCOPE project at Microsoft
(Chaiken et al., 2008), and the open source Hive
project 2 introduce SQL-style declarative lan-
guages over the standard MapReduce model, aim

118

to integrate declarative query constructs from the
database community into MapReduce to allow
greater data independence.

3 Relational DBMS
Since it was developed by Edgar Codd in 1970, as
presented in (Shuxin and Indrakshi, 2005), the re-
lational database (RDBMS) has been the domi-
nant model for database management. RDBMS is
the basis for SQL, and is a type of database man-
agement system (DBMS) that is based on the re-
lational model which stores data in the form of re-
lated tables, and manages and queries structured
data. Since the RDBMSs focuse on extending the
database system’s capabilities and its processing
abilities, RDBMSs have become a predominant
powerful choice for the storage of information in
new databases because they are easier to under-
stand and use. What makes it powerful, is that it is
based on relation between data; because the pos-
sibility of viewing the database in many different
ways since the RDBMS require few assumptions
about how data is related or how it will be ex-
tracted from the database. So, an important feature
of relational systems is that a single database can
be spread across several tables which might be re-
lated by common database table columns.
RDBMS also provide relational operators to ma-
nipulate the data stored into the database tables.
However, as discussed in (Hammes et al., 2014),
the lack of the RDBMS model resides in the com-
plexity and the time spent to design and normalize
an efficient database. This is due to the several de-
sign steps and rules, which must be properly ap-
plied such as Primary Keys, Foreign Keys, Nor-
mal Forms, Data Types, etc. Relational Databases
have about forty years of production experience,
so the main strength to point out is the maturity of
RDBMSs. That ensure that most trails have been
explored and functionality optimized. For the user
side, he must have the competence of a database
designer to effectively normalize and organize the
database, plus a database administrator to main-
tain the inevitable technical issues that will arise
after deployment.

A lot of work has been done to compare the
MapReduce model with parallel relational data-
bases, such as (Pavlo et al., 2009), where experi-
ments are conducted to compare Hadoop MapRe-
duce with two parallel DBMSs in order to evalu-
ate both parallel DBMS and the MapReduce
model in terms of performance and development
complexity. The study showed that both databases
did not outperformed Hadoop for user-defined

function. Many applications are difficult to ex-
press in SQL, hence the remedy of the user-de-
fined function. Thus, the efficiency of the
RDBMSs is in regular database tasks, but the
user-defined function presents the main ability
lack of this DBMS type.

A proof of improvement of the RDBMS model
comes with the introduction of the Object-Ori-
ented Database Relational Model (ORDBMS). It
aims to utilize the benefits of object oriented the-
ory in order to satisfy the need for a more pro-
grammatic flexibility. The basic goal presented in
(Sabàu, 2007) for the Object-relational database is
to bridge the gap between relational databases and
the object-oriented modeling techniques used in
programming languages. The most notable re-
search project in this field is Postgres (Berkeley
University, Californie); Illustra and PostgreSQL
are the two products tracing this research.

4 MapReduce-RDBMS: integrating par-
adigms

In this section, the use of relational DBMS and
MapReduce as complementary paradigms is con-
sidered.

It is important to pick the right database tech-
nology for the task at hand. Depending on what
problem the organization is trying to solve, it will
determine the technology that should be used.

Several comparative studies have been co
ducted between MapReduce and parallel DBMS
such as (Mchome, 2011) and (Pavlo et al., 2009).
MapReduce has been presented as a replacement
for the Parallel DBMS. While each system has its
strengths and its weaknesses. However, an inte-
gration of the two systems is needed, and as pro-
posed in (Stonebraker et al., 2010), MapReduce
can be seen as a complement to a RDBMS for an-
alytical applications, because different problems
require complex analysis capabilities provided by
both technologies.

In this context, we propose a model that inte-
grates the MapReduce model and a relational
DBMS PostgreSQL presented in (Worsley and
Drake, 2002), in a goal of queries optimization.
We suggest an OLAP queries process model in a
goal of minimizing Input/Output costs in terms of
the amount of data to manipulate, reading and
writing throughout the execution process.

The basic idea behind our approach is based on
the cost model to approve execution and selectiv-
ity of solutions based on the estimated cost of ex-
ecution. To support the decision making process
for analyzing data and extracting useful

119

knowledge while minimizing costs, we propose to
compare the estimates of the costs of running a
query on Hadoop MapReduce compared to Post-
greSQL to choose the least costly technology.

As the detailed analysis of the queries execu-
tion costs showed a gap mattering between both
paradigms, hence the idea of the thorough analy-
sis of the execution process of each query and the
implied cost. So, to better control the cost differ-
ence between costs of Hadoop MapReduce versus
PostgreSQL on each step of the query's execution
process, we propose to dissect each query for a set
of operations that demonstrates the process of ex-
ecuting the query and in order to control the dif-
ferent stages of the execution process of each
query (decomposing the query to estimate the
costs on each system for each individual opera-
tion). In this way, we can check the impact of the
execution of each operation of a query on the
overall cost and we can control the total cost of
the query by controlling the partial cost of each
operation in the information retrieval process. For
this purpose, we suggest to provide a detailed ex-
ecution plan for OLAP queries. This execution
plan allows zooming on the sequence of steps of
the process of executing a query. It details the var-
ious operations of the process highlighting the or-
der of succession and dependence. In addition, it
determines for each operation the amount of data
involved and the dependence implemented in the
succession of phases. These parameters will be
needed to calculate the cost involved in each op-
eration.

Having identified all operations performed dur-
ing the query execution process the next step is
then to calculate the cost implied in each operation
independently, in both paradigms PostreSQL and
MapReduce with the aim of controlling the esti-
mated costs difference according to the operations
as well as the total cost of query execution. At this
stage we consider each operation independently to
calculate an estimate of its cost execution on
PostreSQL on one hand then on MapReduce on
the other hand. For this goal, we propose to relay
on a cost model for each system PostgreSQL and
Hadoop MapReduce in order to estimate the I/O
cost of each operation execution on both system
independently.

We aim to estimate how expensive it is to pre-
process each operation of each query on both sys-
tems. Therefore, controlling the cost implied by
each operation as well as its influence on the total
cost of the query, allows the control of the cost of
each query to support the decision making process

and the selectivity of the proposed solutions based
on the criterion of cost minimization.
Based on a sample workload of OLAP queries,
and having identifying the cost of each operation
for each query executed on both systems inde-
pendently, the results analysis can be useful to de-
duct a generalized smart model that integrates the
two paradigms to process the OLAP queries in a
cost minimization way.

5 Conclusion
Given the exploding data problem, the world of
databases has evolved which aimed to escape the
limitations of data processing and analysis. There
has been a significant amount of work during the
last two decades related to the needs of new sup-
porting technologies for data processing and
knowledge management, challenged by the rise of
data generation and data structure diversity.

In this paper, we have investigated the MapRe-
duce model in one hand, then the Relational
DBMS technology in the other hand, in order to
present strengths and weaknesses of each para-
digm.

Although MapReduce was designed to cope
with large amounts of unstructured data, there will
be advantages in exploiting it in structured data
processing. In this fashion, we have proposed in
this paper a new OLAP queries process model in-
tegrating an RDBMS with the MapReduce frame-
work in a goal of minimizing Input/Output costs
in terms of the amount of data to manipulate, read-
ing and writing throughout the execution process.

Combining MapReduce and RDBMS technol-
ogies has the potential to create very powerful sys-
tems. For this reason, we plan to investigate other
types of integration for different applications.

Reference
Chaiken R., Jenkins B., Larson P.A., Ramsey B.,

Shakib D., Weaver S. and Zhou J. 2008. Scope:
Easy and efficient parallel processing of massive
data sets. Proceedings of the VLDB Endowment,
volume 1 (2). 1265-1276.

Demirkan H. and Delen D. 2013. Leveraging the capa-
bilities of service-oriented decision support sys-
tems: Putting analytics and big data in cloud. Deci-
sion Support Systems, Volume 55 (1). 412-421.

Dean and Ghemawat. 2004. MapReduce: Simplified
Data Processing on Large Clusters. Proceedings of
the 6th Conference on Symposium on Opearting
Systems Design & Implementation, volume 6.

Gruska N. and Martin P. 2010. Integrating MapReduce
and RDBMSs. Proceedings of the 2010 Conference

120

of the Center for Advanced Studies on Collaborative
Research, IBM Corp. 212-223.

Hammes D., Medero, H. and Mitchell H. 2014. Com-
parison of NoSQL and SQL Databases in the Cloud.
Southern Association for Information Systems
(SAIS) Proceedings. Paper 12.

McClean A., Conceicao RC., and O'Halloran M. 2013.
A Comparison of MapReduce and Parallel Database
Management Systems. ICONS 2013, The Eighth In-
ternational Conference on Systems: 64-68.

Mchome M.L. 2011. Comparison study between
MapReduce (MR) and parallel data management
systems (DBMs) in large scale data anlysis. Honors
Projects Macalester College.

Nykiel T., Potamias M., Mishra C., Kollios G. and
Koudas N. 2010. Mrshare: sharing across multiple
queries in mapreduce. Proceedings of the VLDB En-
dowment ,volume 3 (1-2). 494-505.

Ordonez C. 2013. Can we analyze big data inside a
DBMS?. Proceedings of the sixteenth international
workshop on Data warehousing and OLAP, ACM.
85-92.

Olston C., Reed B., Srivastava U., Kumar R. and Tom-
kins A. 2008. Pig latin: a not-so-foreign language
for data processing. Proceedings of the 2008 ACM
SIGMOD international conference on Management
of data , ACM. 1099-1110.

Pavlo A., Rasin A., Madden S., Stonebraker M.,
DeWitt D., Paulson E., Shrinivas L. and Abadi D.J.
2009. A comparison of approaches to large scale
data analysis. Proceedings of the 2009 ACM SIG-
MOD International Conference on Management of
data, ACM. 165-178.

Shuxin Y. and Indrakshi R. 2005. Relational database
operations modeling with UML. Proceedings of the
19th International Conference on Advanced Infor-
mation Networking and Applications. 927-932.

Sabàu G. 2007. Comparison of RDBMS, OODBMS
and ORDBMS. Informatica Economic.

Stonebraker M., Abadi D., DeWitt D.J., Madden S.,
Paulson E., Pavlo A. and Rasin A. 2010. Mapreduce
and parallel dbmss : friends or foes ?. Communica-
tions of the ACM, volume 53 (1). 64-71.

Wang G. and Chan CY. 2013. Multi-Query Optimiza-
tion in MapReduce Framework. Proceedings of the
VLDB Endowment, 40th International Conference
on Very Large Data Bases, volume 7 (3).

Worsley J.C. and Drake J.D. 2002. Practical Post-
greSQL. O'Reilly and Associates Inc

121

