
Data Modeling for NoSQL Document-Oriented Databases

Harley Vera, Wagner Boaventura, Maristela Holanda, Valeria Guimarães, Fernanda Hondo
Department of Computer Science

University of Brası́lia
Brası́lia, Brasil.

{harleyve,wagnerbf}@gmail.com, mholanda@cic.unb.br,
{valeriaguimaraes, fernandahondo}@hotmail.com

Abstract

In database technologies, some of the
new issues increasingly debated are
non-conventional applications, including
NoSQL (Not only SQL) databases, which
were initially created in response to
the needs for better scalability, lower
latency and higher flexibility in an era
of bigdata and cloud computing. These
non-functional aspects are the main reason
for using NoSQL database. However,
currently there are no systematic studies
on data modeling for NoSQL databases,
especially the document-oriented ones.
Therefore, this article proposes a NoSQL
data modeling standard in the form of
ER diagrams, introducing modeling
techniques that can be used on document-
oriented databases. On the other hand
the purpose of this article is not structure
the data using the model proposed, but
it does helping with the visualization of
data. In addition, to validate the proposed
model, a study case was implemented
using genomic data.

1 Introduction

Huge amounts of data are produced daily. They
are generated by smart phones, social networks,
banks transactions, machines measured by sensors
are part of Internet of Things provide information
that is growing exponentially. The management of
this data is currently performed in most cases by
relational databases that provide centralized con-
trol of data, redundancy control and elimination
of inconsistencies (Elmasri and Navathe, 2010);
but, some of these factors restrict the use of al-
ternative database models. Consequently, certain
limiting factors have led to alternative models of
databases in these scenarios. Primarily, motivated

by the issue of system scalability, a new gener-
ation of databases, known as NoSQL, is gaining
strength and space in information systems. The
NoSQL databases emerged in the mid-90s, from
a database solution that did not provide an SQL
interface. Later, the term came to represent solu-
tion that promote an alternative to the Relational
Model, becoming an abbreviation for Not Only
SQL.

The purpose, therefore, of NoSQL solutions is
not to replace the Relational Model as a whole,
but only in cases in which there is a need for
scalability and bigdata. In the recent years, a
variety of NoSQL databases has been developed
mainly by practitioners looking to fit their specific
requirements regarding scalability performance,
maintenance and feature-set. Subsequently, there
have been various approaches to classify NoSQL
databases, each with different categories and sub-
categories, such as key-value stores, column-
oriented and graph databases, oriented-document.
MongoDB (MongoDB, 2015), Neo4j (Partner et
al., 2013), Cassandra (D. Borthakur et al., 2011)
and HBase (F. Chang et al., 2008) are examples
of NoSQL databases. This article only applies to
NoSQL document-oriented databases, because of
the heterogeneous characteristics of each NoSQL
database classification.

Nonetheless, data modeling still has an impor-
tant role to play in NoSQL environments. The data
modeling process (Elmasri and Navathe, 2010) in-
volves the creation of a diagram that represents the
meaning of the data and the relationship between
the data elements. Thus, understanding is a funda-
mental aspect of data modeling (R. F. Lans, 2008),
and a pattern for this kind of representation has
few contributions for NoSQL databases.

Addressing this issue, this article proposes a
standard for NoSQL data modeling. This proposal
uses NoSQL document-oriented databases, aim-
ing to introduce modeling techniques that can be

129



used on databases with document features.
The remainder of the paper is organized as fol-

lows: Section II presents related works. Section
III explores the concepts of modeling for NoSQL
databases based on documents, introducing the
different types of relationships and associations.
Section IV shows the proposal model in the con-
text of NoSQL databases based on documents.
Section V presents the study case to validate the
proposal model. Finally in Section VI, presents
the conclusion of the research and future works.

2 Related Works

Katsov (H. Scalable, 2015) presents a study of
techniques and patterns for data modeling using
different categories of NoSQL databases. How-
ever, the approach is generic and does not define a
specific modeling engine to each database.

Arora and Aggarwal (R. Arora and R. Aggar-
wal, 2013) propose a data modeling, but restricted
to MongoDB document database, describing a
UML Diagram Class and JSON format to repre-
sent the documents.

Similarly, Banker (K. Banker, 2011) provides
some ideas of data modeling, but limited to Mon-
goDB database and always referring to JSON (D.
Crockford, 2006) format as a modeling solution.

Kaur and Rani (K. Kaur, K.Rani, 2013) present
a work for modeling and querying data in NoSQL
databases, especifically present a case study for
document-oriented and graph based data model.
In the case of document-oriented propose a
data modeling restricted to MongoDB document
database, describing the data model by UML dia-
gram class to represent documents.

3 Data Modeling For
Document-Oriented Database

An important step in database implementation is
the data modeling, because it facilitates the un-
derstanding of the project through key features
that can prevent programming and operation er-
rors. For relational databases, the data model-
ing uses the Entity-Relationship Model (Elmasri
and Navathe, 2010). For NoSQL, it depends on
the database category. The focus of this article is
NoSQL document-oriented databases, where the
data format of these documents can be JSON,
BSON, or XML (S. J. Pramod, 2012).

Basically, the documents are stored in collec-
tions. A parallel is made with relational databases,

the equivalent for a collection is the record (tu-
ple) and for a document it is the relation (table).
Documents can store completely different sets of
attributes, and can be mapped directly to a file for-
mat that can be easily manipulated by a program-
ming language. However, it is difficult to abstract
the modeling of documents for the entity relation-
ship model (R. F. Lans, 2008).

3.1 Modeling Paradigm for
document-oriented Database

The relational model designed for SQL has some
important features such as integrity, consistency,
type validation, transactional guarantees, schemes
and referential integrity. However, some applica-
tions do not need all of these features. The elimi-
nation of these resources has an important influ-
ence on the performance and scalability of data
storage, bringing new meaning to data modeling.

Document-oriented databases have some signif-
icant improvements, e.g., index management by
the database itself, flexible layouts and advanced
indexed search engines (H. Scalable, 2015). By
associating these improvements (some being de-
normalization and aggregation) to the basic prin-
ciples of data modeling in NoSQL, it is possi-
ble to identify some generic modeling standards
associated to document-oriented databases. Ana-
lyzing the documentation of the main document-
oriented databases, MongoDB (MongoDB, 2015)
and CouchDB (CouchDB, 2015), similar repre-
sentations of data mapping relationships can be
found: References and Embedded Documents,
a structure which allows associating a document
to another, retaining the advantage of specific per-
formance needs and data recovery standards.

3.2 References Relationship
This type of relationship stores the data by includ-
ing links or references, from one document to an-
other. Applications can solve these references to
access the related data in the structure of the doc-
ument itself (MongoDB, 2015). Figure 1 shows
two documents one of them for Fastq files and the
other to Activities.

3.3 Embedded Documents
This type of relationship stores in a single doc-
ument structure, where the embedded documents
are disposed in a field or an array. These denor-
malized data models allow data manipulation in
a single database transaction (MongoDB, 2015).

130



Figure 1: Example of documents referenced

Figure 2 shows a document of a genome Project
with a Activity embedded document.

Figure 2: Example of Embedded documents

4 Proposal For Document-Oriented
Databases Viewing

Unlike traditional relational databases that have
a simple form in the disposition in rows and
columns, a document-oriented database stores in-
formation in text format, which consists of collec-
tions of records organized in key-value concept, ie,
for each value represented a name (or label) is as-
signed, which describes its meaning. This storage
model is known as JSON object, and the objects
are composed of multiple name/value pairs for ar-
rays, and other objects.

In this scenario, the number of objects in a
database increases the abstraction complexity of
the logical relationship between the stored infor-
mation, especially when objects have references
to other objects. Currently, there is a lack of so-
lutions to conceptually represent those associated
with a NoSQL document-oriented database. As
described in (R. Arora and R. Aggarwal, 2013),
there is no standard to represent this kind of object
modeling, several diferent manners of modeling
may arise, depending on each data administrator’s
understanding, which makes learning difficult for
those who need to read the database model.

Therefore, this section proposes a standard for
document-oriented database viewing. Our pro-
posal has some properties, considering the con-

ceptual representation modeling type, such as:

• Ensuring a single way of modeling for
the several NoSQL document-oriented
databases.

• Simplifying and facilitating the understand-
ing of a document-oriented database through
its conceptual model, leveraging the abstrac-
tion and making the correct decisions about
the data storage.

• Providing an accurate, unambiguous and
concise pattern, so that database administra-
tors have substantial gains in abstraction, un-
derstanding.

• Presenting different types of relationships be-
tween collections defined as References and
Embedded documents.

• Assisting the recognition and arrangement of
the objects, as well as its features and rela-
tionships with other objects.

The following subsections present the concepts
and graphing to build a conceptual model for
NoSQL document-oriented databases.

4.1 Assumptions
Before starting the discussion about the approach
of each type of the conceptual modeling repre-
sentation, it is important to highlight some ba-
sic concepts about objects and relationships in a
document-oriented database:

• A document (or object) describes a set of at-
tributes that have their properties organized
in a key-value structure.

• Information contained in an document is de-
scribed by the identifier (key) and the value
associated with the key.

• Different types of relationships between doc-
uments are defined as References and Em-
bedded Documents

• Because NoSQL is a non-relational data
database, the concepts of normalization, do
not apply.

• Some concepts of relationships between ob-
jects are similar to ER modeling, such as car-
dinality (one-to-one, one-to-many, many-to-
many).

131



4.2 Basic Visual Elements
The proposed solution for a conceptual modeling
to the NoSQL document-oriented databases has
two basic concepts: Document and Collections.

As noted previously, a document is usually rep-
resented by the structure of a JSON object, and as
many fields as needed may be added to the docu-
ment. For this solution, a document and a collec-
tion of documents is represented by Figure 3.

Figure 3: Graphical representation of a Document

The following section presents the definitions of
relationship types and degrees for the objects fea-
tures.

4.3 Embedded Documents 1..1
This section proposes a model that represents the
one-to-one relationship for documents embedded
in another document. In this case, the proposal
is to use the representation of an individual Doc-
ument within another element that represents a
Document. In Figure 4, cardinality is also sug-
gested to specify the one-to-one relationship type.

Figure 4: One-to-one relationship for embedded documents

4.4 Embedded Documents 1..N
A one-to-many relationship in embedded docu-
ments is represented by the Figure 5. This is the
case when the notation to represent the cardinality
is the same used in UML (F. Booch et al., 2005)
and is placed in the upper right corner of the em-
bedded documents. According to the cardinality
one-to-many the larger document has embedded
multiple documents within it.

Figure 5: One-to-many relationship for embedded documents

4.5 Embedded Documents N..N
A many-to-many relationship in embedded docu-
ments is represented by the Figure 6. According to
the cardinality many-to-many the larger document
has a many to many relationship with the embed-
ded document. The representation of the cardi-
nality is the same used in UML (F. Booch et al.,
2005).

Figure 6: Many-to-many relationship for embedded documents

132



4.6 References 1..1

A document can reference another, and in this
case, one must use an arrow directed to the ref-
erenced document, as shown in Figure 7. One can
see that the directed arrow makes the left docu-
ment references to the right document. Further-
more, the cardinality of the relationship should be
specified above the arrow. The notation of cardi-
nality is based on UML (F. Booch et al., 2005).

Figure 7: One-to-one relationship for documents referenced

4.7 References 1..N

In NoSQL, a document can reference multiple
documents. To represent this relationship one
should use an arrow directed to the referenced doc-
uments, as shown in Figure 8. The left document
references multiple documents on the right side,
by the directed arrow. Furthermore, the cardinal-
ity of the relationship is represented by the nota-
tion ”1..N” as in UML (F. Booch et al., 2005).

Figure 8: One-to-many relationship for documents referenced

4.8 References N..N

To represent this relationship a bidirectional arrow
is used between reference documents, as shown
in Figure 9. The left document references multi-
ple documents on the right side and the right doc-
ument references multiple documents on the left
side. Furthermore, the cardinality of the relation-
ship is represented by the notation ”N..N” as in
UML (F. Booch et al., 2005).

Figure 9: Many-to-many relationship for documents referenced

5 Case Study
In order to evaluate our proposal, part of the work-
flow described in (J. C. Marioni et al., 2014) was
used. This workflow aimed at identify and com-
paring expression levels of human kidney and liver
RNA samples sequenced by Illumina. The work-
flow was designed in three phases (Figure. 10):

• Filtering: all the sequenced transcripts were
filtered, generating new files with good qual-
ity sequences.

• Alignment: transcripts were mapped to the
human genome used as reference.

• Statistical Analysis: a sort process was first
executed, followed by a statistical analy-
sis with the mapped transcripts to discover
which genes are mostly expressed both in
kidney and liver samples.

Figure 10: Workflow for analysis of differential expression among kid-
ney and liver RNA samples

After analyzing the previously mentioned con-
cepts, we have chosen to create a collection of
documents for each PROV-DM type used to cre-
ate a graph node. We also defined a collection
for genomic documents (raw data). The reference
relationship approach was chosen to connect all
PROV-DM components, complementary informa-
tion of PROV-DM and genomic documents. Based
on (R. de Paula et al., 2013) we defined the docu-
ments and the attributes. A set of minimum infor-
mation related to each one of these entities.

133



Figure. 11 shows our document based data rep-
resentation, explained as follows:

Figure 11: Data Modeling for Genomic Provenance for NoSQL Based
on Documents.

• Project: stores different experiments of one
agent. Attributes: Id, name, description, co-
ordinator, start date, end date and observa-
tion.

• FASTAQ: files used or generated in the activ-
ity; Attributes: Id, filename and description.

• Activity: represents the execution of a pro-
gram; Attributes: Id, name, program, version
program, command line, function, start date,
end date, account ID, used (name FASTQ,
local, size), wasGenerateBy (name FASTQ,
local, size), and wasAssociatedWith (Agent
name).

• Account: represents the performance of an
experiment; Attributes: Id, name, descrip-
tion, execution place, star date, end date,
observation, version and version date and
project Id.

• Agent: represents the person responsible for
a program or a phase in the workflow. At-
tributes: Id, name, login and password.

5.1 Implementation
In this case study, we have considered the Mon-
goDB NoSQL database to store provenance and
data files. The primary motivation for this choice
was MongoDB’s ability to manipulate large vol-
umes of data. MongoDB is an open-source
Document-Oriented database designed to store
large amounts of data from multiple servers.

It uses JSON- style documents with dynamic
schemas. The number of fields, content and size
of the document can differ from one document to
another. In practice, however, the documents in
a collection share a similar structure (MongoDB,
2015) and can be mapped directly to a file format
that can be easily manipulated by a programming
language.

MongoDB documents have a maximum size of
16MB. This feature is important to ensure that
a single document cannot use excessive amounts
of RAM. In order to store files larger than the
maximum size, MongoDB provides a GridFS API
(MongoDB, 2015). It automatically divides large
data into 256 KB pieces and maintains metadata
for all pieces. GridFS allows for the retrieval of
individual pieces as well as entire documents.

GridFS uses two collections to store the data:
fs.files collections, containing metadata about
files, and fs.chunks collections, which store the
actual 256k data chunks. The collections FS.file
contains the name of the FASTQ file. Thus, it
was possible to implement the relationship be-
tween MongoDB Collection Activity using Refer-
ence Document. In other words, we implemented
the connection between Level 1 and Level 2
through the File Name attribute that was present in
fileprovenance.files and Activity Collection. Fig-
ure. 12 illustrates this particular implementation.

Figure 12: GridFS Implementation

6 Conclusions and Future Works

In contrast to relational database management
systems, NoSQL databases are designed to be
schemaless and flexible. Therefore, the challenge
of this work was to introduce a data modeling stan-
dard for NoSQL document-oriented databases, in
contrast to the original idea for NoSQL databases.

134



The objective was to build compact, clear and
intuitive diagrams for conceptual data modeling
for NoSQL databases. While the current stud-
ies propose generic techniques and do not define
a specific modeling engine to NoSQL database,
our idea was to present a graphical model for any
NoSQL document-oriented database. Moreover,
while other studies describe techniques based on
UML Diagram Class and JSON format as a mod-
eling solution, we have a new approach to solve
the conceptual data modeling issue for NoSQL
document-oriented databases.

Future work includes: verifying our model for
other NoSQL database classifications, such as
key-value and column.

References
R. Elmasri and S. Navathe. 2010. Fundamentals of

Database Systems. Pearson Addison Wesley.

MongoDB. 2015. Document database. [Online]
Available: http://www.mongodb.org/ [Re-
trieved:April, 15].

J. Partner, A. Vukotic, and N. Watt. 2013. Neo4j in
Action, O’Reilly Media.

D. Borthakur et al. 2011. Apache hadoop goes real-
time at facebook, in Proceedings of the 2011 ACM
SIGMOD International Conference on Management
of data. ACM, 2011, pp. 1071–1080.

F. Chang et al. 2008. “Bigtable: A distributed storage
system for structured data, ACM Transactions on
Computer Systems (TOCS), vol. 26, no. 2, 2008, p.
4.

R. F. Lans. 2008. Introduction to SQL: mastering the
relational database language, Addison-Wesley Pro-
fessional.

H. Scalable. 2015. Nosql data mod-
eling techniques. [Online] Avail-
able: http://highlyscalable.
wordpress.com/2012/03/01/
nosql-data-modeling-techniques/
[Retrieved:April, 15].

R. Arora and R. Aggarwal, 2013. Modeling and query-
ing data in mongodb, International Journal of Sci-
entific and Engineering Research (IJSER 2013), vol.
4, no. 7, Jul. 2013, pp. 141–144.

K. Banker, 2011. MongoDB in action, Manning Pub-
lications Co.

D. Crockford, 2006. RFC 4627 (Informational) The
application json Media Type for JavaScript Object
Notation (JSON), IETF (Internet Engineering Task
Force)

K. Kaur, K.Rani, 2013. Modeling and querying data in
NoSQL databases, In Big Data, IEEE International
Conference on (pp. 1-7). IEEE.

S. J. Pramod, 2012. Nosql distilled: A brief guide to
the emerging world of polyglot persistence,

MongoDB, 2015. Data modeling in-
troduction, Online Available: http:
//docs.mongodb.org/manual/core/
data-modeling-introduction/ [Re-
trieved: April, 15].

CouchDB, 2015. Modeling entity relation-
ships in couchdb, [Online]. Available:
http://wiki.apache.org/couchdb/ [retrieved: April,
15]

G. Booch, J. Rumbaugh, and I. Jacobson, 2005. The
unified modeling language user guide., Pearson Ed-
ucation India.

J. C. Marioni, C. E. Mason, S. M. Mane, M. Stephens,
and Y. Gilad, 2014. RNA-SEQ: An assessment of
technical reproducibility and comparison with gene
expression arrays, Genome Research, vol. 18, no. 9,
pp. 1509–1517.

R. de Paula, M. Holanda, L. SA Gomes, S. Lifschitz
and M. E. MT. Walter, 2013. Provenance in bioin-
formatics workflows., BMC Bioinformatics 14 (Su-
ppl 11):S6.

135


