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Abstract

Rumors or information can spread quickly
and reach many users in social networks.
Models for understanding, preventing or
increasing the diffusion of information are
of greatest interest to companies, gov-
ernments, scientists, etc. In this paper,
we propose an approach for maximizing
the information diffusion by selecting the
most important (central) users from com-
munities. We also analyze the selection
of the most central vertices of the net-
work and considered artificial and real so-
cial networks, such as email, hamsterster,
advogato and astrophysics. Experimental
results confirmed the improvement of the
final fraction of informed individuals by
applying the proposed approach.

1 Introduction

The modeling of propagation or diffusion pro-
cesses in social networks has recently received
more attention, since it allows to understand how
a disease can be controlled or how information
spread among individuals. These diffusion pro-
cess are generally analyzed employing complex
network theory (Barrat et al., 2008; Castellano et
al., 2009). The area of complex networks seeks
to study and understand the dynamics and behav-
ior of complex systems, from the structure of the
network to the internal dynamics or interactions.
Models that describe the evolution of rumors
can be adapted to analyze the spread of spam on
the Internet, advertising and marketing, political
ideologies or technological news between individ-
uals (Castellano et al., 2009). In such cases, the
representation in complex networks enables the
analysis of traditional models and the heteroge-
neous structure, which has a strong influence on
the information diffusion process (Moreno et al.,
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2004; Barrat et al., 2008; Castellano et al., 2009).
Therefore, some individuals can have a higher in-
fluence than others according to the network struc-
ture. Researchers have focused on identifying the
most influential vertices (Kempe et al., 2003; Kit-
sak et al., 2010; Lawyer, 2012; Pei and Makse,
2013; Hébert-Dufresne et al., 2013) according to
topological properties. It is expected this influ-
encers convince the largest number of individuals
in the network. However, the selection of more
than one of them not necessarily maximizes the
expected fraction of informed individuals, com-
pared to an uniformly random selection approach.
In this paper, we propose an approach to max-
imize the information diffusion considering the
community structure of the network. The com-
munity symbolizes a group of individuals with a
greater tendency to have more internal than ex-
ternal connections to other groups. The reason is
that vertices belonging to the same community are
likely to be more similar to each other and share
similar properties and affinity. We confirmed that
selecting the most influential individual from each
community as initial spreaders increases more the
information diffusion than selecting the most in-
fluential individuals from the whole network.

As a motivation example, let us consider a com-
pany that wants to market a new product in the
blogosphere. The company could select three very
influential individuals of this social network (blog-
gers with thousands of access) to advertise its
product. However, these influencers may be popu-
lar in the same group of people. On the other hand,
if the strategy is to identify the three main commu-
nities on the network and select the most influen-
tial individuals of each community, the company
would achieve a variety group of users and maxi-
mize the marketing diffusion.

The main contribution of this paper is the in-
formation diffusion approach based on selecting
the most influential individuals from communities.



We employed an artificial scale-free and four real
networks: email, hamsterster, advogato and as-
trophysics. We applied the SIR model for rumor
propagation selecting the initial seeds from the
whole network and from the communities. The
impact that the Truncate (TP), Contact (CP) or
Reactive (RP) processes have in the information
diffusion was analyzed. The experimental results
showed that the selection of individuals from the
communities as initial spreaders, the final fraction
of informed individuals is improved.

The remainder of the paper is organized as fol-
lows: Section 2 introduces some definitions and
measures covered in this paper, the community de-
tection algorithm applied and the propagation pro-
cess in networks. Section 3 brings some related
work. Section 4 presents the proposed approach
for information diffusion based on communities.
Section 5 exhibits the experimental results on an
artificial scale-free and four real social networks.
Finally, Section 6 discusses the final remarks.

2 Theoretical background

A network is a collection of items called nodes or
vertices, which are joined together by connections
called links or edges. Formally we define the net-
work G = (V, E, W), where V = {vy,va,...v,}
is the set of N vertices, E = {e1, ea,...ep,}is the
setof M edges and W = {wy, wa, ... w,,} are the
weights of the edges that determine the strength of
the interaction between the respective vertices, in
the case of weighted networks. In mathematical
terms, an undirected and unweighted network can
be represented by an adjacency matrix A, in which
two connected vertices ¢ and j are in the matrix
ai; = aj; = 1, otherwise, they are equal to 0.

A path is a consecutive sequence that starts at
vertex ¢ and ends in j, so that vertices are vis-
ited more than once. The distance or length of the
path is defined as the number of edges contained in
the sequence. The shortest distance between two
vertices is known as the shortest path or geodesic
path g; ;. A component is the largest sub-set of
vertices from the network in which exist at least
one path between each pair of vertices, but never
connect to another component. A connected net-
work has only one component. When the networks
have more than one component, we considered the
largest of them.

The degree or connectivity of vertex ¢, called
as k;, is the number of edges or connections that
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vertex ¢ has. In the case of directed networks is the
sum of the degrees of input (edges that reach the
vertex) and output (edges that leave the vertex).
The average degree (k) is the average of all k; of
the network. The vertices that have a very high
degree in the network are called hubs.

The degree distribution of a network P (k) is the
probability of randomly select a vertex with degree
k. Social networks present scale-free degree dis-
tribution (Barabasi, 2007; Newman, 2010), with
P(k) ~ k™7, in which most of the individuals
have low degree, near to the average, and only a
few of them have very high degree (hubs). The
level of disorder or heterogeneity in vertices con-
nections is obtained with the entropy of degree dis-
tribution. We employed the normalized version of
the Shannon entropy, i.e.

H = _leio P(k)log(P(k))

Tog (V) ; ey

with 0 < H < 1. The maximum value for the
entropy occurs when P(k) shows a uniform distri-
bution and the lowest possible value happens when
all vertices have the same degree. The entropy of a
network is related to the robustness and their level
of resilience.

The robustness is also related to the correlation
degree of the network. A network is assortative,
or positive correlated, if vertices tend to connect
with vertices with similar degree. A Network is
dissassortative, or negative correlated, if vertices
with low degree tend to connect with higher con-
nected vertices (hubs). When networks do not
present any of above patterns, they are called as
non-assortative. For the calculation of the network
correlation we employed the Pearson coefficient,
formulated with adjacency matrix as
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where M is the total number of edges in the net-
work. If » > 0, then the network is assortative.
If » < 0 the network is dissassortative. If » = 0,
then there is no correlation between the degree of
vertices.



2.1 Centrality measures

In complex and social networks have been pro-
posed measures to describe the importance or cen-
trality of vertices (Costa et al., 2007) according to
topological and dynamical properties. The cen-
tralities adopted in this work are briefly described
as follow.

Degree centrality (DG) is related with the num-
ber of connections or popularity of a vertex (Costa
et al., 2007) and in terms of the adjacency matrix
is expressed as

3)
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Betweenness centrality (BE) quantifies the
number of shortest paths that pass through a vertex
j between all pair of different vertices (¢, k) (Free-
man, 1977). It expresses how much a vertex B;
works as bridge or is a trusted vertex in the trans-
mission of information, i.e.

Z Uz'k:(j)

BJ'
Ok
ikeVitk

“

where o, is the total number of different shortest
path between i and k, and o () is the number of
times j appears in those paths.

PageRank centrality (PR) expresses the impor-
tance of a vertex according to the probability that
other vertices have to arrive at it, after a large num-
ber of steps (Brin and Page, 1998). The idea is to
simulate the surfing on the net. The user can fol-
low the links available at the current page or jump
to other by typing a new URL. In social terms, it
can be approached like the more cited or renowned
individuals. The formalization of the PageRank
centrality is

-t
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where 7 are the PageRank values for each vertex
in the #** step of navigation and G is known as
the Google matrix. When ¢ = 0 we have by de-
fault 7° = {1,...,1}. The jumps are represented
by a probability o and we adopted the same value
as defined in the original version (Brin and Page,
1998).

2.2 Community detection

Communities are sets of densely interconnected
vertices and sparsely connected with the rest of the
network (Newman, 2010). Vertices that belong to
the same community, in general, share common
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properties and perform similar roles. Therefore,
the division of a network into communities helps
to understand their topological structure (struc-
tural and functional properties) and its dynamic
processes, obtaining relevant information and fea-
tures to the network domain.

We can evaluate a partition based on the scores
obtained from a quality measure. The goal is to
evaluate expected features in a good community
division. One of the most popular quality mea-
sures is the modularity ¢ (Newman, 2004). It
compares the current density of intra-community
and inter-community edges relative to a random
network with similar characteristics. It is based on
the fact that random networks have no community
structure.

Given a network with ¢ communities, the
modularity is calculated by a symmetric matrix
N x N, in which elements along the main diag-
onal e;; represent connections into the same com-
munity and elements e;; represent connections be-
tween different communities ¢ and j. Equation 6
shows the formulation of Q.

2

Q:Z eij — Zeij (6)
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If a specific division provides less edges be-
tween communities than would be expected by
random connections, the value of () would be 0.
When the network has isolated communities the
value of () would be 1. This measure is employed
by several techniques to identify communities in
networks systems, especially in divisive and ag-
glomerative methods (Guimera et al., 2003; New-
man, 2004; Newman, 2006).

Newman (Newman, 2004) proposes an agglom-
erative method that is an optimized greedy al-
gorithm, called fastgreedy. The approach starts
with a copy of a real network of IV vertices with
no connections, producing at first N communi-
ties. At each iteration, two communities ¢; and c;,
which have connections in real network, are cho-
sen in order to obtain the greatest improvement of
@ (Equation 7). A pruning is performed in the
search space considering only the edges that exist
between communities. Therefore, execution time
is reduced when considering the new () function

(Equation 7).
D €ij D eij) o
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The result can also be represented as a den-
drogram. Cuts at different levels of the dendro-
gram produce divisions with greater or lesser num-
ber of communities, and the best cut yields the
largest value of (). The algorithm at each step has
O(M + N). Since there are at most N — 1 join
operations required to build a complete dendro-
gram, their overall complexity is O((M + N)N),
or O(N?), for sparse graph. Consequently, by
adopting this method is more treatable the analysis
of communities in larger networks.

2.3 Propagation process on networks

In classical rumor diffusion models the ignorant
or inactive individuals (S) are those who remain
unaware of the information, the spreaders ([) are
those who disseminate the information and the sti-
fler (R) are those who know the information but
lose the interest in spreading it. All vertices have
the same probability S for transmit the information
to their neighbors and p for stopping to be active.

The Maki-Thompson (MT) (Maki and Thomp-
son, 1973) model is a spreader-centric approach
employed for describing the propagation of ideas
and rumors on networks. In the MT process when-
ever an active spreader ¢ contacts a vertex j that is
inactive, the latter will become active with a fixed
probability 8. Otherwise, in the case that j knows
about the rumor, it means j is an active spreader or
a stifler, the vertex ¢ turns into a stifler with proba-
bility 1. The behavior when the spreader stops to
propagate can be understood because the informa-
tion is too much known (contacting spreaders) or
without novelty (contacting stifler).

Three possible choices related with the spreader
behavior during the diffusion have been re-
ported (Borge-Holthoefer et al., 2012; Meloni et
al., 2012). They are the Reactive process (RP),
Truncated process (TP) and Contact Process (CP).
However, a clear analysis about the impact of
spreaders behavior in the propagation process has
not been tackled yet. Moreover, there is not a con-
sensus about what to employ in rumor or informa-
tion diffusion and it may cause a misinterpretation
of results. The three main characteristic behaviors
reported to spreaders are described as follow.

e Reactive Process (RP): In each iteration, the
spreaders try to pass the rumor among all
their ignorant neighbors. After that, it evalu-
ates whether it will become stifler in the next
iteration or not, considering the contact with
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all their spreader and stifler neighbors.

Truncated Process (TP): It consists of trun-
cate or interrupt the contagion in the precise
time. In each iteration and for each spreader,
it is randomly selected one neighbor at time,
and setting up the states of the contact as cor-
responds. The selection continues until the
spreader visit all its neighbors or it becomes
stifler, whichever occurs first.

Contact Process (CP): In each time step and
for each spreader, it is chosen at random a
single neighbor. Then, it is resolved the tran-
sition states according to the rule that corre-
sponds. After that, continues with the next
spreader of the network of the same time step.

Different theoretical models have been pro-
posed for modeling the rumor dynamics on net-
works (Moreno et al., 2004; Barrat et al., 2008;
Castellano et al., 2009; Borge-Holthoefer et al.,
2012). These analytical models make assump-
tions about the network structure, such as the de-
gree correlation or distribution, compartments or
class of vertices with same probabilities, homoge-
neous/heterogeneous mixing or mean field theory.
Notwithstanding all of them claim that their nu-
merical solutions agree with the MC simulations,
so we adopt this approach as an exploratory re-
search.

3 Related work

Many approaches have been developed in order
to understand the propagation of ideas or infor-
mation through social networks (Castellano et al.,
2009). Specially, characterize the individuals that
are most influential in the propagation process has
attracted the attention of researchers (Richardson
and Domingos, 2002; Kempe et al., 2003; Kitsak
et al., 2010; Pei and Makse, 2013).

The conventional approach for describing the
most influential vertices is performing a micro-
scopic analysis on the network. Vertices are
classified considering their topological properties,
sorted and ranked in order to generalize their
ability to propagate (Kitsak et al., 2010; Hébert-
Dufresne et al., 2013; Pei and Makse, 2013).
However, to find the set of initial vertices that
maximize the propagation capacity, the selection
of the most influential spreader may produce an
overlap of influence in the population (Kitsak et
al., 2010; Pei and Makse, 2013).



In terms of topological properties, there not
exists a consensus about what is the more ac-
curate measure that describes the most influen-
tial vertices. Some researches claim that hubs
are more representative to influence others ver-
tices (Pastor-Satorras and Vespignani, 2001; Al-
bert and Barabasi, 2002). Vertices with higher
degree are more efficient to maximize the prop-
agation because, in general, hubs not tend to con-
nect with each other and thus can achieve a greater
number of vertices (Kitsak et al., 2010). In the
case of communities, the degree proportion of a
vertex ¢ is defined as the number of edges that ¢
has in each community. This degree proportion
was found as a good descriptor of influence for
communities (Lawyer, 2012).

On the other hand, the most influential vertices
are described as those with the largest Between-
ness centrality (Hébert-Dufresne et al., 2013), be-
cause they intermediate the communication be-
tween groups of vertices, which increase their in-
fluence. According to the authors, Betweenness
centrality is a better descriptor of the most influ-
ential spreader in communities.

The PageRank is also considered a better
measure to describe the most influential ver-
tices (Cataldi et al., 2010). The reason is that it
employs the random walk concept over the net-
work to be calculated and vertices with higher val-
ues mean higher probability to be visited.

Finally, Kempe et al. (2003) propose a greedy
algorithm to obtain 7 initial spreaders that maxi-
mizes the diffusion influence. The authors adopt a
discrete optimization approach and prove that the
optimization problem is NP-hard. It was imple-
mented considering the independent and weighted
cascade model that have only two states, which are
different to the SIR model. The method evaluates
one vertex at time to be added in the set of selected
seeds. The new vertex is accepted if it is what most
increment the diffusion. However, this approach
has a very higher computational cost problem, al-
though new researches try to optimize the perfor-
mance (Chen et al., 2009).

4 Information diffusion by communities

Let us consider a constant population of N ver-
tices in all time steps. [Each vertex can be
only in one state, that is I;(t) = 1 iff i €
I, otherwise I;(t) = 0,and S;(¢)+1;(t)+R;(i) =
1. The macroscopic fraction of ignorant (¢(t)),
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spreaders (¢(¢)) and stifler (p(t)) over time is cal-
culated as ¥ (t) = & Ziil S;(t), that is similar to
the other states and always fulfill ¥ (t) + ¢(t) +
©(t) = 1. We assume that infection and recov-
ering do not occur during the same discrete time
window or step.

4.1 Setup

The initial setup for the propagation is 1)(0)
1 —n/N,¢(0) = n/N and ¢(0) = 0, where n
represents the seeds or number of initial spread-
ers. Each simulation begins with a selection of
7 vertices. At each time step, all spreaders uni-
formly select and try to infect its neighbors with
probability (3, or stop the diffusion with probabil-
ity p according to the spreader behavior adopted.
Successful change of state (to be spreader or to be
stifler) are effective at the next iteration. The sim-
ulations run until the end of the process is reached,
when ¢(c0) = 0.

4.2 Community selection approach

We propose to select the initial spreaders from the
community division of the network. The multiple
seeds are the most central vertices of each commu-
nity. The community division may be calculated
by some divisive or agglomerative method (Sec-
tion 2.2) and here the fastgreedy algorithm was
employed. The method is detailed as follow:

First, given a required number of 7 initial
spreaders, we find the 7 main communities of the
network by the fastgreedy algorithm. Then, each
community is isolated, which produces 7 com-
ponents. The isolation process consists in main-
taining the intra-community edges and erasing the
inter-community connections. For each isolated
community, a specific centrality measure is cal-
culated to all vertices. Since vertices with higher
centrality are considered more suitable to influ-
ence on the network, we select the most impor-
tant vertex from each community. Therefore, these
vertices influence more in their own community
and the overlap of influence in the population is
minimized. At the end, 1 seeds are selected and
they have the best centrality value of its commu-
nity. We take the original full network, the 7 seeds,
the parameters and execute the corresponding sim-
ulations.

For the centrality measure, the point is to
find what centrality better identifies the influential
spreaders, by communities and in the whole net-
work, that maximizes the information diffusion.
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Figure 1: MT (Maki and Thompson, 1973) propagation in an artificial scale-free network with N = 1000, (k) = 8 and
1 = 1% of initial seeds selected. The color bar shows the final fraction of informed individuals. The behavioral approaches for
spreader analyzed are: (a) Reactive process (RP); (b) Truncated process (TP); and (c) Contact process (CP)

Here, the degree (DG), PageRank (PR) and Be-
tweenness (BE) centralities were considered.

S Experimental results

In this section we analyzed the information dif-
fusion in an artificial scale-free and four real so-
cial networks. We evaluated the impact spread-
ers behavior have in the diffusion on the networks.
Then, the results about the selection of initial
spreaders by communities, best-ranked vertices of
the network and random seeds were explored.

5.1 Spreader behavior analysis

We analyzed the three behavioral approaches for
the spreaders and present the impact they produce
on the propagation process. We considered the
MT model with an artificial scale-free network of
size N = 1000 and (k) = 8. In order to under-
stand the overall spectral effect with the parame-
ters, the simulations were evaluating a range of (3
and £ in (0, 1]. Therefore, the differences between
the approaches are evidenced. For each tuple of
values (0, ), it was selected 100 times at random
17 = 1% of initial spreader (seeds) and each time
was an average over 50 executions.

The impact of the behavioral approach in the fi-
nal fraction of informed individuals is shown in
Figure 1. We observed that the CP approach is
less redundant in the number of contacts made by
spreader, producing lower fractions of informed
individuals, in comparison to the other behaviors.
Still, because the single contact made by iteration,
the CP behavior is more similar to a propagation
through the “word-of-mouth” situation.

The RP approach obtained more than 80% of
informed individuals with values of 5 > 0.3, no
matter values of u. Therefore, the RP approach
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favors a viral diffusion on the network with lower
values of 8 and it happens independently of which
are the initial seeds. For this reason, RP is a more
suitable approach to simulate broadcasting propa-
gation.

On the other hand, the TP behavior is more re-
lated to the contact network scenario, where the
position and topological characteristics of seeds
may have influence in the diffusion. Moreover, TP
presents more balanced results, near 60% when
B =~ u, and contacts are not as restricted as CP
behavior. For this reason, we adopted hereafter
the MT-TP approach as the propagation process
for the analysis.

5.2 Multiple initial spreader analysis

The experiments were performed with three pos-
sibilities for choosing the initial spreader: (i) by
randomly selecting 7 individuals as initial seeds
in the network; (ii) by selecting the best- ranked 7
individuals with highest value of a specific central-
ity of the network; and finally, (iii) by detecting
communities on the network and for each isolated
community selecting the individual with highest
value of a specific centrality measure. The cen-
trality measures selected were degree (DG), Be-
tweenness (BE) and Pagerank (PR).

5.2.1 Real social networks

We adopted the email (Guimera et al., 2003), ad-
vogato (Kunegis, 2014a), astrophysics (Newman,
2001) and hamsterster (Kunegis, 2013; Kunegis,
2014b). All of them were assumed as undirected
and unweighted networks and also it was consid-
ered the largest component for the simulations.
The structural properties of the networks are sum-
marized in Table 1, with the respective number of
vertices N, the average degree (k), shortest paths
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Figure 2: MT-TP propagation in an artificial scale-free network with N = 1000 and (k) = 8. The final fraction of informed
individuals are shown in the color bar. The selection of = 4% of seeds was made by: (a) 7 communities taking the individual
with best PR centrality of each one; (b) uniform random selection of individuals; and (c) the 7 individuals with the best PR
centrality of the network. Solid white lines to the left in the contour plots show the 3 and p combinations that achieved 35% of
informed individuals. Dashed white lines show the combinations that achieved 60% of informed individuals.

Table 1: Topological properties and results of community detection of the networks: last column, the best modularity () and

community division by fastgreedy algorithm

Network N (k) | (9) H p FastGreedy

Q Nc

email 1133 | 9.62 | 3.60 | 045 | 0.01 | 049 16

hamsterster | 2000 | 16.1 | 3.58 | 0.48 | 0.02 | 0.46 57

advogato 5054 | 15.6 | 3.27 | 0.40 | -0.09 | 0.34 49
astrophysics | 14845 | 16.1 | 479 | 0.38 | 0.23 | 0.63 1172

average (g), normalized entropy H, pearson cor-
relation p. Also, the best modularity ¢) value and
division number of communities NC' of the net-
works produced by the FastGreedy algorithm are
reported.

email represents a social network of informa-
tion exchanged by emails between members of the
Rovira i Virgili University, Tarragona, with largest
hub degree equal to 71.

hamsterster is an undirected and unweighted
network based on the website data HAMSTER-
STER.COM. The edges represent a relationship of
family or friend among users. The largest hub has
degree equal to 273.

advogato is an online community platform for
developers of free software launched in 1999. Ver-
tices are users of advogato, the directed edges rep-
resent trust relationships. The largest hub has de-
gree equal to 807.

Finally, astrophysics is a collaborative net-
work between scientists on previous studies of
astrophysics reported in arXiv during January 1,
1995 until December 31, 1999. The network is
weighted and directed and originally it has 16707
vertices. The largest hub of the main component
has 360 connections.
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5.2.2 Information diffusion results

The final fraction of informed individuals (¢ (o0))
was averaged over 100 executions for each combi-
nation of initial seeds and parameters. This aver-
age represents the propagation capacity achieved
by the selected seeds.

We evaluated the relation between the param-
eters and the selection of the initial spreaders in
an artificial network. In this experiment the PR
was defined as the centrality measure employed to
find the seeds in the communities and the whole
network. A value of 7 = 4% of initial spread-
ers was adopted for a scale-free network of size
N = 1000, (k) = 8, {g) = 3.19, H = 0.33 and
p = —0.04.

The propagation capacity ¢(oo) was affected
according to the initial seeds (Figure 2). The solid
and dashed white curves represent the combina-
tion of 3 and p parameters that obtained 35% and
60% of informed individuals respectively. We ob-
served that these curves show a well defined linear
pattern, which means any proportion of A = 8/pu
will obtain equivalent ¢ (o) results.

The selection of seeds by communities (Figure
2(a)) improved the diffusion on the network in
comparison with the Random seeds (Figure 2(b))
and Best-ranked vertices (Figure 2(c)). This result
is corroborated by the increase of the white lines
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Figure 3: Propagation capacity of MT-TP model in the four real networks given the selection of seeds by communities (red
points), best-ranked (black points), and randomly (blue points).

Table 2: Average of propagation capacities for the full range of € [1, 50], for each network achieved by seeds: (second big
column) selecting the most important individuals from communities; (third big column) selecting the best-ranked individuals
of the network; and (last column) randomly selecting the initial seeds. The adopted measures were Betweenness (BE), degree

(DG) and PageRank (PR) centralities

Network Community Best ranked Random
BE | DG | PR BE | DG | PR | selection

email 0.6065 | 0.6105 | 0.6150 || 0.5880 | 0.5840 | 0.5884 || 0.6023
hamsterster || 0.5485 | 0.5693 | 0.5728 || 0.5306 | 0.5226 | 0.5271 0.5273
advogato 0.4077 | 0.4102 | 0.4112 || 0.3993 | 0.3958 | 0.4007 || 0.3805
astrophysics || 0.5417 | 0.5398 | 0.5415 || 0.5321 | 0.5278 | 0.5301 0.5337

slope. However, a little decrease in the lines slope
is evidenced in the MT-TP Best case with respect
to the MT-TP Random case.

Consequently, we sought to analyze the impact
of 1 and centrality measures in the selection of
seeds in the diffusion process. We varied the num-
ber of communities and seeds from 2 to 50 and
fixed 5 = 0.3 and p = 0.2 for all simulations.
The real social networks described and the MT-TP
propagation model were considered in the anal-
ysis (Figure 3). The random selection of initial
spreader (blue points, RANDOM) or best-ranked
vertices (black points, BST-**) of DG, BE or PR
centrality, produced a constant propagation capac-
ity (p(o0)). In some case, random selection of
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seeds reached a higher propagation capacity than
the selection of best-ranked vertices. For a larger
number of initial spreaders, ¢(co) tend to fall
when the best-ranked vertices are selected.

On the other hand, when the community de-
tection was performed and individuals with high-
est values of DG, BE or PR in each community
(red points, COM-**) were selected, the propa-
gation capacity was improved and achieved the
best results. Therefore, more individuals were in-
formed in the network by the community selec-
tion, with the same propagation constraint (num-
ber of seeds).

In terms of the topological measures, we ob-
served that vertices with highest PageRank cen-



trality in the communities (COM-PR) obtained
in average the best propagation results (Table 2).
Even in the selection of the best-ranked vertices,
the PageRank was notable. Another important
point is that often, the uniformly random selec-
tion of initial spreader could be a better option
than select the most central vertices (best-ranked)
of the network. This is contrary what is cur-
rently expected and adopted in marketing cam-
paigns, for instances. For all networks and for all
size of seeds, we evidenced that starts the diffu-
sion from the best-ranked vertices produces lower
influence, or final fraction of informed individu-
als, than purely select vertices at random; in some
cases, the best-ranked selection achieved the worst
results. However, the selection of initial spread-
ers by communities showed, independently of the
centrality measure, higher results.

6 Final remarks

In this work, we proposed a method for maximiz-
ing the information diffusion on networks. First,
we analyzed the impact of the spreader behavior
in the propagation and confirmed that the Trun-
cate Process (TP) is more suitable to simulate in-
formation diffusion on networks. We applied com-
munity detection and targeted the most influential
vertices from these communities as initial seeds.
Experimental results on an artificial scale-free and
four real social networks confirmed the increase in
the final fraction of informed individuals. More-
over, it was found that the PageRank centrality in
communities was a better choice in terms of effi-
ciency and influence maximization.

A brief overview about complex network mea-
sures, community detection and information prop-
agation was introduced. We present our proposal
to select initial spreaders by communities. There
is still an open problem related to an exact defini-
tion of what is considered a community and what
would be the ideal division. Nevertheless, we var-
ied the number of communities from 2 to 50 and
in general (for every community division) our pro-
posal achieved better results versus propagation
without considering the community structure.

In future work, other measures for selecting
influential individuals on networks could be ex-
plored, in addition to DG, BE and PR applied here.
Also, other models of propagation and network
topologies could be tested, as well as novel strate-
gies taking into account community information.
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