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Foreword

This volume contains the papers presented at the 11th International Workshop
on Uncertainty Reasoning for the Semantic Web (URSW 2015), held as a part of
the 14th International Semantic Web Conference (ISWC 2015) at Bethlehem, USA,
October 12, 2015. 4 technical papers and 2 short papers were accepted at URSW
2015. All the papers were selected in a rigorous reviewing process, where each paper
was reviewed by three program committee members.

The International Semantic Web Conference is a major international forum for
presenting visionary research on all aspects of the Semantic Web. The International
Workshop on Uncertainty Reasoning for the Semantic Web provides an opportunity
for collaboration and cross-fertilization between the uncertainty reasoning commu-
nity and the Semantic Web community.

We wish to thank all authors who submitted papers and all workshops par-
ticipants for fruitful discussions. We would like to thank the program committee
members for their timely expertise in carefully reviewing the submissions.
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Evaluating Uncertainty in Textual Document

Fadhela Kerdjoudj1,2 and Olivier Curé1,3

1 University of Paris-Est Marne-la-vallée, LIGM, CNRS UMR 8049, France,
{fadhela.kerdjoudj, ocure}@univ-mlv.fr

2 GeolSemantics, 12 rue Raspail 74250, Gentilly, France.
3 Sorbonne Universités, UPMC Univ Paris 06, LIP6, CNRS UMR 7606, France

Abstract. In this work, we consider that a close collaboration between
the research fields of Natural Language Processing and Knowledge Rep-
resentation becomes essential to fulfill the vision of the Semantic Web.
This will permit to retrieve information from vast amount of textual
documents present on the Web and to represent these extractions in an
amenable manner for querying and reasoning purposes. In such a con-
text, uncertain, incomplete and ambiguous information must be handled
properly. In the following, we present a solution that enables to qual-
ify and quantify the uncertainty of extracted information from linguistic
treatment.

1 Introduction

Textual documents abound on the World Wide Web but efficiently retrieving
information from them is hard due to their natural language expression and
unstructured characteristics. Indeed, the ability to represent, characterize and
manage uncertainty is considered as a key factor for the success of the Semantic
Web [12]. The accurate and exhaustive extraction of information and knowl-
edge is nevertheless needed in many application domains, e.g., in medicine to
comprehend the meaning of clinical reports or in finance to analyze the trends
of markets. We consider that together with techniques from Natural Language
Processing (NLP), best practices encountered in the Semantic Web have the
potential to provide a solution to this problem. For instance, NLP can support
the extraction of named entities as well as temporal and spatial aspects, while
the Semantic Web is able to provide an agreed upon representation as well as
some querying and reasoning facilities. Moreover, by consulting datasets form
Linked Open Data (LOD), e.g., DBpedia, Geonames, we can enrich the extracted
knowledge and integrate it to the rest of the LOD.

The information contained in Web documents can present some imperfection,
it can be incomplete, uncertain and ambiguous. Therefore, the texts content can
be called into question, it becomes necessary to qualify and possibly quantify
these imperfections to present to the end user a trusted extraction. However,
qualification or quantification is a difficult task for any software application. In
this paper, we focus on the uncertainty aspect and trustworthiness of the pro-
vided information in the text. A special attention of our work has been devoted
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to representing such information within the Resource Description Framework
(RDF) graph model. The main motivation being to benefit from querying facil-
ities, i.e., using SPARQL.
Usually, uncertainty is represented using reification, but this representation failed
in representing uncertainty on triple property. Indeed, the reification does not
identify which part of the triple (subject, predicate or the object) is uncertain.
Here, we intend to manage these cases of uncertainties, as expressed in Example
1, while in the first sentence, the uncertainty concerns all the moving action
(including, the agent, the destination and the date), in the second, the author
expressed an uncertainty only on the date of the moving.

Example 1. 1. The US president probably visited Cuba this year.

2. The US president visited Cuba, probably this year.

We based our approach on an existing system developed at GEOLSeman-
tics4, a french startup with expertise in NLP. This framework mainly consists
of a deep morphosyntactic analysis and an RDF triple creation using trigger’s
detection. Triggers are composed of one or several words (nouns, verbs, etc.)
that represent a semantic unit denoting an entity to extract. For instance, the
verb ”go” denotes a Displacement. The RDF graph obtained complies with an
ontology built manually to support different domains such as Security and Eco-
nomics. Actually, our framework consists of a set of existing vocabularies (such
as Schema.org5, FOAF6, Prov7) to enrich our own main ontology, denoted geol.
This ontology contains the general classes which are common to many domains:

– Document : Text, Sentence, Source, DateIssue, PlaceIssue, etc.

– Named entities : Person, Organization, Location, etc.

– Actions : LegalProceeding, Displacing, etc.

– Events : SocialEvent, SportEvent, FamilialEvent, etc.

The contributions of this paper are two-fold: (1) We present a fine-grained
approach to quantify and qualify the uncertainty in the text based on uncer-
tainty markers; (2) We present an ontology which handles this uncertainty both
at the resource and property level. This representation of uncertainty can be
interrogated with a rewriting of SPARQL query.

The paper is organized as follows. Section 2 describes related work to uncer-
tainty handling in Semantic Web. In Section 3, we present how to spot uncertain
information in the text using specific markers. In Section 4, we propose an RDF-
based representation of uncertainty in knowledge extraction. In Section 5, a use
case is depicted with some SPARQL queries. Finally, we conclude in Section 6.

4 http://www.geolsemantics.com/
5 http://schema.org/docs/schemaorg.owl
6 http://xmlns.com/foaf/spec/
7 http://www.w3.org/TR/prov-o/
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2 Related work

Integration of imprecise and uncertain concepts to ontologies has been studied
for a long time by the Semantic Web community [13]. To tackle this problem,
different frameworks have been introduced: Text2Onto [4] for learning ontologies
and handling imprecise and uncertain data, BayesOWL [7] based on Bayesian
Networks for ontologies mapping. In [6], the authors propose a probabilistic ex-
tension for OWL with a Bayesian Network layer for reasoning. Actually, fuzzy
OWL [2, 20] was proposed to manage, in addition to uncertainty, some other text
imperfection (such as imprecision and vagueness) with the help of fuzzy logics.
Moreover, W3C Uncertainty Reasoning for the World Wide Web Incubator
Group (URW3-XG) [12] describes an ontology to annotate uncertain and im-
precise data. This ontology focuses on the representation of the nature, the
model, the type and the derivation of uncertainty. This representation is really
interesting but unfortunately does not show how to link the uncertainty to the
concerned knowledge described in the text.
However, in all these works, the uncertainty was considered as a metadata. The
ontologies which handle uncertainty are proposed to either create a fuzzy knowl-
edge base (fuzzy ABox, fuzzy TBox, fuzzy Rbox) or to associate each class of
the ontology to a super class which denotes the uncertain or fuzzy concept. To
each axiom is associated a truth degree in [0,1]. Therefore, the user is required
to handle two knowledge bases in parallel. The first one is dedicated to certain
knowledge whereas the second is dedicated to uncertain knowledge. This repre-
sentation could induce some inconsistencies between the knowledge bases. From
a querying perspective this representation is also not appealing since it forces the
user to query both bases and then combine the results. In order to avoid these
drawbacks, we propose in this paper, a solution to integrate uncertain knowledge
to the rest of the extraction. The idea is to ensure that all extracted knowledge,
either be it certain or uncertain, is managed within the same knowledge base.
This approach aims at ensuring the consistency of the extracted knowledge and
eases its querying.
Moreover, it is worth noting that linguistic processing carried out on uncertainty
management notably, Saur̀ı[19] and Rubin [17][18] works, they payed attention
to different modalities and polarity to characterize uncertainty/certainty.
The first one [19], considers two dimensions. Each event is associated to a factual
value represented as a tuple < mod, pol > where mod denotes modality and dis-
tinguishes among: certain, probable, possible and unknown, pol denotes polarity
values which are positive, negative and unknown.
In [17][18] four dimensions have been considered:

– certainty level: absolute, high, moderate or low.

– author perspective: if it is his/her point of view or a reported speech.

– focus: if it is an abstract information (opinion, belief, judgment...) or a fac-
tual one (event, state, fact...).

– time: past, present, future.
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This model is more complete even if it does not handle negation. However, the
authors do not explain how to combine all these dimensions to get a final interpre-
tation to a given uncertainty. In this paper, we explain how to detect uncertainty
in textual document and how to quantify it to get a global interpretation.

3 Uncertainty detection in the text

The Web contains a huge number of documents from heterogeneous sources like
forums, blogs, tweets, newspaper or Wikipedia articles. However, these docu-
ments cannot be exploited directly by programs because they are mainly in-
tended for humans. Before the emergence of the Semantic Web, only human
beings could access the necessary background knowledge to interpret these doc-
uments. In order to get a full interpretation of the text content, it is necessary
to consider the different aspects of the given information. Some piece of infor-
mation can be considered as “perfect” only if it contains precise and certain
data. This is rarely the case even for a human reader with some context knowl-
edge. Indeed, the reliability of the data available on the Web often needs to
be reconsidered, uncertainty, inconsistency, vagueness, ambiguity, imprecision,
incompleteness and others are recurrent problems encountered in data mining.
According to [9] the information can be classified into two categories : subjec-
tive and objective. An information is objective or quantitative if it indicates an
observable, i.e., something which is able to be counted for example. The other
category is the subjective (qualitative) information. It can describe the opin-
ion of the author, he may express his own belief, judgment, assumption, etc.
Therefore, the second one is subject to contain imperfect data. Then, it becomes
necessary to incorporate these imperfections within the representation of the
extracted information.

In this paper, we are interested in the uncertainty aspect. In domains such
as information theory, knowledge extraction and information retrieval, the term
uncertainty refers to the concept of being unsure about something or someone.
It denotes a lack of conviction. Uncertainty is a well studied form of data im-
perfection, but it is rarely considered at the knowledge level during extraction
processing. Our approach consists in considering the life cycle of the knowledge
from the data acquisition to the final RDF representation steps, i.e., generating
and persisting the knowledge as triples.

Evaluating uncertainties in text

As previously explained, the text may contain several imperfections which can
affect the trustworthiness of an extracted action or event. So, during the lin-
guistic processing, we need to pay attention to the modalities of the verb which
indicate how the action or the event had happened, or how it will. Actually,
the text provides information about the epistemic stance of the author, that he
often commits according to his knowledge, singular observation or beliefs [16].
Moreover, natural languages offer several ways to express uncertainty, usually
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expressed using linguistic qualifiers. According to [14, 8, 1] uncertainty qualifiers
can be classified as follows:

– verbal phrases e.g., as likely as, chances are, close to certain, likely, few,
high probability, it could be, it seems, quite possible.

– expression of uncertainty with quantification all, most, many, some, etc.,

– modal verbs e.g., can, may, should.

– adverbs, e.g., roughly, somewhat, mostly, essentially, especially, exception-
ally, often, almost, practically, actually, really.

– speculation verbs e.g., suggest, suppose, suspect, presume.

– nouns e.g., speculation, doubt, proposals.

– expressions e.g., raise the question of, to the best of our knowledge, as far as
I know.

All these markers help to detect and identify the uncertainty with different in-
tensities. This helps in evaluating the confidence degree associated to the given
information. For example : it may happen is less certain that it will proba-
bly happen. It is also necessary to consider modifiers such as less, more, very.
Depending on the polarity of each modifier we add or subtract a predefined
real number α, set to 0.15 in our experiment, to the given marker’s degree. We
base our approach on a natural language processing. This processing indicates
syntactic and semantic dependencies between words. From these dependencies
we can identify the scope of each identifier in the text. Once these qualifiers are
identified, the uncertainty of the knowledge can be specified and then quantified.
By quantifying, we mean attributing a confidence degree which indicates how
much we can trust the described entity. To this end, we associate to each marker
a probabilistic degree. We defined three levels of certainty: (i) high=0.75, (ii)
moderate=0.50, (iii) low=0.25. Moreover, we also base this uncertainty quan-
tification on previous works in this field such as [3, 11] which define a mapping
between the confidence degree and each uncertainty marker. This mapping is
called Kent’s Chart and Table 1 provides an extract of it.

Table 1. Table of Kent’s Chart for expressions of degrees of uncertainty

Expression Probability Degree

certain 100
almost certain, believe, evident, little doubt 85-99
fairly certain, likely, should be, appear to be 60-84
have chances 40-59
probably not, fairly uncertain, is not expected 15-39
not believe, doubtful, not evident 1-14

However, uncertainty markers are not the only way to generate uncertainty.
Reported speech and future timeline are also considered as uncertainty sources.
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These will be taken into account when the final uncertainty weight will be cal-
culated. We notice that the trust of the reported speech depends of different
parameters which affect the trust granted to its content:

– the author of the declaration: if the author name is cited, if the author has
an official role (prosecutor, president...).

– the nature of the declaration: if it is an official declaration, a personal opinion,
a rumor...

Example 2. A crook who burglarized homes and crashed a stolen car remains on
the loose, but he probably left Old Saybrook by now, police said Thursday.

In Example 2, we can identify two forms of uncertainty. First, the author ex-
plicitly expresses, using the term (probably), an uncertainty about the fact that
the crook left the city. The second one is related to the reported speech which
comes from the police and is not assumed to be a known fact.
Therefore, for a given information described in the text, many sources of uncer-
tainty can occur, then, it is necessary to combine all these uncertainties in order
to get a final confidence degree to be attributed to the extracted information.
With regard to this issue, we chose a Bayesian approach to combine all uncer-
tainties to the concerned information. Indeed Bayesian network are well suited
to our knowledge graph which is a directed acyclic graph. This choice is also
motivated by the dependency that exists between children of uncertainty nodes.
Indeed, to calculate the final degree of uncertain information, we need to con-
sider its parents, if they contain uncertainty, then the conditional probabitlity
related to this parent is reverberated on the child.

4 RDF representation of uncertainty

In order to extract complete and relevant knowledge, we consider the uncertainty
as an integral part of the knowledge instead of integrating it as an annotation.
Usually, uncertainty is added as assertions to triples (the uncertainty assigned
to each extracted knowledge). So, we represent it with some reification as rec-
ommended by [5]. Nevertheless, we encountered some difficulties to represent
uncertainty on triples’ predicates, as opposed to the whole triple. In the second
sentence of Example 1, the uncertainty does not concern the whole moving but
only its date. Only one part of the event is uncertain and the RDF representation
has to take this into account. In fact, we cannot indicate using reification which
part of the triple is uncertain, as shown in Figure 1, with reification, we give the
same representation to both sentences in Example 1 even if they express different
information. Indeed, reified statements cannot be used in semantic inferences,
and are not asserted as part of the underlying knowledge base [21]. The reified
statement and the triple itself are considered as different statements. So, due to
its particular syntax (rdf:Statement) the reified triple can hardly be related to
other triples in the knowledge base [15]. Moreover, using blank node to identify
the uncertain statement prevents from obtaining good performance [10]. Indeed,
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writing queries over RDF data sets involving reification becomes inconvenient.
Especially, for one to refer to a reified triple, we need to use four additional
triples linked by a blank node.

Fig. 1. RDF representation of uncertainty using reification

To deal with previous issues, we propose the UncertaintyOntology ontology
which contains a concept (Uncertainty), a datatype property (weight which
have Uncertainty as its domain and real values as range) and object properties
(isUncertain and hasUncertainProp which respectively denote an uncertain
individual (Uncertainty as domain and owl:Thing as range) and an uncer-
tain property of a given individual (Uncertainty as Domain and owl:Thing as
Range). This ontology can easily be integrated with our geol ontology or with
any other ontology requiring some support for uncertainty.

This ontology (UncertaintyOntology) handles uncertainty occurring on each
level of the triple. If the uncertainty concerns the resource, which denotes a
subject or an object triple, so the property isUncertain is employed. If the triple’s
predicate is uncertain then we use hasUncertainProp to indicate the uncertainty.
UncertainOntology is domain independent, it can be added to any other ontology
since we assume that uncertainty occurs on each part of the sentence in a text.

To illustrate this representation, we provide in Figure 2, the RDF repre-
sentation of Example 1’s sentences. In the first sentence (on the left side), the
uncertainty concerns the following triples :
:id1Transfer, displaced, :id1USPresident.
:id1Transfer, locEnd, :id1Cuba.
:id1Transfer, onDate, :id1ThisYear.
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As we based on Bayesian approach, all these triples have an uncertainty of 0.7,
expressed using the uncertainty marker probably.
Whereas, in the second sentence, the uncertainty concerns only the property
onDate, so, the triple :id1Transfer, onDate, :id1ThisYear. is uncertain.

Fig. 2. RDF Knowledge representation of uncertainty in Example 1

Finally, we conclude that using this RDF representation, we identify three
different cases of triple uncertainty. Figure 4 shows the representation of different
patterns of uncertainty in RDF triples. Pattern 1 describes uncertainty on the
object of the triple. Pattern 2 describes uncertainty on the subject and finally,
pattern 3, uncertainty on the property.

This representation of uncertainty is more compact than reification and im-
proves user understanding regarding the RDF graph.

Fig. 3. RDF representation of Uncertainty patterns.
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5 SPARQL Querying with uncertainty

The goal of our system is to enable end-users to query the extracted information.
These queries take into account the presence of uncertainties by going through
a rewriting. Our system discovers if such a rewriting is necessary by executing
the following queries. First, we list all uncertain properties, using the query in
Listing 1.1. The result is a set of triples (s,p,o) where p is an uncertain property.

PREFIX gs:<http :// www.geolsemantics.com/onto#>

Select ?s ?prop ?o

Where {

?s gs:hasUncertainProp ?u.

?u gs:weight ?weight.

?u ?prop ?o.

}

Listing 1.1. SPARQL query Select uncertain properties

Then, we check if the predicates of each triple in the entry query appear in the
result set. If so, we rewrite the query by adding the uncertainty on the given
predicate using the pattern query in Listing1.2. Finally, we inspect the query

PREFIX gs:<http :// www.geolsemantics.com/onto#>

Select ?p ?weight

Where {...

?u gs:isUncertain ?p.

?u gs:weight ?weight.

...}

Listing 1.2. SPARQL query Select uncertain resources

result set of the rewritten query, in order to check if an uncertainty occurs on
each resource (subject and/or object) extracted.

Furthermore, if a user wants to know the list of uncertainties in a given
text, the query in Listing 1.3 is used to extract all uncertain data explicitly
expressed. We consider that each linguistic extraction is represented according
to the schema presented in Section 4. Our goal is now to provide a query in-
terface to the end-user and to qualify the uncertainty associated to each query
answer. Of course, the uncertain values that we are associating with the differ-
ent distinguished variables of a query are directly emerging from the ones we are
representing in our graph and which has been described in Section 4. Our system
accepts any SPARQL 1.0 queries from the end-user. For testing reasons, we also
have defined a set of relevant predefined queries, e.g., the query in Example 3.
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PREFIX gs:<http :// www.geolsemantics.com/onto#>

PREFIX rdf:<http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX v:<http :// www.w3.org /2006/ vcard/ns#>

SELECT distinct ?concept_uncertain ?obj ?weight

WHERE {

{ ?u a gs:Uncertainty.

?u gs:isUncertain ?concept_uncertain.

?u gs:weight ?weight

}UNION {

?u2 a gs:Uncertainty.

?u2 gs:weight ?weight.

?s ?hasUncertainProp ?u2.

?u2 ?prop ?obj.}

}

Listing 1.3. SPARQL query : Select all uncertainties in the text

Example 3. Let us consider the query in Listing 1.4.

PREFIX gs:<http :// www.geolsemantics.com/onto#>

PREFIX rdf:<http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX v:<http :// www.w3.org /2006/ vcard/ns#>

Select ?date

Where {

?t gs:displaced ?p.

?p gs:role "president".

?t gs:locEnd ?l.

?l v:location -name "Cuba".

?t gs:onDate ?date.

}

Listing 1.4. SPARQL query : When did the president go to Cuba?

In order to make query submission easier for the end-user, we do not impose
the definition of the triple patterns associated to uncertainty handling. Hence,
the end-user just submits a SPARQL query without caring where the uncer-
tainties are. Considering query processing, this implies to reformulate the query
before its execution, i.e., to complete the query such that its basic graph pattern
is satisfiable in the face of triples using elements of our uncertain ontology.

We can easily understand that a naive reformulation implies a combinatorial
explosion. This has direct impact on the efficiency of the query result set com-
putation. This can be prevented by rapidly identifying the triple patterns of a
query that are subject to some uncertainty. In fact, since our graphs can only
represent uncertainty using one of the three patterns presented in Figure 4, we
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PREFIX gs:<http :// www.geolsemantics.com/onto#>

PREFIX rdf:<http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

PREFIX v:<http :// www.w3.org /2006/ vcard/ns#>

Select ?date ?w

Where {{

?t gs:displaced ?p.

?p gs:role "president".

?t gs:locEnd ?l.

?l v:location -name "Cuba".

?t gs:onDate ?date.

}UNION{

?t gs:displaced ?p.

?p gs:role "president".

?t gs:locEnd ?l.

?l v:location -name "Cuba".

?t gs;hasUncertainProp ?u.

?u gs:onDate ?date.

?u gs:weight ?w.

}}

Listing 1.5. Uncertainty query : When did the president go to Cuba?

can go through a pre-processing step that indexes these triples. To do so, we
use a set of SPARQL queries (see Listing 1.1 and 1.2 which respectively retrieve
the properties and subject with their weights). These values are stored in hash
tables for fast access.

Therefore, Listing 1.5 corresponds to the rewriting of Listing 1.4. We intro-
duced the uncertainty option and obtained the following results :

Sentence Result Uncertainty Uncertainty Detail
(1) ?date = “20150101-20151231” 0.7 On the subject
(2) ?date = “20150101-20151231” 0.7 On the predicate

6 Conclusion and Perspectives

In this article, we addressed the quantification and qualification of uncertain
and ambiguous information extracted from textual documents. Our approach
is based on a collaboration between Natural Language Processing and Seman-
tic Web technologies. The output of our different processing units takes the
form of a compact RDF graph which can be queried with SPARQL queries and
reasoned over using ontology based inferences. However, some issues are still un-
resolved, even for the linguistic community, such as: distinguish between deontic
and epistemic meaning. Example: “He can practice sport.” One can interpret
this information as a permission and an other as an ability or a certainty.
This work mainly concerns the uncertainty expressed in the text, for future work
we intend to consider the trust guaranteed to the source of the text. Indeed, the
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source can influence the trustworthiness and the reliability of the declared in-
formation. Moreover, we plan to consider additional aspects of the information,
such as polarity.
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Abstract. Probabilistic OWL (PR-OWL) improves the Web Ontology
Language (OWL) with the ability to treat uncertainty using Multi-Entity
Bayesian Networks (MEBN). PR-OWL 2 presents a better integration
with OWL and its underlying logic, allowing the creation of ontologies
with probabilistic and deterministic parts. However, there are scalability
problems since PR-OWL 2 is built upon OWL 2 DL which is a version
of OWL based on description logic SROIQ(D) and with high complexity.
To address this issue, this paper proposes PR-OWL 2 RL, a scalable ver-
sion of PR-OWL based on OWL 2 RL profile and triplestores (databases
based on RDF triples). OWL 2 RL allows reasoning in polynomial time
for the main reasoning tasks. This paper also presents First-Order expres-
sions accepted by this new language and analyzes its expressive power. A
comparison with the previous language presents which kinds of problems
are more suitable for each version of PR-OWL.

1 Introduction

Web Ontology Language (OWL) is the main language in the Semantic Web for
creating ontologies. It lacks the capacity for treating uncertainty, limiting its
application in several kinds of domains. Various approaches have been proposed
to solve this issue using different formalisms, such as Bayesian networks, fuzzy
logic, and Dempster-Shaffer theory. One of these approaches, Probabilistic OWL
(PR-OWL) [7] adds uncertainty treatment capacity to OWL using Multi-Entity
Bayesian Networks (MEBN) [11], which is a very expressive First-Order Proba-
bilistic Logic. PR-OWL has been implemented in UnBBayes 3, which is an open
source framework for probabilistic graphical models. PR-OWL 2 [4] extends the
previous language adding a tight and better integration between OWL existing
concepts and properties and PR-OWL new ones. A PR-OWL 2 implementation
also was developed in UnBBayes, using Protégé 4 and its HermiT [13] default

3 http://unbbayes.sourceforge.net/
4 http://protege.stanford.edu/
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OWL DL reasoner for modeling and reasoning with the deterministic part of the
ontology.

PR-OWL 2 implementation, however, has some scalability problems due to
the time complexity of OWL 2 DL reasoners to solve complex expressions. This
hinders the ability to work with domains that have large assertive databases. One
example is the public procurement fraud detection domain developed in Brazil,
for which a probabilistic ontology was created using PR-OWL 2 [5]. Although
the probabilistic ontology has been successfully tested with simple cases, in a real
situation, using government databases, millions of triples will be needed, making
the reasoning intractable with PR-OWL 2 and its current implementation.

The solution proposed for overcoming this limitation is to use triplestores
together with the OWL 2 RL profile to create a new version of PR-OWL 2,
named PR-OWL 2 RL. The OWL 2 RL [17] profile allows implementations with
reasoning in polynomial time for the main reasoning tasks in systems based on
rules. The reasoning is mainly processed by materialization, where the rule set
is evaluated when new statements are included in the base, as well as the new
knowledge that is derived by them.

The proposal of this new language requires: 1) to review the PR-OWL lan-
guage according the OWL 2 RL syntax restrictions; 2) a new algorithm to evalu-
ate the MEBN first-order formulas using triplestores; and 3) to design a scalable
algorithm for generating Situation Specific Bayesian Networks (SSBN). This pa-
per discusses the first two issues.

This paper is organized as follows. Section 2 describes some relevant con-
cepts for the understanding of this work: MEBN, OWL and PR-OWL. Section 3
presents PR-OWL 2 bottlenecks that motivated this work. Section 4 introduces
the language proposed and shows how the first-order formulas can be evaluated
using the SPARQL language. Finally, Section 5 presents some conclusions and
possible future work.

2 Fundamentals

This section presents some concepts necessary for the understanding of this pa-
per. Section 2.1 presents Multi-Entity Bayesian Networks, the formalism used by
PR-OWL to deal with uncertainty in the OWL language. Section 2.2 presents the
OWL language and its versions, including the OWL 2 RL profile, and triplestores.
Section 2.3 presents PR-OWL, its extension, PR-OWL 2, and its implementation
in the UnBBayes Framework.

2.1 Multi-Entity Bayesian Networks

Multi-Entity Bayesian Networks (MEBN) is a formalism for representing first-
order probabilistic knowledge bases [11]. MEBN joins Bayesian networks with
First-Order Logic (FOL), augmenting the expressive power of the first by allow-
ing uncertainty representation and reasoning in situations where the quantity of
random variables is unknown.
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MEBN models the domain using a MEBN Theory (MTheory), which is com-
posed of random variables that together have a unique joint probability distribu-
tion. The knowledge is divided into MEBN Fragments (MFrags). Each MFrag is
composed by resident nodes, input nodes, and context nodes. Resident nodes are
random variables for which the Local Probability Distribution (LPD) is defined
in the MFrag where they are. Input nodes are references to resident nodes defined
in a different MFrag. Context nodes contain restrictions that need to be satisfied
in order to correctly instantiate the corresponding MFrag. The nodes represent
entity attributes and relationships between entities. Each node is parameterized
with ordinary variables (OV), placeholders filled with entity instances available
in the knowledge base during the instantiation of the model.

Figure 1 shows the MFrag Front Of Enterprise of the Procurement Fraud
ontology [5]. This probabilistic ontology was designed to identify frauds in pub-
lic procurements in Brazil using the data available in the Brazilian Office of the
Comptroller General (CGU). In this MFrag, the resident node isFrontFor (node
9) refers to the probability that a person is a front for an enterprise. It is influ-
enced by the input nodes hasValue, hasAnnualIncome, and hasEducationLevel

(nodes 6–8). The context nodes (nodes 1–5) show which restrictions need to be
satisfied in order to instantiate this MFrag. Nodes 4 and 5, for example, say
that the procurement has to be finished and the person of interest has to be
responsible for the enterprise that won the procurement.

Fig. 1. MFrag Front Of Enterprise for the Procurement Fraud domain

An MTheory works like a template, which is instantiated giving the query
nodes and the evidence to build a Situation-Specific Bayesian Network (SSBN), a
Bayesian Network with all nodes computationally relevant to answer the queries.
Laskey presents in [11] an algorithm for generating a SSBN that expands the
network from both the queries and findings in order to build a grand BN which
is pruned by removing barren, nuisance, and d-separated nodes.
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2.2 OWL

OWL is the main Semantic Web language for building ontologies. OWL 2, its
current version, became a W3C recommendation in 2009 [16].

The direct model-theoretic semantics of OWL 2 is called Direct Semantics,
which is strongly related to the semantics of description logics [16]. The Direct
Semantics assigns meaning directly to ontology structures, in a way compati-
ble with the semantics of the SROIQ description logic [16]. Description Logics
are subsets of FOL that model the domain based on its classes and proper-
ties. It represents the knowledge by first defining the relevant concepts of the
domain (TBox), and then using these concepts to specify properties of objects
and individuals occurring in the domain (ABox) [1]. Different description logics
have been created, trying to get a favorable trade-off between expressiveness
and complexity. OWL 2 DL is based on SROIQ(D). Several reasoners based on
tableau algorithms were created for OWL 2 DL. Some examples are HermiT [13],
Pellet [12] and FaCT++ [15].

OWL 2 has three different profiles (syntactic subsets): OWL 2 EL, OWL 2
QL, and OWL 2 RL. All of them are more restrictive than OWL 2 DL and trades
off OWL 2’s expressive power for computational or implementation benefits. In
these profiles, most types of reasoning can be made in polynomial time. OWL 2
EL is suitable for ontologies with a very large but simple TBox. OWL 2 QL is
suitable to work with conjunctive queries, permitting the use of ontological rea-
soning in systems like relational databases through a query rewriting approach.
OWL 2 RL, based on Datalog and in R-entailment [14], is suitable to allow an
easy implementation in systems based on rules.

W3C proposes a set of rules called OWL 2 RL/RDF that implements the
OWL 2 RL profile. This set of rules is based on RDF Semantic, where the
knowledge is organized in graphs, composed by RDF triples. Each RDF triple is
composed by a subject linked to an object by a property. The reasoning is made
through rules, where given a set of specific triples and a rule, we can get another
expression that follows logically from the rule. The Theorem PR1 [17] states
some conditions that guarantee that the ontology O2 entailed from O1 under
the Direct Semantics is the same entailed under the first-order axiomatization
of RDF semantics using the OWL 2 RL/RDF rules:

– neither O1 nor O2 contains an IRI (International Resource Identifier) that is
used for more than one type of entity;

– O1 does not contain the following axioms:

• SubAnnotationPropertyOf,
• AnnotationPropertyDomain,
• AnnotationPropertyRange; and

– each axiom in O2 is an assertion of the form as specified below, for a1, a2,
. . . , an a named individual:

• ClassAssertion( C a ) where C is a class,
• ObjectPropertyAssertion( OP a1 a2 ) where OP is an object property,
• DataPropertyAssertion( DP a v ) where DP is a data property, or
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• SameIndividual( a1 . . . an ).

The OWL 2 RL profile is implemented by some triplestores. Triplestores
are databases that organize the knowledge in graphs composed by RDF triples.
They are becoming very useful and there are a lot of commercial (e.g., GraphDB,
Oracle Spatial and Graph, and AllegroGraph) and free implementations (e.g.,
Sesame). They normally implement the RDF/RDFS entailment rules, using ma-
terialization for expanding the rules when new declarations are added to the base.
SPARQL is the main language used for querying RDF databases. It is very sim-
ilar to SQL, acting over generalized RDF graphs. Most triplestores accept, in
addiction to RDFS, inference with some constructions of OWL. Implementations
of the OWL 2 RL profile are common.

2.3 PR-OWL

Probabilistic OWL (PR-OWL) is an extension of the OWL language that per-
mits the creation of probabilistic ontologies [7]. It works as an upper-ontology,
consisting of a set of classes, subclasses, and properties that allow modeling the
uncertainty part of the ontology using MEBN. Figure 2 shows the main concepts
involved in a PR-OWL ontology. The probabilistic ontology is modeled using the
MTheory class, composed by a set of MFrags. These MFrags must collectively
form a consistent MTheory. The MFrags are built from random variables, which
have a probabilistic distribution and an exhaustive set of possible states.

Fig. 2. PR-OWL Main Concepts

UnBBayes has an implementation of PR-OWL and MEBN [3, 6] that allows
the design of an MTheory using a graphical user interface (GUI). A pseudo-
code can be used for defining the LPDs. The MTheory is stored in a knowledge
base, supported by the PowerLoom Knowledge Representation and Reasoning
(KR&R) System5. The algorithm for generating SSBNs is based on the one
proposed in [11].

PR-OWL 2 [4] extends PR-OWL by having a better built-in integration
between OWL and MEBN. The main concept used for this is the property

5 http://www.isi.edu/isd/LOOM/PowerLoom/
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definesUncertaintyOf that links a random variable to an OWL property. The
additional properties isObjectIn and isSubObjectIn allow the mapping of both
domain and range of the OWL property to its corresponding concept in MEBN.
PR-OWL 2 also has other improvements, like the support to polymorphism and
the use of OWL datatypes. A plug-in for PR-OWL 2 was developed in UnBBayes,
using Protégé for modeling the deterministic parts of the ontology. Protégé is a
popular open source framework for editing ontologies. Moreover, HermiT is used
for evaluating the context nodes and for getting information about findings.

3 Description of the Problem

PR-OWL 2 and its implementation in UnBBayes have some scalability and ex-
pressibility problems. OWL 2 DL, which is used in PR-OWL 2 definition/im-
plementation, is based on description logic SROIQ(D) that has complexity
N2EXPTIME-complete [10] for the main reasoning problems: ontology consis-
tency, class expression satisfiability, class expression subsumption, and instance
checking. This class of complexity comprises the problems solvable by nonde-
terministic algorithm in time at most double exponential in the size of the
input [17]. OWL 2 DL reasoners are normally based on tableau algorithms.
Donini [8] states two different sources of complexity in tableau calculi: the AND-
Branching, responsible for the exponential size of a single candidate model, and
the OR-Branching, responsible for the exponential number of different candidate
models. This exponential complexity of OWL 2 DL reasoners makes the queries
more time/space consuming, the larger/more complex the knowledge base is.
Thus, making it inviable for several cases. Furthermore, most OWL reasoners
are limited to the available memory of the computational resource used, since
the database needs to be loaded into memory to allow inference. This clearly
does not scale to real and large databases.

We also have scalability problems because of the use of Protégé’s GUI and
API in UnBBayes’ PR-OWL 2 implementation. We made tests using LUBM
ontologies to verify the performance of this implementation. LUBM (Lehigh
University Benchmark) [9] is a very popular benchmark for reasoners and triple-
stores. Using an i5 machine with 3GB of memory dedicated to run Protégé, we
could not load nor initialize the reasoner with the LUBM 100, an assertive base
containing 2,779,262 instances of classes and 11,096,694 instances of properties.
We used the HermiT reasoner, where the initialization consists of building the
class hierarchy, classifying object and data properties, computing instances of
all classes and object properties, and calculating same as individual. This ini-
tialization is necessary to solve the queries. LUBM 100 base has 1,06 GB when
stored in an OWL file in XML format, making it clear that the structure used
by Protégé adds a great overhead to PR-OWL 2 implementation.

This scalability problems limit the use of PR-OWL in domains with large
assertive bases. In the domain of procurement fraud detection [5], for example,
the assertive base can easily have millions of assertions. This makes it unsuit-
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able to using an OWL reasoner for the necessary deterministic reasoning, which
comprises of evaluating the FOL expressions and searching for findings.

Since PR-OWL 2 is written in OWL 2 DL, one possibility is to use an OWL
2 DL reasoner for solving the FOL formulas during MEBN reasoning. PR-OWL
2 current implementation in UnBBayes does that.

Evaluating MEBN FOL formulas using an OWL DL reasoner requires some
workarounds. The Table 1 presents the formulas that are allowed in the cur-
rent implementation of UnBBayes, where ov are ordinary variables, CONST are
constants, and booleanRV are Boolean random variables. Expressions with con-
nectives and quantifiers are not allowed in this version.

Table 1. Types of context node formulas accepted in the PR-OWL 2 implementation

Formula Negation

ov1 = ov2 NOT ( ov1 = ov2 )
booleanRV( ov1 [ , ov2 , . . . ] ) NOT booleanRV( ov1 [ , ov2, . . . ] )
ov0 = nonBooleanRV( ov1 ) NOT ( ov0 = nonBooleanRV( ov1 ))
ov0 = nonBooleanRV( ov1 [ , ov2, . . . ] )
CONST = nonBooleanRV( ov1 [ , ov2 , . . . ] )
nonBooleanRV( ov1 [ , ov2 , . . . ] ) = CONST
nonBooleanRV( ov1 ) = ov0 NOT ( nonBooleanRV ( ov 1 ) = ov0)
nonBooleanRV( ov1 [ , ov2 , . . . ] ) = ov0

4 PR-OWL based on OWL 2 RL profile

In order to overcome the limitations presented, we propose PR-OWL 2 RL, a
more scalable version of PR-OWL based in the OWL 2 RL profile. The purpose
is to use an RDF triplestore database for both the storage and reasoning with
very large ontologies represented as RDF triples. This is possible because OWL
2 RL allows reasoning in polynomial time for the main reasoning tasks. SPARQL
is the common query language used with RDF triples.

Since PR-OWL 2 is written in OWL 2 DL, some adjustments are necessary to
adapt it for OWL 2 RL. This is due to the fact that OWL 2 RL imposes several
syntactic restrictions on the OWL expressions. Running a validator developed
by the Manchester University 6 we found the following unsupported features:

1. Use of non-superclass expression where superclass expression is required;
2. Use of non-subclass expression where subclass expression is required;
3. Use of non-equivalent-class expression where equivalent-class expression is

required; and
4. Use of unsupported data range.

6 http://mowl-power.cs.man.ac.uk:8080/validator/
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Figure 3 shows examples for each kind of unsupported feature. The first case
occurs for several reasons, such as the use of existential quantifier and disjunc-
tion on the right side of a subClass expression or in range/domain expressions,
the use of owl:Thing as superclass or in range/domain expressions, and the use
of the qualified restriction exactly. The second occurs in the class owl:Thing,
that is setted as a subclass of the restriction ’hasUID only String’. The prop-
erty hasUID is used to guarantee that every instance in PR-OWL has a unique
identifier (a requisite necessary to work with MEBN, where each possible state
has to be unique). The third occurs in all equivalent expressions of PR-OWL
2, which includes conjunctions, min/max/exactly cardinality expressions, and
universal/existential quantifiers. OWL 2 RL is very restrictive in relation to
equivalent expressions, allowing only Class, intersection, and hasValue ex-
pressions. Finally, the fourth occurs in the isRepresentedAs range expression,
where all possible formats to represent the probabilistic distributions are listed.

Fig. 3. Examples of disallows in PR-OWL 2

Since the syntax of OWL 2 RL/RDF is based on RDF, it permits generalized
RDF graphs, not having the several restrictions of OWL 2 DL. The pure OWL 2
RL profile, however, has restrictions to allow reasoning also with the Direct Se-
mantics. We choose to adapt PR-OWL 2 RL with the OWL 2 RL restrictions for
keeping the compatibility with both semantics. In order to make this adaptation
it is necessary to fix the unsupported features listed above.

To solve the unsupported features, we analyzed three alternatives. The first
consists in rewriting all expressions of PR-OWL 2 from OWL 2 DL to OWL 2
RL. However, this is not possible due the less expressive power of OWL 2 RL
language. Expressions subClass, for instance, with existential quantifier on the
right side cannot be expressed in this profile. The second alternative consists
in rewriting to OWL 2 RL the expressions that can be rewritten, removing the
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others, and passing the responsibility of validating them forward to the PR-OWL
reasoner. The problem with this alternative is that the resulting ontology is hard
to understand due to the rewriting of the expressions to less intuitive axioms and
because the restrictions are only partially explicit. The last alternative consists in
turning PR-OWL into a lightweight ontology, containing only the class hierarchy
and the object and data properties (with its domain and range restrictions).
The full validation of the probabilistic model consistency is left to the PR-OWL
reasoner. This was the chosen alternative because it results in a simpler ontology,
sufficient for expressing the MEBN elements in OWL language.

The FOL formulas in PR-OWL 2 RL are evaluated in a different way than
they are in the previous versions of PR-OWL. Using materialization, all im-
plications of an added expression is calculated in load time. In the triplestores
implementations, we do not have posterior reasoning: the queries are solved with
searches on the database, using the SPARQL language, in a similar way to the
SQL language in relational databases. This means that in the knowledge base
we already have for example the hierarchy of an instance explicitly. For exam-
ple, if an instance a is of the class A, and A is subclass of B, then, we will also
have both ClassAssertion(A,a) and ClassAssertion(B,a) information on the
base, where the second one was derived from the rule showed below (extracted
from [17]).

IF T(?c1, rdfs:subClassOf, ?c2) AND T(?x, rdf:type, ?c1)

THEN T(?x, rdf:type, ?c2)

If we ask if a is instance of class B, the result will be TRUE because we will
get the information ClassAssertion(B,a). The advantage of this approach is
that queries are very fast. The disadvantage is that complex reasoning cannot
be handled, justifying the OWL 2 RL language restrictions.

The BNF grammar below shows the restrictions on the types of context nodes
formulas accepted in PR-OWL 2 RL. The evaluation of these context nodes will
be handled using the SPARQL language.

Listing 1.1. BNF Grammar for FOL Expressions in PR-OWL 2 RL

<atom> : := ov1 == ov2 |
booleanRV ( ov1 , [ , ov2 . . . ] ) |
nonBooleanRV ( ov1 , [ , ov2 . . . ] ) = ov0 |
ov0 = nonBooleanRV ( ov1 , [ , ov2 . . . ] ) |
nonBooleanRV ( ov1 , [ , ov2 . . . ] ) = CONST |
CONST = nonBooleanRV ( ov1 , [ , ov2 . . . ] )

<negation> : := NOT <atom>
<conjunct ion >::= <atom> [AND <atom>]+
<d i s j unc t i on >::= <atom> [OR <atom>]+
<formula> : := <atom> | <negation> |

<conjunct ion> | <d i s j unc t i on>

Table 2 shows how to evaluate these formulas using SPARQL. To solve the
EQUAL TO operator between two ordinary variables, we can use the SPARQL
FILTER construction, limiting the result of a query where the terms are equal.
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The evaluation of AND and OR connectives is possible using period and UNION

constructions. The negation can be implemented by the PR-OWL 2 reasoner in
one of three ways depending on each case: for a not equal expression a FILTER

can be used with the operator != (different); for a boolean RV it is sufficient
to ask if it is equal FALSE; and finally, for a not boolean RV, we can use the
operator NOT EXISTS inside a FILTER.

Table 2. Implementing PR-OWL 2 RL FOL expressions using SPARQL

MEBN Expression SPARQL Expression

AND . (period)
OR UNION
EQUAL TO Use of = inside a FILTER
NOT It depends on the case

To evaluate expressions where we do not know the value of some ordinary
variable, we use the SPARQL SELECT construction. If we already know all values,
a command ASK is used. This command evaluates the expression and returns
TRUE or FALSE. The evaluation of the context nodes is made one by one and the
implementation is responsible for keeping the consistency between the ordinary
variable values of each node. The following code shows a SELECT to get which
procurements ENTERPRISE 1 won (node 5 in Figure 1).

SELECT ?procurement

WHERE { ?procurement rdf:type Procurement .

ENTERPRISE_1 hasWinnerOfProcurement ?procurement}

Finally, for the new language to be useful, it is also necessary to propose a new
algorithm for generating a SSBN. The previous SSBN algorithm implemented in
PR-OWL 2 starts from the queries set as well as the findings set. Since we can
have a large assertive base in PR-OWL 2 RL, making the findings set very large,
the previous SSBN construction algorithm might be hindered. We plan to extend
the algorithm previously proposed in [6], by starting only from the queries set
and removing known issues with it. For instance, the version proposed in [6] does
not evaluate the parent nodes of a query, even if they are not d-separated from
the evidence.

Using the new language proposed, together with a triplestore and the ma-
terialization approach, it is possible to solve the scalability problems presented.
The BNF grammar proposed is sufficient to evaluate all context node formulas
used in the Procurement Fraud probabilistic ontology.

The Theorem PR1 [17] limits the entailed statements to assertions. The rea-
soning in PR OWL 2 RL is mainly over the assertive base (ABox), but, based
on the use cases already developed for PR-OWL, this does not seem to be a
problem.
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It is important to note that Costa, the author of PR-OWL, already visualized
the possibility of creating more restrictive versions of the language to guarantee
tractability [7]. The objective of PR-OWL 2 RL is not to substitute the previous
version (in the way that PR-OWL 2 intends to substitute PR-OWL). Both PR-
OWL 2 and PR-OWL 2 RL have characteristics that make them suitable for
different kind of domains. While PR-OWL 2 is recommended for heavyweight
ontologies, with complex expressions, but limited assertive bases, PR-OWL 2
RL is ideal for lightweight ontologies, with simple expressions and a very large
knowledge base. This last one, for example, is the case of the ontologies in Linked
Data projects.

5 Conclusion and Future Work

Using a less expressive version of OWL for reasoning in polynomial time, PR-
OWL 2 RL is developed to work with ontologies containing millions of triples.
When used together with RDF triplestores, it can solve the scalability problem
of the previous PR-OWL versions. Using a commercial database it is possible to
work with billions of triples, making it suitable even for working with Big Data.
The restrictions on the expressiveness of OWL 2 RL do not allow it to express
some complex statements, but it is sufficient for a lot of domains, such as the
Procurement Fraud, and Linked Open Data projects. This paper presented lim-
itations on the first-order expressions used in context node formulas, restricting
the use of MEBN logic, but allowing at the same time the same constructs which
are implemented and allowed in UnBBayes’ PR-OWL 2 plug-in.

A future work that is already under way is the implementation of a plug-in
for PR-OWL 2 RL in UnBBayes. In this plug-in we plan to use the triplestore
GraphDB Lite, a free version of GraphDB [2]. GraphDB, previously OWLIM,
partially implements the OWL 2 RL profile (it does not implement the rules
related to datatypes), using the OWL 2 RL/RDF rules and a materialization
approach. The UnBBayes’ PR-OWL 2 RL plug-in will allow the user to model
a probabilistic ontology using the language, to put it into the triplestore, to
fill the assertive base, and to build a SSBN from the queries set. Other future
work is create new study cases to validate the solution. We also plan to make an
extension of the LUBM ontology by adding uncertainty concepts to it, making
it possible to construct a benchmark for large probabilistic ontologies.
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Abstract. Knowledge Graphs are a widely used formalism for representing knowl-
edge in the Web of Data. We focus on the problem of predicting missing links
in large knowledge graphs, so to discover new facts about the world. Recently,
representation learning models that embed entities and predicates in continuous
vector spaces achieved new state-of-the-art results on this problem. A major lim-
itation in these models is that the training process, which consists in learning
the optimal entity and predicate embeddings for a given knowledge graph, can
be very computationally expensive: it may even require days of computations for
large knowledge graphs. In this work, by leveraging adaptive learning rates, we
propose a principled method for reducing the training time by an order of mag-
nitude, while learning more accurate link prediction models. Furthermore, we
employ the proposed training method for evaluating a set of novel and scalable
models. Our evaluations show significant improvements over state-of-the-art link
prediction methods on the WORDNET and FREEBASE datasets.

1 Introduction

Knowledge Graphs (KGs) are graph-structured Knowledge Bases (KBs), where fac-
tual knowledge about the world is represented in the form of relationships between
entities. They are widely used for representing relational knowledge in a variety of do-
mains, such as citation networks and protein interaction networks. An example of their
widespread adoption is the Linked Open Data (LOD) Cloud, a set of interlinked KGs
such as Freebase [1] and WordNet [2]. As of April 2014, the LOD Cloud was composed
by 1,091 interlinked KBs, describing over 8× 106 entities, and 188× 106 relationships
holding between them 1.

Despite their large size, many KGs are still largely incomplete. For example con-
sider Freebase 2, a core element in the Google Knowledge Vault project [3]: 71% of
the persons described in Freebase have no known place of birth, 75% of them have no
known nationality, and the coverage for less frequent predicates can be even lower [3].

In this work we focus on the problem of completing missing links in large KGs, so to
discover new facts about the world. In the literature, this problem is referred to as link
prediction or knowledge graph completion, and has received a considerable attention
over the last years [4,5].

1 State of the LOD Cloud 2014: http://lod-cloud.net/
2 Publicly available at https://developers.google.com/freebase/data
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Recently, representation learning [6] models such as the Translating Embeddings
model (TransE) [7] achieved new state-of-the-art link prediction results on large and
Web-scale KGs [4,5]. Such models learn a unique distributed representation, or em-
bedding, for each entity and predicate in the KG: each entity is represented by a low-
dimensional continuous embedding vector, and each predicate is represented by an op-
eration in the embedding vector space, such as a translation (as in [7]) or an affine
transformation (as in [8]). We refer to these models as embedding models, and to the
learned distributed representations as embeddings.

The embeddings of all entities and predicates in the KG are learned jointly: the
learning process consists in minimizing a global loss functional considering the whole
KG, by back-propagating the loss to the embeddings 3. As a consequence, the learned
entity and predicate embeddings retain global, structural information about the whole
KG, and can be used to serve several kinds of applications. In link prediction, the con-
fidence of each candidate edge can be measured as a function of the embeddings of its
source entity, its target entity, and its predicate.

A major limitation in embedding models proposed so far, however, is that the learn-
ing procedure (i.e. learning the optimal embeddings of all entities and predicates in the
KG) can be very time-consuming: it is based on an incremental optimization algorithm
that may require days of computation to converge for large KGs [10].

In this work, we propose a novel principled method for significantly reducing the
learning time in embedding models, based on adaptive per-parameter learning rates.
Furthermore, we employ the proposed training method for evaluating a variety of novel
embedding models: our evaluations achieves new state-of-the-art link prediction results
on the WORDNET and FREEBASE datasets.

2 Basics

RDF Graphs The most widely used formalism for representing knowledge graphs
is the W3C Resource Description Framework (RDF) 4, a recommended standard for
representing knowledge on the Web. An RDF KB, also referred to as RDF graph, is a
set of RDF triples in the form 〈s, p, o〉, where s, p and o respectively denote the subject,
the predicate and the object of the triple: s and o are entities, and p is a relation type.
Each triple 〈s, p, o〉 describes a statement, which is interpreted as “A relationship p
holds between entities s and o”.

Example 2.1 (Shakespeare). The statement “William Shakespeare is an author who
wrote Othello and the tragedy Hamlet” can be expressed by the following RDF triples:

〈Shakespeare, profession, Author〉
〈Shakespeare, author, Hamlet〉
〈Shakespeare, author, Othello〉
〈Hamlet, genre, Tragedy〉

3 In natural language processing, a similar procedure is used by the word2vec model [9] for
learning an unique distributed representation for each word in a corpus of documents.

4 http://www.w3.org/TR/rdf11-concepts/
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An RDF graph can be viewed as a labeled directed multigraph, where each entity
is a vertex, and each RDF triple is represented by a directed edge whose label is a
predicate, and emanating from its subject vertex to its object vertex. In RDF KBs, the
Open-World Assumption holds: a missing triple does not mean that the corresponding
statement is false, but rather that its truth value is unknown (it cannot be observed). In
the following, given an RDF graph G, we denote as EG the set of all entities occurring
as subjects or objects in G, and asRG the set of all predicates occurring in G:

EG = {s | ∃〈s, p, o〉 ∈ G} ∪ {o | ∃〈s, p, o〉 ∈ G},
RG = {p | ∃〈s, p, o〉 ∈ G}.

For instance, in the case of the RDF graph shown in Ex. 2.1, the sets EG and RG
are the following: EG = {Author,Shakespeare,Hamlet, Othello,Tragedy}
andRG = {profession,author, genre}.

Furthermore, we denote as SG = EG × RG × EG the space of possible triples of
G, i.e. the set of all triples that can be created by using the entities and predicates in G
(note that G ⊆ SG). We refer to all triples in G as observed triples, and to all triples in
SG \G as unobserved triples.

Energy-Based Models Embedding models for KGs can be described in terms of
Energy-Based Models (EBMs) [11]: EBMs are a versatile and flexible framework for
modeling dependencies between variables. In the fields of representation learning and
deep learning [6], EBMs are employed as building blocks for constructing hierarchical
models that achieve ground-breaking results in several learning tasks.

A fundamental component in an EBM is a scalar-valued energy function (or scor-
ing function) Eθ(·), parametrized by θ, which associates a scalar energy value to the
configuration of a set of variables. The energy of a configuration of a set of variables is
inversely proportional to its probability: more likely configurations are associated with
lower energy values, while less likely configurations are associated with higher energy
values. Several tractable methods have been proposed for learning the parameters of an
energy function [11,6]. In particular, the problem of learning the optimal parameters θ̂
can be cast as solving the following optimization problem [11]:

θ̂ = arg min
θ∈Θ
L(Eθ,D),

where Θ is the parameter space, and L(·) is a loss functional which measures the qual-
ity of the energy function Eθ(·) on the data D. Intuitively, the loss functional L(·)
assigns a lower loss to energy functions that associate a lower energy (corresponding to
a higher probability) to correct answers, and higher energy (corresponding to a lower
probability value) to all other incorrect answers.

Energy-Based Models for RDF Graphs As discussed in [12], embedding models
for KGs define an energy distribution Eθ : SG → R over the space of possible triples
SG. For instance, the models proposed in [8,7,13,12] are used for assigning a score
E(〈s, p, o〉) to each triple 〈s, p, o〉 in SG. In a link prediction setting, such models are
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Table 1: Energy functions used by several link prediction models, and the corresponding
number of parameters: ne = |EG| and nr = |RG| respectively denote the number of
entities and predicates in G, and k, d ∈ N are user-defined hyper-parameters.

Model Energy function E(〈s, p, o〉) Parameters Complexity
Unstructured [12] ‖es − eo‖22, es, eo ∈ Rk O (nek)

TransE [7] ‖(es + ep)− eo‖{1,2}, ep ∈ Rk O (nek + nrk)

SE [8] ‖Wp,1es −Wp,2eo‖1, Wp,i ∈ Rk×k O
(
nek + nrk

2
)

SME lin. [12]
(W1es +W2ep + b1)

T (W3eo +W4ep + b2)

ep ∈ Rk,Wi ∈ Rd×k,bj ∈ Rd O (nek + nrk + dk)

SME bil. [12]
[
(W1 ×3 ep)es

]T [
(W2 ×3 ep)eo

]

ep ∈ Rk,Wi ∈ Rd×k×k,bj ∈ Rd
O
(
nek + nrk + dk2

)

NTN [13]
uTp f

(
eTsWpeo +Wp,1es +Wp,2eo + bp

)

Wp ∈ Rk×k×d,Wp,i ∈ Rd×k,up,bp ∈ Rd
O
(
nek + nrdk

2
)

used as follows. First, the optimal parameters θ̂ of the energy function are learned:
the parameters are composed by the embeddings of all entities and predicates in the
KG. Then, the energy function Eθ̂(·) is used for ranking unobserved triples: those with
lower energy values have a higher probability of representing true statements, and are
considered more likely candidates for a completion of the KG.

Consider the RDF graph shown in Ex. 2.1. In such a graph, we prefer learning an
energy-based model that assigns a lower energy (a higher probability value) to the triple
〈Othello,genre,Tragedy〉, which is unobserved but represents the true statement
“Othello is a Tragedy”, and a higher energy (a lower probability value) to other unob-
served triples, for example 〈Hamlet,genre,Author〉.

3 Energy-Based Embedding Models

Several EBMs have been proposed in the literature for addressing the problem of link
prediction in KGs [8,14,7,13,12,15]. These models share a fundamental characteristic:
they can be used for learning a distributed representation (or embedding) for each entity
and predicate in the KG. We refer to such models as embedding models, and denote
the distributed representation of an entity or predicate z by adding a subscript to the
corresponding vector or matrix representation, as in ez ∈ Rk.

Formally, let G be an RDF graph. For each entity x ∈ EG, embedding models learn
a continuous vector representation ex ∈ Rk, with k ∈ N, called the embedding vector
of x. Similarly, for each predicate p ∈ RG, embedding models learn an operation on the
embedding vector space, characterized by a set of embedding parameters. This can be
an empty set of parameters, as in the Unstructured model proposed in [12]; a translation
vector ep ∈ Rk, as in the Translating Embeddings model proposed in [7]; or a more
complex set of parameters.

The distributed representations of all entities and predicates in G are then used for
defining an energy distribution E : SG → R over the space of possible triples of G.
In particular, the energy E(〈s, p, o〉) of a triple 〈s, p, o〉 is defined as a function of the
distributed representations of its subject s, its predicate p and its object o.
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In Tab. 1, we report the energy functions adopted by several models proposed in the
literature. For each model, we report the number of parameters needed for storing the
distributed representations of all entities and predicates: ne = |EG| denotes the number
of entities in the KG, nr = |RG| denotes the number of predicates, and k, d ∈ N
are user-defined hyper-parameters. In general, if the number of parameters in a model
grows super-linearly with the number of entities and predicates in the KG, it becomes
increasingly harder for the model to scale to very large and Web-scale KGs.

The Translating Embeddings model Among the models outlined in Tab. 1, the re-
cently proposed Translating Embeddings model (TransE) [7] has interesting character-
istics, and recently received a considerable attention [4]:

– It achieves more accurate link prediction results than other state-of-the-art methods
on several datasets.

– The number of parameters in TransE scales linearly in the number of entities ne
and predicates nr in the KG: this allows TransE to potentially scale to large KGs.

The TransE model is very simple. In TransE, each entity x ∈ EG is represented by
its embedding vector ex ∈ Rk, and each predicate p ∈ RG is represented by a (vector)
translation operation ep ∈ Rk. The energy of a triple 〈s, p, o〉 is given by the L1 or L2

distance between (es + ep) and eo:

E(〈s, p, o〉) = ‖(es + ep)− eo‖{1,2}.

In TransE, all the embedding and translation vectors are learned jointly from the KG by
using Stochastic Gradient Descent, as discussed in Sect. 4. The number of parameters
needed by the TransE model for storing all the embedding and translation vectors is
(nek + nrk), a quantity that grows linearly with ne and nr. For such a reason, TransE
can potentially scale to very large and highly-relational KGs [7].

A New Set of Embedding Models In the following, we propose a set of variants of the
TransE model, which preserve its scalability properties. Let d(x,y) be a dissimilarity
function, from the following set: d(x,y) ∈ {‖x− y‖1, ‖x− y‖2,−xTy}, i.e. chosen
from the L1 and L2 distance, and the negative inner product. We propose the following
embedding models, where each is defined by the corresponding energy function E(·):

– TransE : E(〈s, p, o〉) = d(es + ep, eo),
– TransE+ : E(〈s, p, o〉) = d(es + ep,1, eo + ep,2),
– ScalE : E(〈s, p, o〉) = d(es ◦ ep, eo),
– ScalE+ : E(〈s, p, o〉) = d(es ◦ ep,1, eo ◦ ep,2),

where es, eo ∈ Rk are the embedding vectors of the entities appearing as the subject s
and the object o; ep,· ∈ Rk are the embedding parameters of the predicate p, denoting
either a translation or a scaling vector; and ◦ denotes the Hadamard (element-wise)
product, corresponding to the vector scaling operation. The energy function in TransE
is the same used in [7], but also allows using the negative inner product as a dissimilarity
measure between the (translated) subject and object embedding vectors, if it shows to
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Algorithm 1 Learning the model parameters via SGD
Require: Learning rate η, Batch size n, Iterations τ
Ensure: Optimal model parameters (embeddings) θ̂
1: Initialize the model parameters θ0
2: for t ∈ 〈1, . . . , τ〉 do
3: ex ← ex/‖ex‖, ∀x ∈ EG {Normalize all entity embedding vectors}
4: T ← SAMPLEBATCH(G,n) {Sample a batch of observed and corrupted triples}
5: gt ← ∇

∑
(y,ỹ)∈T

[
γ + Eθ(y)− Eθ(ỹ)

]
+

{Compute the gradient of the loss}
6: ∆t ← −ηgt {Compute the update to model parameters (embeddings)}
7: θt ← θt−1 +∆t {Update the model parameters}
8: end for
9: return θτ

improve the performance on the validation set. The TransE+ model generalizes TransE
by also translating the object embedding vector eo.

The ScalE and ScalE+ models are similar to the previous two models, but replace
the vector translation with a scaling operation. The rationale behind ScalE and ScalE+

is the following: scaling the embedding vector of an entity can be seen as weighting the
(latent) features of such an entity in the embedding vector space.

All proposed models share the same advantages as the TransE model: (i) the re-
quired number of parameters is O (nek + nrk), which grows linearly with ne and nr,
and (ii) the energy function and its gradient w.r.t. the embedding of entities and predi-
cates can be computed very efficiently, using element-wise vector operations.

4 Improving the Efficiency of the Embeddings Learning Process

In [8,7,12], authors propose a method for jointly learning the embeddings of all entities
and predicates in a KG G. The method relies on a stochastic optimization process, that
iteratively updates the embeddings by reducing the energy of triples in G (observed
triples) while increasing the energy of triples in SG \G (unobserved triples).

During the learning process, unobserved triples are randomly generated by means
of a corruption process, which replaces either the subject or the object of each observed
triple with another entity inG. More formally, given an observed triple y ∈ G, let CG(y)
denote the set of all corrupted triples obtained by replacing either its subject or object
with another entity in G:

CG(〈s, p, o〉) = {〈s̃, p, o〉 | s̃ ∈ EG} ∪ {〈s, p, õ〉 | õ ∈ EG}.

The embeddings of all entities and predicates in the KG, which compose the model
parameters, can be learned by minimizing a margin-based ranking loss. More formally,
learning the optimal model parameters θ̂, corresponding to all the entity and predicate
embeddings, is equivalent to solving the following constrained minimization problem:

minimize
θ∈Θ

∑

y∈G

∑

ỹ∈CG(y)

[
γ + Eθ(y)− Eθ(ỹ)

]
+

subject to ∀x ∈ EG : ‖ex‖ = 1,

(1)
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where [x]+ = max{0, x}, and γ ≥ 0 is a hyper-parameter referred to as margin.
The objective function in Eq. 1 (corresponding to the loss functional L(·) discussed in
Sect. 2) enforces the energy of observed triples to be lower than the energy of unob-
served triples. The constraints in the optimization problem prevent the training process
to trivially solve the problem by increasing the entity embedding norms.

Stochastic Gradient Descent In the literature, the constrained loss minimization prob-
lem in Eq. 1 is solved using Stochastic Gradient Descent (SGD) in mini-batch mode, as
summarized in Alg. 1. On each iteration, the algorithm samples a batch of triples from
the knowledge graph G. Batches are obtained by first randomly permuting all triples
in G, partitioning them into nb batches of the same size, and then iterating over such
batches. A single pass over all triples in G is called an epoch. Then, for each triple y in
the batch, the algorithm generates a corrupted triple ỹ uniformly sampled from CG(y):
this leads to a set T of observed/corrupted pairs of triples 〈y, ỹ〉. The observed/corrupted
triple pairs are used for computing the gradient of the objective (loss) function in Eq. 1
w.r.t. the current model parameters θ. Finally, θ is updated in the steepest descent direc-
tion of the objective function. This procedure is repeated until convergence.

The main drawback of SGD is that it requires an initial, careful tuning of the global
learning rate η, which is then used for updating all model parameters, regardless of their
peculiarities. However, if an entity x ∈ EG occurs in a limited number of triples in G,
the corresponding embedding vector ex ∈ Rk will be updated less often, and it will
require a much longer time to be learned. For such a reason, SGD may be very time-
consuming and slow to converge. For instance, it was reported in [10] that learning the
optimal embeddings in TransE may require days of computation for large KGs.

A possible solution to this problem consists in associating smaller learning rates
to parameters updated more often, such as the embedding vectors of entities appearing
more frequently, and larger learning rates to parameters updated less often.

Adaptive Learning Rates In order to reduce the time required for learning all entity
and predicate embeddings, in this work we propose leveraging Adaptive Per-Parameter
Learning Rates. While SGD uses a global, fixed learning rate η for updating all param-
eters, we propose relying on methods for estimating the optimal learning rate for each
parameter, while still being tractable for learning very large models.

We consider two highly-scalable criteria for selecting the optimal learning rates,
namely the Momentum method [16] and AdaGrad [17]: they specify alternate ways of
computing the parameters update ∆t, defined in Alg. 1 on line 6.

Momentum Method The idea behind this method is to accelerate the progress along
dimensions where the sign of the gradient does not change, while slowing the progress
along dimensions where the sign of the gradient continues to change. The new update
rule is defined as follows:

∆t ← ρ∆t−1 − ηmgt,

where ηm ∈ R is a user-defined hyper-parameter.
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Table 2: Statistics for the datasets used in the Link Prediction and Triple Classification
tasks.

Dataset Entities Predicates Train.
Triples

Valid.
Triples

Test
Triples

FREEBASE (FB15K) [7] 14,951 1,345 483,142 50,000 59,071
WORDNET (WN18) [7] 40,943 18 141,442 5,000 5,000

Fig. 1: Average loss (the lower, the better) across 10 TransE parameters learning tasks
on the WORDNET (WN18) and FREEBASE (FB15K) datasets, using the optimal
TransE settings reported in [7]. For each optimization method, we report the hyper-
parameter values that achieve the lowest average loss after 100 epochs, and the corre-
sponding average loss values.
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AdaGrad This method is based on the idea that the learning rate of each parameter
should grow with the inverse of gradient magnitudes. The update rule in AdaGrad is:

∆t ← −
ηa√∑t
j=1 g

2
j

gt,

where ηa ∈ R is a user-defined hyper-parameter. AdaGrad adds nearly no complexity,
it has very strong convergence guarantees [17], and it has shown remarkable results on
large scale learning tasks in distributed environments [18].

5 Empirical Evaluations

This section is organized as follows. In Sect. 5.1 we describe experimental settings,
datasets and evaluation metrics. In Sect. 5.2, we show that adaptive learning rates sen-
sibly improve both the efficiency of the learning process, and the predictive accuracy of
embedding models. In Sect. 5.3, we empirically evaluate the novel embedding models
proposed in Sect. 3, by training them using adaptive learning rates.

5.1 Experimental Settings

Link Prediction In these experiments, we used the metrics proposed in [7] for eval-
uating the rank of each test triple. In particular, for each test triple 〈s, p, o〉, its object
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Table 3: Link Prediction Results: Test performance of several link prediction methods
on the WORDNET and FREEBASE datasets. Results show the MEAN RANK (the lower,
the better) and HITS@10 (the higher, the better) for both the RAW and the FILTERED
settings [7].

Dataset WORDNET (WN18) FREEBASE (FB15K)

Metric MEAN RANK HITS@10 (%) MEAN RANK HITS@10 (%)
RAW FILT. RAW FILT. RAW FILT. RAW FILT.

Unstructured [12] 315 304 35.3 38.2 1,074 979 4.5 6.3
RESCAL [19] 1,180 1,163 37.2 52.8 828 683 28.4 44.1

SE [8] 1,011 985 68.5 80.5 273 162 28.8 39.8
SME lin. [12] 545 533 65.1 74.1 274 154 30.7 40.8
SME bil. [12] 526 509 54.7 61.3 284 158 31.3 41.3

LFM [14] 469 456 71.4 81.6 283 164 26.0 33.1
TransE [7] 263 251 75.4 89.2 243 125 34.9 47.1
TransEA 169 158 80.5 93.5 189 73 44.0 60.1

o is replaced with every entity õ ∈ EG in the KG G in turn, generating a set of cor-
rupted triples in the form 〈s, p, õ〉. The energies of corrupted triples are first computed
by the model, then sorted in ascending order, and used to compute the rank of the cor-
rect triple. This procedure is repeated by corrupting the subject. Aggregated over all
the test triples, this procedure leads to the following two metrics: the averaged rank,
denoted by MEAN RANK, and the proportion of ranks not larger than 10, denoted by
HITS@10. This is referred to as the RAW setting.

In the FILTERED setting, corrupted triples that exist in either the training, validation
or test set were removed before computing the rank of each triple. In both settings, a
lower MEAN RANK is better, while a higher HITS@10 is better.

5.2 Evaluation of Adaptive Learning Rates

Learning Time For comparing Momentum and AdaGrad with SGD on the task of
solving the optimization problem in Eq. 1, we empirically evaluated such methods on
the task of learning the parameters in TransE on WN18 and FB15K, using the optimal
hyper-parameter settings reported in [7]: k = 20, γ = 2, d = L1 for WN18, and
k = 50, γ = 1, d = L1 for FB15K. Following the evaluation protocol in [20], we
compared the optimization methods by using a large grid of hyper-parameters. Let Gη =
{10−6, 10−5, . . . , 101} and Gρ = {1−10−4, 1−10−3, . . . , 1−10−1, 0.5}. The grids of
hyper-parameters considered for each of the optimization methods were the following:

• SGD and AdaGrad: rate η, ηa ∈ Gη .
• Momentum: rate ηm ∈ Gη , decay rate ρ ∈ Gρ.

For each possible combination of optimization method and hyper-parameter values, we
performed an evaluation consisting in 10 learning tasks, each using a different random
initialization of the model parameters.

Fig. 1 shows the behavior of the loss functional for each of the optimization meth-
ods, using the best hyper-parameter settings selected after 100 training epochs. We can
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Table 4: Link Prediction Results: Test performance of the embedding models proposed
in Sect. 3 on the WORDNET and FREEBASE datasets. Results show the MEAN RANK
(the lower, the better) and HITS@10 (the higher, the better) [7].

Dataset WORDNET (WN18) FREEBASE (FB15K)

Metric MEAN RANK HITS@10 (%) MEAN RANK HITS@10 (%)
RAW FILT. RAW FILT. RAW FILT. RAW FILT.

TransE, from [7] SGD 263 251 75.4 89.2 243 125 34.9 47.1
TransE AdaGrad 161 150 80.5 93.5 183 63 47.9 68.2

TransE+ (Sect. 3) AdaGrad 159 148 79.6 92.6 196 78 44.9 62.4
ScalE (Sect. 3) AdaGrad 187 174 82.7 94.5 194 62 49.8 73.0

ScalE+ (Sect. 3) AdaGrad 298 287 83.7 95.5 185 59 50.0 71.5

immediately observe that, for both WORDNET (WN18) and FREEBASE (FB15K),
AdaGrad (with rate ηa = 0.1) yields sensibly lower values of the loss functional than
SGD and Momentum, even after very few iterations (< 10 epochs). The duration of
each epoch was similar in all methods: each epoch took approx. 1.6 seconds in WORD-
NET (WN18), and approx. 4.6 seconds in FREEBASE (FB15K) on a single i7 CPU.

Quality of Learned Models We also measured the quality of models learned by Ada-
Grad, in terms of the MEAN RANK and HITS@10 metrics, in comparison with SGD.
For this purpose, we trained TransE using AdaGrad (instead of SGD) with ηa = 0.1 for
100 epochs, denoted as TransEA, and compared it with results obtained with TransE
from the literature on Link Prediction tasks on the WORDNET and FREEBASE datasets.
Hyper-parameters were selected according to the performance on the validation set,
using the same grids of hyper-parameters used for TransE in [7] for the Link Predic-
tion tasks. The results obtained by TransEA, in comparison with state-of-the-art results
reported in [7], are shown in Tab. 3. Despite the sensibly lower number of training iter-
ations (we trained the model using AdaGrad for only 100 epochs, while in [7] TransE
was trained using SGD for 1,000 epochs), TransEA yields more accurate link predic-
tion models (i.e. with lower MEAN RANK and higher HITS@10 values) than every
other prediction model in the comparison.

5.3 Evaluation of the Proposed Embedding Models

In this section, we evaluate the embedding models inspired by TransE and proposed
in Sect. 3: ScalE, TransE+ and ScalE+. Model hyper-parameters were selected ac-
cording to the performance on the validation set. In the following experiments, we
considered a wider grid of hyper-parameters: in particular, we selected the embed-
ding vector dimension k in {20, 50, 100, 200, 300}, the dissimilarity function d(x,y)
in {‖x − y‖1, ‖x − y‖2,−xTy}, and the margin γ in {1, 2, 5, 10}. All models were
trained using AdaGrad, with ηa = 0.1, for only 100 epochs. The reduced training time
enabled us to experiment with a wider range of hyper-parameters in comparison with
related works in literature [7].

Results are summarized in Tab. 4. We can see that, despite their very different geo-
metric interpretations, all of the embedding models proposed in Sect. 3 achieve sensi-
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bly higher results in terms of HITS@10 in comparison with every other link prediction
models outlined in Sect. 3. An explanation is that both TransE [7] and the proposed
models TransE+, ScalE and ScalE+ have a limited model capacity (or complexity)
in comparison with other models. For such a reason, they are less prone to underfitting
for lack of training instances than other more expressive link prediction models, such
as RESCAL [19], SME [12] and NTN [13].

In each experiment, the proposed models ScalE and ScalE+ always improve over
TransE in terms of HITS@10. We can clearly see that, by leveraging: (i) Adaptive
learning rates, and (ii) The proposed embedding models ScalE and ScalE+, we were
able to achieve a record 95.5% HITS@10 on WORDNET, and a 73.0% HITS@10 on
FREEBASE. These results are sensibly higher than state-of-the-art results reported in
[7]. It is also remarkable that, during learning, the proposed method required a much
lower learning time (100 epochs, approx. 30 minutes on FREEBASE, on a single CPU)
in comparison with [7] (1,000 epochs, and careful learning rate tuning).

A significantly lower training time – from days, as reported by [10], to minutes –
can sensibly improve the applicability of embedding models for knowledge graphs in
the Web of Data.

6 Conclusions

We focused on the problem of link prediction in Knowledge Graphs. Recently, embed-
ding models like the TransE [7] model achieved new state-of-the-art link prediction
results, while showing the potential to scale to very large KGs.

In this paper, we proposed a method for sensibly reducing the learning time in em-
bedding models based on adaptive learning rate selection, and proposed a set of new
models with interesting scalability properties. We extensively evaluated the proposed
methods in several experiments on real world large datasets. Our results show a sig-
nificant improvement over state-of-the-art link prediction methods, while significantly
reducing the required training time by an order of magnitude.

The contributions in this paper sensibly improve both the effectiveness and applica-
bility of embedding models on large and Web-scale KGs. Source code and datasets for
reproducing the empirical evaluations discussed in this paper are available on-line 5.

References

1. K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase: a collaboratively
created graph database for structuring human knowledge,” in Proceedings of the ACM SIG-
MOD International Conference on Management of Data, SIGMOD 2008, J. T. Wang, Ed.
ACM, 2008, pp. 1247–1250.

2. G. A. Miller, “Wordnet: A lexical database for english,” Commun. ACM, vol. 38, no. 11, pp.
39–41, 1995.

3. X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann, S. Sun,
and W. Zhang, “Knowledge vault: a web-scale approach to probabilistic knowledge fusion,”
in The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’14, S. A. Macskassy et al., Eds. ACM, 2014, pp. 601–610.

5 Source code and datasets: https://github.com/pminervini/DeepKGC

36



4. A. Bordes and E. Gabrilovich, “Constructing and mining web-scale knowledge graphs: KDD
2014 tutorial,” in The 20th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, KDD ’14, 2014, p. 1967.

5. ——, “Constructing and mining web-scale knowledge graphs: WWW 2015 Tutorial,” in
Proceedings of the 24th International Conference on World Wide Web, WWW 2015, 2015, p.
1523.

6. Y. Bengio, A. C. Courville, and P. Vincent, “Representation learning: A review and new
perspectives,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798–1828, 2013.

7. A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko, “Translating em-
beddings for modeling multi-relational data,” in Advances in Neural Information Processing
Systems 26, C. Burges et al., Eds. Curran Associates, Inc., 2013, pp. 2787–2795.

8. A. Bordes, J. Weston, R. Collobert, and Y. Bengio, “Learning structured embeddings of
knowledge bases,” in Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelli-
gence, AAAI 2011, W. Burgard et al., Eds. AAAI Press, 2011.

9. T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations
of words and phrases and their compositionality,” C. J. C. Burges, L. Bottou, Z. Ghahramani,
and K. Q. Weinberger, Eds., 2013, pp. 3111–3119.

10. K. Chang, W. Yih, B. Yang, and C. Meek, “Typed tensor decomposition of knowledge bases
for relation extraction,” in Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2014, A. Moschitti et al., Eds. ACL, 2014, pp.
1568–1579.

11. Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang, “A tutorial on energy-based
learning,” in Predicting Structured Data, G. Bakir et al., Eds. MIT Press, 2006.

12. A. Bordes, X. Glorot, J. Weston, and Y. Bengio, “A semantic matching energy function for
learning with multi-relational data - application to word-sense disambiguation,” Machine
Learning, vol. 94, no. 2, pp. 233–259, 2014.

13. R. Socher, D. Chen, C. D. Manning, and A. Ng, “Reasoning with neural tensor networks
for knowledge base completion,” in Advances in Neural Information Processing Systems 26,
C. Burges et al., Eds. Curran Associates, Inc., 2013, pp. 926–934.

14. R. Jenatton, N. L. Roux, A. Bordes, and G. R. Obozinski, “A latent factor model for highly
multi-relational data,” in Advances in Neural Information Processing Systems 25, F. Pereira
et al., Eds. Curran Associates, Inc., 2012, pp. 3167–3175.

15. Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph embedding by translating on hy-
perplanes,” in Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence,
C. E. Brodley et al., Eds. AAAI Press, 2014, pp. 1112–1119.

16. D. E. Rumelhart, G. E. Hinton, and R. J. Wilson, “Learning representations by back-
propagating errors,” Nature, vol. 323, pp. 533–536, 1986.

17. J. C. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and
stochastic optimization,” Journal of Machine Learning Research, vol. 12, pp. 2121–2159,
2011.

18. J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. A. Ranzato, A. Senior,
P. Tucker, K. Yang, Q. V. Le, and A. Y. Ng, “Large scale distributed deep networks,” in
Advances in Neural Information Processing Systems 25, F. Pereira et al., Eds. Curran
Associates, Inc., 2012, pp. 1223–1231.

19. M. Nickel, V. Tresp, and H. Kriegel, “A three-way model for collective learning on multi-
relational data,” in Proceedings of the 28th International Conference on Machine Learning,
ICML 2011, L. Getoor et al., Eds. Omnipress, 2011, pp. 809–816.

20. T. Schaul, I. Antonoglou, and D. Silver, “Unit tests for stochastic optimization,” in Interna-
tional Conference on Learning Representations, 2014.

37



Probabilistic Ontological Data Exchange
with Bayesian Networks

Thomas Lukasiewicz1, Maria Vanina Martinez3,
Livia Predoiu12, and Gerardo I. Simari3

1 Department of Computer Science, University of Oxford, UK
2 Department of Computer Science, Otto-von-Guericke Universität Magdeburg, Germany

3 Dept. of Comp. Sci. and Eng., Univ. Nacional del Sur and CONICET, Argentina

Abstract. We study the problem of exchanging probabilistic data between onto-
logy-based probabilistic databases. The probabilities of the probabilistic source
databases are compactly encoded via Boolean formulas with the variables ad-
hering to the dependencies imposed by a Bayesian network, which are closely
related to the management of provenance. For the ontologies and the ontology
mappings, we consider different kinds of existential rules from the Datalog+/–
family. We provide a complete picture of the computational complexity of the
problem of deciding whether there exists a probabilistic (universal) solution for
a given probabilistic source database relative to a (probabilistic) ontological data
exchange problem. We also analyze the complexity of answering UCQs (unions
of conjunctive queries) in this framework.

1 Introduction

Large volumes of uncertain data are best modeled, stored, and processed in probabilis-
tic databases [22]. Enriching databases with terminological knowledge encoded in on-
tologies has recently gained increasing importance in the form of ontology-based data
access (OBDA) [21]. A crucial problem in OBDA is to integrate and exchange knowl-
edge. Not only in the context of OBDA, but also in the area of the Semantic Web, there
are distributed ontologies that we may have to map and integrate to enable query an-
swering over them. Here, apart from the uncertainty attached to source databases, there
may also be uncertainty regarding the ontology mappings establishing the proper corre-
spondence between items in the source ontology and items in the target ontology. This
especially happens when the mappings are created automatically.

Data exchange [11] is an important theoretical framework used for studying data-
interoperability tasks that require data to be transferred from existing databases to a
target database that comes with its own (independently created) schema and schema
constraints. The expressivity of the data exchange framework goes beyond the classi-
cal data integration framework [17]. For the translation, schema mappings are used,
which are declarative specifications that describe the relationship between two database
schemas. In classical data exchange, we have a source database, a target database, a de-
terministic mapping, and deterministic target dependencies. Recently, a framework for
probabilistic data exchange [10] has been proposed where the classical data exchange
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framework based on weakly acyclic existential rules has been extended to consider a
probabilistic source database and a probabilistic source-to-target mapping.

In this paper, we study an expressive extension of the probabilistic data exchange
framework in [10], where the source and the target are ontological knowledge bases,
each consisting of a probabilistic database and a deterministic ontology describing
terminological knowledge about the data stored in the database. The two ontologies
and the mapping between them are expressed via existential rules. Our extension of
the data exchange framework is strongly related to exchanging data between incom-
plete databases, as proposed in [3], which considers an incomplete deterministic source
database in the data exchange problem. However, in that work, the databases are deter-
ministic, and the mappings and the target database constraints are full existential rules
only. In our complexity analysis in this paper, we consider a host of different classes
of existential rules, including some subclasses of full existential rules. In addition, our
source is a probabilistic database relative to an underlying ontology.

Our work in this paper is also related to the recently proposed knowledge base ex-
change framework [2, 1], which allows knowledge to be exchanged between determin-
istic DL-LiteRDFS and DL-LiteR ontologies. In this paper, besides considering proba-
bilistic source databases, we are also using more expressive ontology languages, since
already linear existential rules from the Datalog+/– family are strictly more expressive
than the description logics (DLs) DL-LiteX of the DL-Lite family [9] as well as their
extensions with n-ary relations DLR-LiteX . Guarded existential rules are sufficiently ex-
pressive to model the tractable DL EL [4, 5] (and ELIf [16]). Note that existential rules
are also known as tuple-generating dependencies (TGDs) and Datalog+/– rules [7].

The main contributions of this paper are summarized as follows.
− We introduce deterministic and probabilistic ontological data exchange problems,
where probabilistic knowledge is exchanged between two Bayesian network-based prob-
abilistic databases relative to their underlying deterministic ontologies, and the deter-
ministic and probabilistic mapping between the two ontologies is defined via determin-
istic and probabilistic existential mapping rules, respectively.
−We provide an in-depth analysis of the data and combined complexity of deciding the
existence of probabilistic (universal) solutions and obtain a (fairly) complete picture of
the data complexity, general combined complexity, bounded-arity (ba) combined, and
fixed-program combined (fp) complexity for the main sublanguages of the Datalog+/–
family. We also delineate some tractable special cases, and provide complexity results
for exact UCQ (union of conjunctive queries) answering.
− For the complexity analysis, we consider a compact encoding of probabilistic source
databases and mappings, which is used in the area of both incomplete and probabilistic
databases, and also known as data provenance or data lineage [14, 12, 13, 22]. Here,
we consider data provenance for probabilistic data that is structured according to an
underlying Bayesian network.

2 Preliminaries

We assume infinite sets of constants C, (labeled) nulls N, and regular variables V.
A term t is a constant, null, or variable. An atom has the form p(t1, . . . , tn), where p is
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an n-ary predicate, and t1, . . . , tn are terms. Conjunctions of atoms are often identified
with the sets of their atoms. An instance I is a (possibly infinite) set of atoms p(t),
where t is a tuple of constants and nulls. A database D is a finite instance that contains
only constants. A homomorphism is a substitution h : C∪N∪V→ C∪N∪V that is
the identity on C. We assume familiarity with conjunctive queries (CQs). The answer
to a CQ q over an instance I is denoted q(I). A Boolean CQ (BCQ) q evaluates to true
over I , denoted I |= q, if q(I) 6= ∅.

A tuple-generating dependency (TGD) σ is a first-order formula ∀Xϕ(X) →
∃Y p(X,Y), where X ∪ Y ⊆ V, ϕ(X) is a conjunction of atoms, and p(X,Y) is
an atom. We call ϕ(X) the body of σ, denoted body(σ), and p(X,Y) the head of σ, de-
noted head(σ). We consider only TGDs with a single atom in the head, but our results
can be extended to TGDs with a conjunction of atoms in the head. An instance I satis-
fies σ, written I |= σ, if the following holds: whenever there exists a homomorphism h
such that h(ϕ(X)) ⊆ I , then there exists h′ ⊇ h|X, where h|X is the restriction of h
to X, such that h′(p(X,Y)) ∈ I . A negative constraint (NC) ν is a first-order formula
∀Xϕ(X) → ⊥, where X ⊆ V, ϕ(X) is a conjunction of atoms, called the body of ν,
denoted body(ν), and ⊥ denotes the truth constant false . An instance I satisfies ν, de-
noted I |= ν, if there is no homomorphism h such that h(ϕ(X)) ⊆ I . Given a set Σ of
TGDs and NCs, I satisfies Σ, denoted I |= Σ, if I satisfies each TGD and NC of Σ.
For brevity, we omit the universal quantifiers in front of TGDs and NCs.

Given a databaseD and a setΣ of TGDs and NCs, the answers that we consider are
those that are true in all models of D and Σ. Formally, the models of D and Σ, denoted
mods(D,Σ), is the set of instances {I | I ⊇ D and I |= Σ}. The answer to a CQ q rel-
ative to D and Σ is defined as the set of tuples ans(q,D,Σ) =

⋂
I∈mods(D,Σ){t | t ∈

q(I)}. The answer to a BCQ q is true, denoted D ∪ Σ |= q, if ans(q,D,Σ) 6= ∅.
The problem of CQ answering is defined as follows: given a database D, a set Σ of
TGDs and NCs, a CQ q, and a tuple of constants t, decide whether t ∈ ans(q,D,Σ).
Following Vardi’s taxonomy [23], the combined complexity of BCQ answering is cal-
culated by considering all the components, i.e., the database, the set of dependencies,
and the query, as part of the input. The bounded-arity combined complexity (or sim-
ply ba-combined complexity) is calculated by assuming that the arity of the underlying
schema is bounded by an integer constant. Notice that in the context of description
logics (DLs), whenever we refer to the combined complexity in fact we refer to the
ba-combined complexity since, by definition, the arity of the underlying schema is at
most two. The fixed-program combined complexity (or simply fp-combined complexity)
is calculated by considering the set of TGDs and NCs as fixed.

3 Ontological Data Exchange

In this section, we define the notions of deterministic and probabilistic ontological data
exchange. The source (resp., target) of the deterministic/probabilistic ontological data
exchange problems that we consider in this paper is a probabilistic database (resp.,
probabilistic instance), each relative to a deterministic ontology. Here, a probabilistic
database (resp., probabilistic instance) over a schema S is a probability space Pr =
(I, µ) such that I is the set of all (possibly infinitely many) databases (resp., instances)
over S, and µ : I → [0, 1] is a function that satisfies

∑
I∈I µ(I) = 1.
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3.1 Deterministic Ontological Data Exchange

Ontological data exchange formalizes data exchange from a probabilistic database rel-
ative to a source ontology Σs (consisting of TGDs and NCs) over a schema S to a
probabilistic target instance Prt relative to a target ontology Σt (consisting of a set of
TGDs and NCs) over a schema T via a (source-to-target) mapping (also consisting of a
set of TGDs and NCs). More specifically, an ontological data exchange (ODE) problem
M= (S, T,Σs,Σt,Σst) consists of (i) a source schema S, (ii) a target schema T disjoint
from S, (iii) a finite set Σs of TGDs and NCs over S (called source ontology), (iv) a fi-
nite set Σt of TGDs and NCs over T (called target ontology), and (v) a finite set Σst of
TGDs and NCs σ over S∪T (called (source-to-target) mapping) such that body(σ) and
head(σ) are defined over S ∪ T and T, respectively.

Ontological data exchange with deterministic databases is based on defining a tar-
get instance J over T as being a solution for a deterministic source database I over S
relative to an ODE problemM = (S,T, Σs, Σt, Σst), if (I ∪J) |= Σs ∪Σt ∪Σst. We
denote by SolM the set of all such pairs (I, J). Among the possible deterministic solu-
tions J to a deterministic source database I relative toM in SolM, we prefer universal
solutions, which are the most general ones carrying only the necessary information for
data exchange, i.e., those that transfer only the source database along with the relevant
implicit derivations via Σs to the target ontology. A universal solution can be homo-
morphically mapped to all other solutions leaving the constants unchanged. Hence, a
deterministic target instance J over S is a universal solution for a deterministic source
database I over T relative to a schema mappingM, if (i) J is a solution, and (ii) for
each solution J ′ for I relative toM, there is a homomorphism h : J → J ′. We denote
by USolM (⊆ SolM) the set of all pairs (I, J) of deterministic source databases I and
target instances J such that J is a universal solution for I relative toM.

When considering probabilistic databases and instances, a joint probability space Pr
over the solution relation SolM and the universal solution relation USolM must exist.
More specifically, a probabilistic target instance Prt = (J , µt) is a probabilistic solution
(resp., probabilistic universal solution) for a probabilistic source database Prs = (I, µs)
relative to an ODE problemM= (S,T, Σs, Σt, Σst), if there exists a probability space
Pr = (I ×J , µ) such that (i) the left and right marginals of Pr are Prs and Prt, respec-
tively, i.e., (i.a) µs(I) =

∑
J∈J µ(I, J) for all I ∈I, (i.b) µt(J) =

∑
I∈I µ(I, J) for

all J ∈J ; and (ii) µ(I, J) = 0 for all (I, J) 6∈ SolM (resp., (I, J) 6∈ USolM). Note that
this intuitively says that all non-solutions (I, J) have probability zero and the existence
of a solution does not exclude that some source databases with probability zero have no
corresponding target instance.

Example 1. An ontological data exchange (ODE) problem M = (S,T, Σs, Σt, Σst)
is given by the source schema S = {Researcher/2, ResearchArea/2, Publication/3}
(the number after each predicate denotes its arity), the target schema T = {UResearch-
Area/3, Lecturer/2}, the source ontology Σs = {σs, νs}, the target ontology Σt =
{σt, νt}, and the mapping Σst = {σst, νm}, where:

σs : Publication(X,Y,Z)→ ResearchArea(X,Y),
νs : Researcher(X,Y) ∧ ResearchArea(X,Y)→ ⊥,
σt : UResearchArea(U,D,T)→ ∃Z Lecturer(T,Z),
νt : Lecturer(X,Y) ∧ Lecturer(Y,X)→ ⊥,
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Possible source database facts
ra Researcher(Alice, UnivOx)
rp Researcher(Paul, UnivOx)
paml Publication(Alice, ML, JMLR)
padb Publication(Alice, DB, TODS)
ppdb Publication(Paul, DB, TODS)
ppai Publication(Paul, AI, AIJ)

Derived source database facts
aaml ResearchArea(Alice, ML)
aadb ResearchArea(Alice, DB)
apdb ResearchArea(Paul, DB)
apai ResearchArea(Paul, AI)

Probabilistic source database Prs = (I, µs)
I1 = {ra,rp,paml,ppdb,aaml,apdb} 0.5
I2 = {ra,rp,paml,ppai,aaml,apai} 0.2
I3 = {ra,rp,padb,ppai,aadb,apai} 0.15
I4 = {ra,rp,padb,ppdb,aadb,apdb} 0.075
I5 = {ra,padb,aadb} 0.075

Possible target instance facts
uml UResearchArea(UnivOx,N1, ML)
uai UResearchArea(UnivOx,N2, AI)
udb UResearchArea(UnivOx,N3, DB)
lml Lecturer(ML,N4)
lai Lecturer(AI,N5)
ldb Lecturer(DB,N6)

Probabilistic target instance Prt1 = (J1, µt1
)

J1 = {uml,udb,lml,ldb} 0.5
J2 = {uml,uai,lml,lai} 0.2
J3 = {uai,udb,lai,ldb} 0.15
J4 = {udb,ldb} 0.15

Probabilistic target instance Prt2 = (J2, µt2
)

J5 = {uml,udb,lml,ldb} 0.55
J6 = {uml,uai,lml,lai} 0.1
J7 = {uml,uai,udb,lml,lai,ldb} 0.35

Table 1. Probabilistic source database and two probabilistic target instances for Example 1
(N1, . . . , N6 are nulls); both are probabilistic solutions, but only Prt1 is universal.

Fig. 1. Probabilistic universal solution Prt1 . Fig. 2. Probabilistic solution Prt2 .

σst : ResearchArea(N,T) ∧ Researcher(N,U)→ ∃D UResearchArea(U,D,T),
νst : ResearchArea(N,T) ∧ UResearchArea(U,T,N)→ ⊥.

Given the probabilistic source database in Table 1, two probabilistic instances Prt1 =
(J1, µt1) and Prt2 = (J2, µt2) that are probabilistic solutions are shown in Table 1.
Note that only Prt1 is also a probabilistic universal solution. Note also that Figures 1
and 2 show the probability spaces over Prt1 and Prt2 , respectively. �

Query answering in ontological data exchange is performed over the target ontology
and is generalized from deterministic data exchange. A union of conjunctive queries (or
UCQ) has the form q(X) =

∨k
i=1 ∃Yi Φi(X,Yi,Ci), where each ∃Yi Φi(X,Yi,Ci)

with i ∈ {1, . . . , k} is a CQ with exactly the variables X and Yi, and the constants
Ci. Given an ODE problem M= (S, T, Σs, Σt, Σst), probabilistic source database
Prs = (I, µs), UCQ q(X) =

∨k
i=1 ∃Yi Φi(X,Yi, Ci), and tuple t (a ground instance

of X in q) over C, the confidence of t relative to q, denoted conf q(t), in Prs relative to
M is the infimum of Prt(q(t)) subject to all probabilistic solutions Prt for Prs relative
toM. Here, Prt(q(t)) for Prt = (J , µt) is the sum of all µt(J) such that q(t) evaluates
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to true in the instance J ∈ J (i.e., some BCQ ∃Yi Φi(t,Yi,Ci) with i ∈ {1, . . . , k}
evaluates to true in J).

Example 2. Consider again the setting of Example 1, and let q be a UCQ of a stu-
dent who wants to know whether she can study either machine learning or artificial
intelligence at the University of Oxford: q() = ∃X,Z(Lecturer(AI,X) ∧ UResearch-
Area(UnivOx,Z,AI)) ∨ ∃X,Z(Lecturer(ML,X) ∧ UResearchArea(UnivOx,Z,ML)).
Then, q yields the probabilities 0.85 and 1 on Prt1 and Prt2 , respectively. �

3.2 Probabilistic Ontological Data Exchange

Probabilistic ontological data exchange extends deterministic ontological data exchange
by turning the deterministic source-to-target mapping into a probabilistic source-to-
target mapping, i.e., we have a probability distribution over the set of all subsets of Σst.
More specifically, a probabilistic ontological data exchange (PODE) problem M =
(S,T, Σs, Σt, Σst, µst) consists of (i) a source schema S, (ii) a target schema T dis-
joint from S, (iii) a finite set Σs of TGDs and NCs over S (called source ontology),
(iv) a finite set Σt of TGDs and NCs over T (called target ontology), (v) a finite set
Σst of TGDs and NCs σ over S ∪ T, and (vi) a function µst : 2Σst → [0, 1] such that∑
Σ′⊆Σst

µst(Σ
′) = 1 (called probabilistic (source-to-target) mapping).

A probabilistic target instance Prt = (J , µt) is a probabilistic solution (resp., prob-
abilistic universal solution) for a probabilistic source database Prs = (I, µs) relative to
a PODE problemM= (S,T, Σs, Σt, Σst, µst), if there exists a probability space Pr =
= (I×J ×2Σst , µ) such that: (i) the three marginals of µ are µs, µt, and µst, such that:
(i.a) µs(I) =

∑
J∈J , Σ′⊆Σst

µ(I, J,Σ′) for all I ∈ I, (i.b) µt(J) =
∑
I∈I, Σ′⊆Σst

µ(I,
J,Σ′) for all J ∈ J , and (i.c) µst(Σ′) =

∑
I∈I, J∈J µ(I, J,Σ′) for all Σ′ ⊆ Σst; and

(ii) µ(I, J,Σ′) = 0 for all (I, J) 6∈ Sol (S,T,Σ′) (resp., (I, J) 6∈ USol (S,T,Σ′)).
Using probabilistic (universal) solutions for probabilistic source databases relative

to PODE problems, the semantics of UCQs is lifted to PODE problems as follows.
Given a PODE problemM= (S, T, Σs, Σt, Σst, µst), a probabilistic source database
Prs = (I, µs), a UCQ q(X) =

∨k
i=1 ∃Yi Φi(X,Yi,Ci), and a tuple t (a ground in-

stance of X in q) over C, the confidence of t relative to q, denoted conf q(t), in Prs rel-
ative toM is the infimum of Prt(q(t)) subject to all probabilistic solutions Prt for Prs
relative toM. Here, Prt(q(t)) for Prt = (J , µt) is the sum of all µt(J) such that q(t)
evaluates to true in the instance J ∈ J .

3.3 Compact Encoding

We use a compact encoding of both probabilistic databases and probabilistic map-
pings, which is based on annotating facts, TGDs, and NCs by probabilistic events in
a Bayesian network, rather than explicitly specifying the whole probability space.

We first define annotations and annotated atoms. Let e1, . . . , en be n ≥ 1 elemen-
tary events. A worldw is a conjunction `1∧· · ·∧`n, where each `i, i ∈ {1, . . . , n}, is ei-
ther the elementary event ei or its negation ¬ei. An annotation λ is any Boolean combi-
nation of elementary events (i.e., all elementary events are annotations, and if λ1 and λ2
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Possible source database facts Annotation
ra Researcher(Alice, UnivOx) true
rp Researcher(Paul, UnivOx) e1∨ e2∨ e3∨ e4
paml Publication(Alice, ML, JMLR) e1∨ e2
padb Publication(Alice, DB, TODS) ¬ e1 ∧ ¬ e2
ppdb Publication(Paul, DB, TODS) e1∨ (¬ e2 ∧ ¬ e3∧ e4)
ppai Publication(Paul, AI, AIJ) (¬ e1∧ e2) ∨ (¬ e1∧ e3)

Table 2. Annotation encoding of the probabilistic source database in Table 1.

Table 3. Bayesian network over the elementary events.

are annotations, then also ¬λ1 and λ1 ∧ λ2). An annotated atom has the form a : λ,
where a is an atom, and λ is an annotation.

The compact encoding of probabilistic databases can then be defined as follows.
Note that this encoding is also underlying our complexity analysis in Section 4. A set A
of annotated atoms along with a probability µ(w)∈ [0, 1] for every world w compactly
encodes a probabilistic database Pr= (I, µ) whenever: (i) the probability µ of ev-
ery annotation λ is the sum of the probabilities of all worlds in which λ is true, and
(ii) the probability µ of every subset-maximal database {a1, . . . , am} ∈ I 4 such that
{a1 : λ1, . . . , am : λm} ⊆ A for some annotations λ1, . . . , λm is the probability µ of
λ1 ∧ · · · ∧ λm (and the probability µ of every other database in I is 0).

We assume that the probability distributions for the underlying events are given by
a Bayesian network, which is usually used for compactly specifying a joint probability
space, encoding also a certain causal structure between the variables. The following
example in Tables 2 and 3 illustrates the compact encoding of probabilistic source data-
bases via Boolean annotations relative to an underlying Bayesian network.

If the mapping is probabilistic as well, then we use two disjoint sets of elementary
events, one for encoding the probabilistic source database and the other one for the
mapping. In this way, the probabilistic source database is independent from the proba-
bilistic mapping. We now define the compact encoding of probabilistic mappings. An
annotated TGD (resp., NC) has the form σ : λ, where σ is a TGD (resp., NC), and λ
is an annotation. A set Σ of annotated TGDs and NCs σ : λ with σ ∈ Σst along with
a probability µ(w) ∈ [0, 1] for every world w compactly encodes a probabilistic map-
pings µst : 2Σst → [0, 1] whenever (i) the probability µ of every annotation λ is the sum
of the probabilities of all worlds in which λ is true, and (ii) the probability µst of every

4 That is, we do not consider subsets of the databases here.
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subset-maximal {σ1, . . . , σk} ⊆ Σst such that {σ1 : λ1, . . . , σk : λk} ⊆ Σ for some
annotations λ1, . . . , λk is the probability µ of λ1 ∧ · · · ∧ λk (and the probability µst of
every other subset of Σst is 0).

3.4 Computational Problems

We consider the following computational problems:

Existence of a solution (resp., universal solution): Given an ODE or a PODE prob-
lemM and a probabilistic source database Prs, decide whether there exists a prob-
abilistic (resp., probabilistic universal) solution for Prs relative toM.

Answering UCQs: Given an ODE or a PODE problemM, a probabilistic source data-
base Prs, a UCQ q(X), and a tuple t over C, compute conf Q(t) in Prs w.r.t.M.

4 Computational Complexity

We now analyze the computational complexity of deciding the existence of a (univer-
sal) probabilistic solution for deterministic and probabilistic ontological data exchange
problems. We also delineate some tractable special cases, and we provide some com-
plexity results for exact UCQ answering for ODE and PODE problems.

We assume some elementary background in complexity theory [15, 20]. We now
briefly recall the complexity classes that we encounter in our complexity results. The
complexity classes PSPACE (resp., P, EXP, 2EXP) contain all decision problems that
can be solved in polynomial space (resp., polynomial, exponential, double exponential
time) on a deterministic Turing machine, while the complexity classes NP and NEXP
contain all decision problems that can be solved in polynomial and exponential time
on a nondeterministic Turing machine, respectively; coNP and coNEXP are their com-
plementary classes, where “Yes” and “No” instances are interchanged. The complexity
class AC0 is the class of all languages that are decidable by uniform families of Boolean
circuits of polynomial size and constant depth. The inclusion relationships among the
above (decision) complexity classes (all currently believed to be strict) are as follows:

AC0⊆ P⊆ NP, coNP⊆ PSPACE⊆ EXP⊆ NEXP, coNEXP⊆ 2EXP

The (function) complexity class #P is the set of all functions that are computable
by a polynomial-time nondeterministic Turing machine whose output for a given input
string I is the number of accepting computations for I .

4.1 Decidability Paradigms

The main (syntactic) conditions on TGDs that guarantee the decidability of CQ answer-
ing are guardedness [6], stickiness [8], and acyclicity. Each one of these conditions has
its “weak” counterpart: weak guardedness [6], weak stickiness [8], and weak acyclic-
ity [11], respectively.

A TGD σ is guarded if there exists an atom in its body that contains (or “guards”)
all the body variables of σ. The class of guarded TGDs, denoted G, is defined as the
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Data Comb. ba-comb. fp-comb.

L, LF, AF in AC0 PSPACE NP NP
G P 2EXP EXP NP
WG EXP 2EXP EXP EXP

S, SF in AC0 EXP NP NP
F, GF P EXP NP NP

A in AC0 NEXP NEXP NP
WS, WA P 2EXP 2EXP NP

Fig. 3. Complexity of BCQ answering [18].
All entries except for “in AC0” are com-
pleteness ones, where hardness in all cases
holds even for ground atomic BCQs.

Data Comb. ba-comb. fp-comb.

L, LF, AF coNP PSPACE coNP coNP
G coNP 2EXP EXP coNP
WG EXP 2EXP EXP EXP
S, SF coNP EXP coNP coNP
F, GF coNP EXP coNP coNP
A coNP coNEXP coNEXP coNP

WS, WA coNP 2EXP 2EXP coNP

Fig. 4. Complexity of existence of a proba-
bilistic (universal) solution (for both deter-
ministic and probabilistic ODE). All entries
are completeness results.

family of all possible sets of guarded TGDs. A key subclass of guarded TGDs are the
so-called linear TGDs with just one body atom (which is automatically a guard), and
the corresponding class is denoted L. Weakly guarded TGDs extend guarded TGDs by
requiring only “harmful” body variables to appear in the guard, and the associated class
is denoted WG. It is easy to verify that L ⊂ G ⊂WG.

Stickiness is inherently different from guardedness, and its central property can be
described as follows: variables that appear more than once in a body (i.e., join variables)
are always propagated (or “stick”) to the inferred atoms. A set of TGDs that enjoys the
above property is called sticky, and the corresponding class is denoted S. Weak sticki-
ness is a relaxation of stickiness where only “harmful” variables are taken into account.
A set of TGDs which enjoys weak stickiness is weakly sticky, and the associated class
is denoted WS. Observe that S ⊂WS.

A setΣ of TGDs is acyclic if its predicate graph is acyclic, and the underlying class
is denoted A. In fact, an acyclic set of TGDs can be seen as a nonrecursive set of TGDs.
We sayΣ is weakly acyclic if its dependency graph enjoys a certain acyclicity condition,
which actually guarantees the existence of a finite canonical model; the associated class
is denoted WA. Clearly, A ⊂WA.

Another key fragment of TGDs, which deserves our attention, are the so-called
full TGDs, i.e., TGDs without existentially quantified variables, and the corresponding
class is denoted F. If we further assume that full TGDs enjoy linearity, guardedness,
stickiness, or acyclicity, then we obtain the classes LF, GF, SF, and AF, respectively.

4.2 Overview of Complexity Results

Our complexity results for deciding the existence of a probabilistic (universal) solution
for both ODE and PODE problems with annotations over events relative to an under-
lying Bayesian network are summarized in Fig. 4 for all classes of existential rules
discussed above in the data, combined, ba-combined, and fp-combined complexity (all
entries are completeness results). For L, LF, AF, S, SF, and A in the data complexity,
we obtain tractability when the underlying Bayesian network is a polytree. For all other
cases, hardness holds even when the underlying Bayesian network is a polytree. Finally,
for all classes of existential rules discussed above except for WG, answering UCQs for
both ODE and PODE problems is in #P in the data complexity.
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4.3 Deterministic Ontological Data Exchange

The first result shows that deciding whether there exists a probabilistic (or probabilistic
universal) solution for a probabilistic source database relative to an ODE problem is
complete for C (resp., coC), if BCQ answering for the involved sets of TGDs and NCs
is complete for a deterministic (resp., nondeterministic) complexity class C ⊇ PSPACE
(resp., C ⊇ NP), and hardness holds even for ground atomic BCQs. As a corollary, by
the complexity of BCQ answering with TGDs and NCs in Figure 3 [18], we imme-
diately obtain the complexity results shown in Figure 4 for deciding the existence of
a probabilistic (universal) solution (in deterministic ontological data exchange) in the
combined, ba-combined, and fp-combined complexity, and for the class WG of TGDs
and NCs in the data complexity. The hardness results hold even when the underlying
Bayesian network is a polytree.

Theorem 1. Given a probabilistic source database Prs relative to a source ontology
Σs and an ODE problemM = (S,T, Σs, Σt, Σst) such that Σs ∪Σt ∪Σst belongs to
a class of TGDs and NCs for which BCQ answering is complete for a deterministic
(resp., nondeterministic) complexity class C ⊇ PSPACE (resp., C ⊇ NP), and hardness
holds even for ground atomic BCQs, deciding the existence of a probabilistic (universal)
solution for Prs relative to Σs andM is complete for C (resp., coC). Hardness holds
even when the underlying Bayesian network is a polytree.

The following result shows that deciding whether there exists a probabilistic (uni-
versal) solution for a probabilistic source database relative to an ODE problem is com-
plete for coNP in the data complexity, for all classes of sets of TGDs and NCs considered
in this paper, except for WG. Hardness for coNP for the classes G, F, GF, WS, and WA
holds even when the underlying Bayesian network is a polytree.

Theorem 2. Given a probabilistic source database Prs relative to a source ontology
Σs and an ODE problemM = (S,T, Σs, Σt, Σst) such that Σs ∪Σt ∪Σst belongs to
a class among L, LF, AF, G, S, SF, F, GF, A, WS, and WA, deciding whether there
exists a probabilistic (or probabilistic universal) solution for Prs relative to Σs and
M is coNP-complete in the data complexity. Hardness for coNP for the classes G, F,
GF, WS, and WA holds even when the underlying Bayesian network is a polytree.

The following result shows that deciding whether there exists a probabilistic (or
probabilistic universal) solution for a probabilistic source database relative to an ODE
problem is in P in the data complexity, if BCQ answering for the involved sets of TGDs
and NCs is first-order rewritable as a Boolean UCQ, and the underlying Bayesian net-
work is a polytree. As a corollary, by the complexity of BCQ answering with TGDs and
NCs, deciding the existence of a solution is in P for the classes L, LF, AF, S, SF, and A
in the data complexity, if the underlying Bayesian network is a polytree.

Theorem 3. Given a probabilistic source database Prs relative to a source ontology
Σs, with a polytree as Bayesian network, and an ODE problemM = (S,T, Σs, Σt, Σst)
such thatΣs ∪Σt∪Σst belongs to a class of TGDs and NCs for which BCQ answering
is first-order rewritable as a Boolean UCQ, deciding whether there exists a probabilis-
tic (universal) solution for Prs relative to Σs andM is in P in the data complexity.

47



Finally, the following theorem shows that answering UCQs for probabilistic source
databases relative to an ODE problem is complete for #P in the data complexity for all
above classes of existential rules except for WG.

Theorem 4. Given (i) an ODE problemM = (S,T, Σt, Σs, Σst) such thatΣs∪Σst∪
Σt belongs to a class among L, LF, AF, G, S, SF, F, GF, A, WS, and WA, and (ii) a prob-
abilistic source database Prs relative to Σs such that there exists a solution for Prs
relative toM, (iii) a UCQ Q = q(X) over T, and (iv) a tuple a, computing confQ(a) is
#P-complete in the data complexity.

4.4 Probabilistic Ontological Data Exchange

All the results of Section 4.3 in Theorems 1 and 4 carry over to the case of proba-
bilistic ontological data exchange. Clearly, the hardness results carry over immediately,
since deterministic ontological data exchange is a special case of probabilistic ontolog-
ical data exchange. As for the membership results, we additionally consider the worlds
for the probabilistic mapping, which are iterated through in the data complexity and
guessed in the combined, the ba-combined, and the fp-combined complexity.

5 Summary and Outlook

We have defined deterministic and probabilistic ontological data exchange problems,
where probabilistic knowledge is exchanged between two ontologies. The two ontolo-
gies and the mapping between them are defined via existential rules, where the rules for
the mapping are deterministic and probabilistic, respectively. We have given a precise
analysis of the computational complexity of deciding the existence of a probabilistic
(universal) solution for different classes of existential rules in both deterministic and
probabilistic ontological data exchange. We also have delineated some tractable special
cases, and we have provided some complexity results for exact UCQ answering.

An interesting topic for future research is to further explore the tractable cases of
probabilistic solution existence and whether they can be extended, e.g., by slightly gen-
eralizing the type of the mapping rules. Another issue for future work is to further
analyze the complexity of answering UCQs for different classes of existential rules in
deterministic and probabilistic ontological data exchange.
Acknowledgments. This work was supported by an EU (FP7/2007-2013) Marie-Curie
Intra-European Fellowship (“PRODIMA”), the UK EPSRC grant EP/J008346/1 (“PrO-
QAW”), the ERC grant 246858 (“DIADEM”), a Yahoo! Research Fellowship, and
funds from Universidad Nacional del Sur and CONICET, Argentina. This paper is a
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Abstract. The complexity of software systems is growing and the com-
putation of several software quality metrics is challenging. Therefore,
being able to use the already estimated quality metrics to predict their
evolution is a crucial task. In this paper, we outline our idea to use
Linked Open Data to enrich the information available for such predic-
tion. We report our experience so far, and we outline the preliminary
results obtained.

1 Introduction

Software size and complexity is growing, thus being able to estimate and predict
software quality is crucial to monitor the process of software development and
promptly steer it. In fact, a quality metric provides a value summarizing one
relevant aspect of the software that can be consulted to identify issues or risks
in the development process or in the software itself. Therefore, several different
quality dimensions have been defined, as described, for instance, by Kan [8].

Estimating software quality is then a crucial but challenging task, for several
reasons including the complexity of the software to be measured and the fact
that these measures are often hard to quantify: some of them depend on run-
time software behavior, some on static software properties. The estimation of
the values of these measures is possible, as demonstrated, for instance, by Alves
and Visser [2] and Bouwers [4]. However, given the complexity of this task, we
propose to use such estimates to predict the temporal evolution of these values.

Preliminary analyses on a dataset from the Software Improvement Group3

show encouraging results on the use of these estimates as starting point for the
prediction of the evolution over time of software quality ratings.4 We hypoth-
esize that, by using Linked Open Data (LOD) we can improve and refine the
accuracy of our predictions. In particular, by enriching the information available
about the projects analyzed, we can categorize these projects (e.g., by indus-
try sector or programming language), thus increasing the possibility to group

3 http://www.sig.eu
4 For confidentiality reasons, we could not make the dataset publicly available.
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together projects showing similar quality evolution over time. We present here
some preliminary encouraging results obtained in this direction, and we discuss
a series of open issues that we need to address in order to extend this research.

The rest of this paper is structured as follows: Section 2 introduces related
work. Section 3 describes the enrichment of software projects data. Section 4
provides preliminary results, that are discussed in Section 5.

2 Related Work

Software quality prediction is an important issue, that has been tackled from
different points of view. As Al-Jamini and Ahmed [1] describe in their review,
several relevant approaches to this problem make use of machine learning.

We have also employed machine learning techniques (in particular, Markov
chains [12]) to predict software quality based on the starting rating of a project [5].
The results are promising and we will aim at perfecting them with additional
features, properly selected from external sources, like LOD. The future quality
value of systems shows a strong correlation with the current quality rating, due
to the fact that the rating usually changes very slowly over time. Moreover, a
second trend was discovered which revealed that higher quality systems tend to
deteriorate in quality and low-quality systems tend to improve, both with the
tendency towards the medium quality level. This could be explained as a case of
regression towards the mean [6], i.e., could be due to noise in the extreme quality
ratings that disappears as more accurate estimates are provided. However, this
possible explanation still needs to be evaluated and, anyway, could explain only
the second trend. These two trends, for very high or very low-quality systems,
yield a high uncertainty in the prediction. Using LOD, we expect to obtain more
tailored predictions (e.g., by identifying software quality trends associated to the
programming language adopted) to reduce prediction uncertainty.

Misirli et al.[11] propose the use of Bayesian Networks to make software qual-
ity predictions. As the number of potentially useful features grows (consequently
to LOD enrichment), we will consider this approach in the future. Jing et al. [7]
use a dictionary learning-approach that represents a more specialized but limited
approach as compared to our use of LOD.

3 Enriching Software Quality Prediction with LOD

Our hypothesis is that by enriching the information about the projects we ana-
lyze with LOD, we can obtain features that are useful for improving the software
quality prediction. For instance, software quality could vary in different indus-
trial sectors or the programming language used could affect quality evolution.

Our focus is on a dataset provided by the Software Improvement Group,
which consists mainly of projects of Dutch companies and of a few additional
European customers. We enriched the dataset using mainly DBpedia [3]. In the
enrichment process, we encountered the following issues:
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Missing information DBpedia contains a description of only 209 companies
located in the Netherlands. Additional companies have been identified in
the Dutch DBpedia5, which contains the description of 3.883 companies,
but does not provide information about their location.

Disambiguation Some companies have homonyms. To disambiguate resources
and identify the right URI for a given company, we expect to employ heuris-
tics based on the company website, its location, and industry sector.

Consistency literals vs. URIs Some classifications are available in an incon-
sistent manner. For instance, industry can appear both as http://dbpedia.
org/ontology/industry and http://dbpedia.org/property/industry. In
some cases, the value of one of these two properties is reported only as a lit-
eral value, thus affecting the possibility to perform ontological reasoning.

4 Preliminary Results

We performed a preliminary analysis on a dataset consisting of 1019 snapshots
of maintainability of 112 companies. These snapshots already presented a first
industry classification provided by SIG. In total, 14 industrial sectors are present.

We computed the semantic similarity between each possible combination of
industrial categories using the Wikipedia distance [10] and the WU & Palmer
distance [17]. On these data, we performed a series of preliminary analyses:

1. We run a Wilcoxon signed-rank test [16] at 95% confidence level to check
if the observations are significantly different when grouped per industrial
sector. These results show a weak positive Spearman [15] correlation with
both the Wikipedia (0.07) and the Wu & Palmer (0.14) distances.

2. We computed the same procedure as above by using also the Kolmogorov-
Smirnov test [9, 14] . This resulted in a slightly higher correlation, 0.16 for
the Wikipedia distance and 0.24 for the Wu & Palmer distance.

3. We computed the contrast analysis [13] of the linear combinations of the
observations, again grouped per industrial sector. The resulting contrast es-
timators showed a weak correlation with the Wikipedia distance (0.15) and
with the Wu & Palmer distance values (0.12).

4. We grouped a small set of observations aligned with DBpedia by industrial
sector of the companies involved (telecommunication and financial services).
According to a Wilcoxon signed-rank test at 90% significance, the two groups
are significantly different, according to the Kolmogorov-Smirnov test, not.

5 Discussion and Future Work

We present an early stage work about the use of LOD to refine the precision and
accuracy of software quality prediction. We performed a series of exploratory and
preliminary studies which shows a low correlation between the maintainability

5 http://nl.dbpedia.org
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and the industry sector of these projects. These results provide the basis for fur-
ther exploration because: (1) the existence of a weak correlation is confirmed by
more tests, hence it is possible that we can identify a subset of the data analyzed
that presents a higher correlation; (2) the different methods for computing se-
mantic similarity and different statistical significance tests provided significantly
different results, thus indicating the need for exploring different computational
techniques; (3) as shown by the last item of Section 4, the industrial sector
seems to be a discriminant for software quality, although this aspect needs to
be evaluated on larger datasets; and (5) our analyses focused on a limited set of
enrichment features, but several others are utilizable. So, we plan to extend this
research to identify the most robust methods to perform these predictions, and
we will extend these analyses including additional LOD features and sources.

Acknowledgements This work is funded by Amsterdam Data Science.
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5. T. Döhmen, D. Ceolin, and J. Visser. Towards Building a Software Quality Pre-
diction Model. Technical report, Software Improvement Group, 2015.

6. F. Galton. Regression towards mediocrity in hereditary stature. The Journal of
the Anthropological Institute of Great Britain and Ireland, 15:246–263, 1886.

7. X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu, and J. Liu. Dictionary learning based
software defect prediction. In ICSE, pages 414–423, 2014.

8. S. Kan. Metrics and Models in Software Quality Engineering. Pearson, 2002.
9. A. Kolmogorov. Sulla determinazione empirica di una legge di distribuzione. Gior-

nale dell’Istituto Italiano degli Attuari, 4:1–11, 1933.
10. D. Milne and I. H. Witten. An open-source toolkit for mining wikipedia. Artif.

Intell., 194:222–239, 2013.
11. A. T. Misirli and A. B. Bener. A mapping study on bayesian networks for software

quality prediction. In RAISE, pages 7–11, 2014.
12. J. R. Norris. Markov chains. Cambridge University Press, 1998.
13. R. Rosenthal and R. L. Rosnow. Contrast analysis : focused comparisons in the

analysis of variance. Cambridge University press, 1985.
14. N. Smirnov. Table for Estimating the Goodness of Fit of Empirical Distributions.

The Annals of Mathematical Statistics, 19(2):279–281, 1948.
15. C. Spearman. The proof and measurement of association between two things.

Amer. J. Psychol., 15:72101, 1904.
16. F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin,

1:80–83, 1945.
17. Wu, Z. and Palmer, M. Verb semantics and lexical selection. In ACL. ACL, 1994.

53



Reducing the Size of the Optimization Problems
in Fuzzy Ontology Reasoning

Fernando Bobillo1 and Umberto Straccia2

1 Dpt. of Computer Science & Systems Engineering, University of Zaragoza, Spain
2 Istituto di Scienza e Tecnologie dell’Informazione (ISTI - CNR), Pisa, Italy

Email: fbobillo@unizar.es, straccia@isti.cnr.it

Abstract. Fuzzy ontologies allow the representation of imprecise struc-
tured knowledge, typical in many real-world application domains. A key
factor in the practical success of fuzzy ontologies is the availability of
highly optimized reasoners. This short paper discusses a novel optimiza-
tion technique: a reduction of the size of the optimization problems ob-
tained during the inference by the fuzzy ontology reasoner fuzzyDL.

1 Introduction

In recent years, we have noticed an increase in the number of applications for
mobile devices that could benefit from the use of semantic reasoning services [1].
Because of the limited capabilities of mobile devices, it is especially important to
develop reasoning algorithms performing efficiently in practice. In order to deal
with imprecise knowledge, such applications could use fuzzy ontologies [8]. In
fuzzy ontologies, concepts and relations are fuzzy. Consequently, the axioms are
not in general either true or false, but they may hold to some degree of truth.

However, little effort has been paid so far to the study and implementation of
optimization techniques for fuzzy ontology reasoning, which is essential to reason
with real-world scenarios in practice (some exceptions are [3,4,5,6]). This short
paper discusses some optimization techniques to improve the performance of
the reasoning algorithm by reducing the size of optimization problems obtained
during the inference. In particular, we will provide optimized MILP encodings of
the restrictions involving n-ary operators and fuzzy membership functions. Such
optimizations have been implemented in fuzzyDL, arguably the most popular
and advanced fuzzy ontology reasoner [2], and proved their usefulness.

2 Background on fuzzyDL reasoning

We assume the reader to be familiar with the syntax and semantics of fuzzy
Description Logics (DLs) [8]. The reasoning algorithm implemented in fuzzyDL
combines tableaux rules with an optimization problem. After some preprocess-
ing, fuzzyDL applies tableau rules decomposing complex concept expressions
into simpler ones, as usual in tableau algorithms, but also generating a system
of inequation constraints. These inequations have to hold in order to respect
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the semantics of the DL constructors. After all rules have been applied, an opti-
mization problem must be solved before obtaining the final solution. The tableau
rules are deterministic and the optimization problem is unique.

This optimization problem has a solution iff the fuzzy KB is consistent. In
fuzzyDL, we obtain a bounded Mixed Integer Linear Programming [7] (MILP)
problem, that is, minimising a linear function with respect to a set of constraints
that are linear inequations in which rational and integer variables can occur.
The problem is bounded, with rational variables ranging over [0, 1] and some
integer variables ranging over {0, 1}. For example, in  Lukasiewicz fuzzy DLs, the
restriction x1⊗ Lx2 = z can be encoded using the set of constraints {x1+x2−1 ≤
z, x1 + x2 − 1 ≥ z − y, z ≤ 1 − y, y ∈ {0, 1}}. Observe that the MILP encoding
of the restriction has introduced a new variable y: the two possibilities y = 0
and y = 1 encode the non-deterministic choice implicit in the interpretation
of the conjunction under  Lukasiewicz fuzzy logic. The complexity of solving a
MILP problem is NP-complete and it depends on the number of variables, so it
is convenient to reduce the number of new variables.

Let x, z be [0, 1]-variables, and xu be a rational unbounded variable. fuzzyDL
has to solve some restrictions involving fuzzy connectives, such as x1 = 	x2,
x1 ⊗ x2 = z, x1 ⊕ x2 = z, or x1 ⇒ x2 = z. Furthermore, it also needs to solve
some restrictions d(xu) ≥ z involving fuzzy membership functions d such as the
trapezoidal(k1, k2, q1, q2, q3, q4) (see Table 1 (a)), the triangular(k1, k2, q1, q2,
q3), left(k1, k2, q1, q2), or right(k1, k2, q1, q2) [8].

3 Optimizing  Lukasiewicz N-ary Operators

Let us start with the case of conjunction concepts in  Lukasiewicz fuzzy DLs.
An n-ary concept of the form (C1 u C2 u · · · u Cn) can be represented, using
associativity, only using binary conjunctions (C1u(C2u(· · ·uCn)) . . . ). A binary
conjunction concept introduces a restriction of the form x1 ⊗ L x2 = z which, as
shown in Section 2, can be encoded adding a new binary variable y. Hence, in
order to represent the n-ary conjunction, n−1 new variables yi would be needed.
However, it is possible to give a more efficient representation by considering the
conjunction as an n-ary operator. Indeed, a restriction of the form x1 ⊗ L x2 ⊗
· · ·⊗xn = z can be encoded using only one new binary variable and, thus, saves
2n−2 possible alternative assignments to the variables yi.

n∑

i=1

xi − (n− 1) ≤ z,

y ≤ 1− z,
n∑

i=1

xi − (n− 1) ≥ z − (n− 1)y,

y ∈ {0, 1}.
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i y3 y2 y1 condition

1 0 0 0 x1 = z
2 0 0 1 x2 = z
3 0 1 0 x3 = z
4 0 1 1 x4 = z
5 1 0 0 x5 = z

Table 1. (a) Trapezoidal membership function; (b) Encoding of 5 states.

y = 0 encodes the case z =
∑n

i=1 xi−(n−1) ≥ 0, and y = 1 encodes the case
z = 0 and

∑n
i=1 xi − (n − 1) < 0. Let us consider now disjunction concepts in

 Lukasiewicz fuzzy DLs. A binary disjunction can be represented adding a new
binary variable y as {x1 +x2 ≤ z+y, y ≤ z, x1 +x2 ≥ z, y ∈ {0, 1}}. Again, n−1
new binary variables would be needed but, similarly as before, considering the
disjunction as an n-ary operator we would need only one new binary variable:

n∑

i=1

xi ≤ z + (n− 1)y,

y ≤ z,
n∑

i=1

xi ≥ z,

y ∈ {0, 1}.

4 Optimizing Göedel N-ary Operators

An n-ary conjunction can be represented using binary conjunctions adding re-
strictions of the form x1 ⊗G x2 = z, which can be encoded as follows:

z ≤ x1,

z ≤ x2,

x1 ≤ z + y,

x2 ≤ z + (1− y),

y ∈ {0, 1}.

The idea is that if y = 0, x1 = z is the minimum; whereas if y = 1, x2 = z is
the minimum. This adds a new variable y, so in the case of n-ary conjunctions
there would be n−1 new variables. Treating the conjunction as an n-ary operator,
a more efficient representation is possible. An n-ary conjunction introduces a
restriction of the form x1 ⊗G x2 ⊗ · · · ⊗ xn = z. To represent that the minimum
of n variables xi is equal to z, we can use n binary variables yi such that if yi
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takes the value 0 then xi (representing the minimum) is equal to z, and such that
the sum of the yi is 1, so z takes the value of some xi. Note that the minimum
may not be unique. Such a representation is as follows:

z ≤ xi, for i ∈ {1, . . . , n},
xi ≤ z + yi, for i ∈ {1, . . . , n},

n∑

i=1

yi = 1,

yi ∈ {0, 1}, for i ∈ {1, . . . , n}.

Now, we will show that it is possible to give a more efficient representation,
Essentially, we need to encode n possible states. However, n possible states can
be encoded using m = dlog2 ne new binary variables only. For instance, for n = 5,
only dlog2 5e = 3 binary variables are necessary, where we use the encoding of
the n = 5 states in Table 1 (b).

The main point is now to correctly encode the condition xi ≤ z+yi of the old
encoding. We proceed as follows. Let bi be a string of length m, representing the
value i− 1 in base 2 (1 ≤ i ≤ n). For instance, for i = 4, b = 011, as illustrated
in the table above. Let us define the expression eij (1 ≤ i ≤ n, 1 ≤ j ≤ m) as:

eij =

{
yj if the jth bit of bi is 0
1− yj otherwise.

For i = 4, we have b = 011 and, thus, e41 = 1−y1, e42 = 1−y2, and e43 = y3.
Now we are ready to provide the whole encoding:

z ≤ xi, for i = 1, . . . , n

xi ≤ z +
m∑

j=1

eij , for i = 1, . . . , n

m∑

j=1

2j−1yj ≤ n− 1,

yj ∈ {0, 1}, for j = 1, . . . ,m.

The first condition is the same as before. The second condition guarantees
that xi ≤ z in the state bi. Finally, the third condition ensures that we are not
addressing more than n states. For instance, for n = 5 we have:

z ≤ x1,
z ≤ x2,
z ≤ x3,
z ≤ x4,
z ≤ x5,
x1 ≤ z + y1 + y2 + y3,
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x2 ≤ z + (1− y1) + y2 + y3,
x3 ≤ z + y1 + (1− y2) + y3,
x4 ≤ z + (1− y1) + (1− y2) + y3,
x5 ≤ z + y1 + y2 + (1− y3),
y1 + 2y2 + 4y3 ≤ 4,
y1 ∈ {0, 1},
y2 ∈ {0, 1},
y3 ∈ {0, 1}.

The case of the disjunction in Gödel fuzzy DLs is dual. If an n-ary concept
of the form (C1 t C2 t · · · t Cn) is represented using binary disjunctions, n− 1
new binary variables are needed. However, if we consider it as an n-ary concept,
it is possible to use dlog2 ne new binary variables only:

z ≥ xi, for i = 1, . . . , n

xi +
m∑

j=1

eij ≥ z for i = 1, . . . , n

m∑

j=1

2j−1yj ≤ n− 1,

yj ∈ {0, 1} for j = 1, . . . ,m.

5 Optimizing Fuzzy Membership Functions

Let us start with the case of trapezoidal functions, which introduce a restriction
of the form trapezoidal(k1, k2, q1, q2, q3, q4)(xu) ≥ z. A restriction of that form
can be represented by adding 5 new binary variables yi as follows:

xu + (k1 − q1)y2 ≥ k1,

xu + (k1 − q2)y3 ≥ k1,

xu + (k1 − q3)y4 ≥ k1,

xu + (k1 − q4)y5 ≥ k1,

xu + (k2 − q1)y1 ≤ k2,

xu + (k2 − q2)y2 ≤ k2,

xu + (k2 − q3)y3 ≤ k2,

xu + (k2 − q4)y4 ≤ k2,

xu ≤ 1− y1 − y5,

xu ≥ y3,

xu + (q1− q2)xu + (k2 − q1)y2 ≤ k2,

xu + (q1− q2)xu + (k1 − q2)y2 ≥ k1 + q1− q2,
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xu + (q4− q3)xu + (k2 − q3)y4 ≤ k2 + q4− q3,

xu + (q4− q3)xu + (k1 − q4)y4 ≥ k1,

y1 + y2 + y3 + y4 + y5 = 1,

yi ∈ {0, 1}, for i = 1, . . . , 5.

To reduce now the number of binary variables, the idea is to have 5 binary
variables encoding the 5 possible states: xu ≤ q1 (y1 = 1), xu ∈ [q1, q2] (y2 = 1),
xu ∈ [q2, q3] (y3 = 1), xu ∈ [q3, q4] (y4 = 1), and xu ≥ q4 (y5 = 1). However, as
shown in Table 1 (b), it is possible to represent 5 states using only 3 variables.

The case of other fuzzy membership functions is similar. In triangular func-
tions, a näıve encoding introduces 4 new variables to represent the 4 possible
states, but it is possible to consider only 2. Finally, in left and right shoulder
functions, it is necessary to consider 3 states, which can be achieved by adding 2
new binary variables, instead of the 3 ones needed in the non-optimal encoding.

By considering the fact that even for moderate sized ontologies we may eas-
ily generate thousands of such constraints, it is evident that the number of
saved binary variables n, and hence the number of saved assignments 2n, is
non-negligible.
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