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Abstract
Motivation: Information in life science publications
is heterogeneously distributed over various sections.
Depending on research questions, different sections
cover more or less of the data needed to answer them.
Our approach, called section weighting, seeks to make
use of information coverage and density found in typi-
cal life science publications. We study the impact of
section weighting on text classification according to
hereditary diseases.
Results: Our results indicate that weighting sections
can improve text classification. Our systems gain 7%
in F1-measure when we add section weighting. Proper
composition of features is equally crucial, improv-
ing our results by 11%. Combining both techniques,
the system yields a performance 18% higher than the
baseline classifier. For our research question, favoring
the sections Abstract, Introduction, and Materials and
Methods yields the best results.

Introduction
Analysis of biological and clinical research publica-
tions as a major knowledge repository is of increas-
ing importance. The large amount of publications in
this fields necessitates automated systems to aid re-
searchers. MEDLINE, a well-known citation index,
currently contains almost 16 million references. De-
spite growing numbers of results stored in biomedical
data bases, still only the publication of research find-
ings in journals is deemed reputable and prestigious.
Data bases provide fast, well-defined, and easy access
to structured information. Texts are semi-structured
only, and problems arise when automated tools parse
such data. Manual browsing through large amounts of
textual information, on the other hand, is an infeasi-
ble task. Keeping up with recent and relevant develop-
ments gets more and more complex for researchers in
the life sciences. At first there is only the possibility
for full text searches (e.g. as provided by PUBMED) to
obtain relevant publications. Searches for exact key-
word matches often fail in terms of recall and preci-
sion. Different usage of nomenclatures or even sim-
ple spelling variants lead to serious information-losses.
Homonyms and ambiguous words referring to irrele-
vant concepts are found during keyword searches nev-

ertheless, resulting in large result sets containing ir-
relevant documents. These problems render manual
searches in large citations indexes infeasible, and any
automated approaches become potentially significant
for improvements in terms of time and costs.
Text classification is the task of assigning one or more
categories to arbitrary texts, based on models learned
from labeled examples (supervised learning). Labels
function as short descriptions for texts, and users can
easily look into all texts annotated with relevant la-
bels, instead of searching for texts themselves. In addi-
tion to searching for relevant publications, we see text
classification as a filter component and building block
for further text processing and information extraction.
Whenever researchers try to find genes associated with
a particular disease, it is infeasible to parse all publi-
cations for gene names, for instance. Intuitively, one
would first reduce the text collection to all publica-
tions discussing this particular disease. Subsequent in-
formation extraction such as named entity recognition
(NER) or relation mining can then be applied to the
much smaller remainder of relevant texts.
The task of classifying texts to filter publications dis-
cussing hereditary diseases does not conclude after
finding any relevant publications, but includes the cat-
egorization into specific diseases. While binary text
classification (relevant/irrelevant) yields very good re-
sults, multi-class supervised learning proved much
harder. Classifiers applicable to multi-class learning
have been proposed over the last years (see, e.g., the
WEKA library [Frank et al., 2004]). The introduction
of meta-learners, such as boosting or voting schemes,
often improves results, but nevertheless performances
stall. In this paper, we do not present a new supervised
learner, but study improvements of existing methods.
In particular, we address weighting of sections and
variations of feature generation.
We sought to improve classifiers by weighting typical
sections of papers differently, with respect to the in-
formation density. For example, an abstract is a con-
cise description of a text, and thus should mention
the main concerns of the authors, including names of
diseases and treatments. Shah et al. (2003) showed
that the keyword content of different sections is very
heterogenous. Sinclair and Webber (2004) studied



text classification using single sections instead of full
texts. Our approach used heuristic weighting schemes,
empirically gathered weights, and data on informa-
tion distribution previously published by other groups
[Shankar and Karypis, 2000, Schuemie et al., 2004].
We studied the generation of features for representing
documents using different natural language process-
ing techniques (NLP). The bag-of-words representa-
tion with token counts is altered using stemming, stop-
word filters, and part-of-speech information. In ad-
dition, we removed useless structural information and
mapped appearing numbers to generalized tokens.
In this paper we present results for the text classifica-
tion applied to full texts discussing hereditary diseases.
For our evaluation, we took 25 hereditary diseases and
their respective descriptions from OMIM. We used 22
publications referenced in these descriptions as train-
ing documents for these classes. We parsed all texts
for the seven most common sections, and changed
the default weighting scheme of tokens (token counts,
weighted with t f ·idf ) according to relevance of sec-
tions. For the vocabulary we used either all tokens,
only nouns, only nouns and verbs, or only their respec-
tive stems.

Related Work

Some approaches for multi-class learning problems
and applications to text classification have been
studied, see e.g., the work of [Joachims, 1998,
Han and Karypis, 2000, Raychaudhuri et al., 2002].
We discuss an approach classifying texts using only
individual sections, and work presenting typical
information distributions in biomedical texts.
Sinclair and Webber (2004) tried to automatically as-
sociate articles with GeneOntology (GO) codes. They
studied which sections were most relevant, and which
NLP techniques were most useful. Starting with
HTML formatted and well-structured articles from
BMC, markup of sections was done by hand. The
Naı̈ve Bayes classifier was trained on Title and Ab-
stract of the texts, split into nine classes (GO codes),
and tested on individual sections or full texts, respec-
tively. The maximum f-measure could be achieved for
classifying Titles only (64.7%). The highest recall was
89.8% on full texts with stemmed words. The sys-
tem yielded its maximum precision of 65.4% on Ti-
tles. A conclusion from their work is that the Materi-
als&Methods section was comparably valuable in con-
trast to Shah’s findings. Our own system was trained
and tested on complete full texts. Not taking individual
sections into account for classification would be simi-
lar to setting their respective weights to zero. Our task
definition included 26 classes (diseases plus negative
examples), and results are not fully comparable. Infor-

mation distribution concerning GO terms (describing
biological processes, cellular components, and molec-
ular functions) surely is different.
Shah et al. (2003) showed that keyword content in dif-
ferent sections was very heterogenous. Abstracts pro-
vided the highest keyword density, but other sections
might be better sources for the extraction of biologi-
cally relevant data. There results were based on a set
of 104 full texts. They selected keywords basically
using correlation analysis of words within a section.
Shah et al. conclude that for particular tasks some
sections should be avoided. Methods proved to be
the worst place to search for gene and protein names,
for instance. For mining biological concepts (species,
tissues, diseases, etc.), they preferred Discussion and
Results over Abstract and Introduction. Concerning
technical data, chemicals, and measurements, Meth-
ods sections were most appropriate.
Schuemie et al. (2004) analyzed 3902 full text arti-
cles manually for information densities and coverages.
They studied information distribution of different se-
mantic types (chemicals & drugs, genes, diseases, or-
ganisms) over different types of sections. They con-
clude that the popular restriction to only Abstracts
for information retrieval and extraction leads to seri-
ous information-loss. Their results show that the in-
formation density is highest in Abstracts, and lowest
in Methods sections. Coverage was highest in Re-
sults sections (30-40%). Concerning chemicals and
drugs, the Methods sections were richest in informa-
tion, while diseases and genes were mentioned less
frequently here.

This paper is organized as follows. We first present
text classifiers we studied, feature generation, meth-
ods for detecting the current section context, and our
evaluation data set. Afterwards, we show the impact of
weighting, classifiers, and feature generation and other
results. This paper concludes with a discussion and
presentation to related work.

Approach
We represented each document in a vector space con-
structed of all features appearing throughout the docu-
ment collection. All features occurring in the training
corpus were stored in a feature vector, i.e. representing
the bag-of-words vocabulary.
The document vector for each text was constructed as
follows. Reading a given document, we generated fea-
tures from the tokens we encountered (see below). If a
feature appeared in the feature vector (i.e., it occurred
in the training corpus), we added it to the current doc-
ument’s vector, and in the following counted this fea-
tures occurrences. In an unweighted scheme, each oc-



Table 1: Word counts of distinctive keywords rel-
evant to Retinoblastoma in proportion to the num-
ber of all words for each section. The table shows
distributions in one document and averaged over 20
documents. RB, abbreviation for Retinoblastoma;
RB1, gene/protein name; pRB, retinoblastoma protein;
13q14, gene locus.

Abs Intro M&M Results ..
Retinoblastoma 2/359 1/439 1/1004 0/919
RB 1/359 2/439 1/1004 1/919
RB1 3/359 11/439 3/1004 10/919
pRB 4/359 4/439 4/1004 9/919
13q14 0/359 1/439 1/1004 0/919
..
Avg. (13 words) .0077 .0096 .0027 .0076
Avg. (20 docs) .0143 .0097 .0044 .0105

currence in a text counts one, with the final counts for
every feature representing the document. In our ap-
proach, we weighted each feature using t f ·idf (term
frequency, t f , corresponds to our feature counts).
To alter the weight of different sections, we increased
the count not by one when encountering the corre-
sponding feature, but used different addends/factors
for each section. When a feature appeared in one sec-
tion, it added more (or less) to the feature count than its
appearance in another section did. The final weighting
with t f·idf remained the same.
In our approach, we used heuristic weighting schemes,
empirically gathered weights, and data on informa-
tion distribution previously published by other
groups [Shankar and Karypis, 2000, Shah et al., 2003,
Schuemie et al., 2004, Sinclair and Webber, 2004].
Heuristic weights were based on the intuitive infor-
mation content for different sections. We computed
weights empirically by looking into the information
distribution concerning relevant keywords (names
of diseases, genes, typical symptoms, etc.). We
collected such data for three classes, with up to 15
keywords each. Table 1 shows examples for the
disease Retinoblastoma.

Section Context

The weighting of features depended on the text section
where they occurred. Accessing each document word-
after-word, it was necessary to detect section head-
ings and recognize changes of the current context. Re-
search publications most often follow a similar struc-
ture, though ordering might differ. They start with ti-
tles and authors’ names and affiliations, followed by a
short abstract, an introduction to the topic and so on.
The main structural building blocks found in (biomedi-

Table 2: Examples for varieties and spelling variants
for sections typically labeled ’Materials and Methods’
and ’References’.

Materials and Methods References
Materials and methods REFERENCES
material and methods references
Patients and Methods References & Notes
Patients and methods LITERATURE
PATIENTS AND METHODS
METHODS
Subjects and Methods

cal) scientific publications are Opening1, Abstract, In-
troduction, Materials and Methods, Results, Discus-
sion, and References. Problems occurred not with
the ordering of sections, but the proper identification
of (relevant) section headings. While it was easy to
solve variations in capitalization, detecting alternative
names (e.g., ’References’ vs. ’Literature’) for sections
was only possible after manual inspection of publica-
tions. Table 2 lists examples for variants of section
headings. Another problem occurred in HTML for-
matted documents. It was not sufficient to switch the
context after each occurrence of a heading correspond-
ing to a section name. Hyperlinks in an HTML docu-
ment pointing to other sections within the same docu-
ment often get the same name as the section they link
to.

Feature Generation

Orthogonal to the weighting of features according
to their occurrence in the texts, we evaluated differ-
ent methods of feature generation. The simplest and
most common form of features for text classification
are tokens appearing in a text collection. Most of-
ten, their weights are calculated using token counts
or tf·idf weighting. We studied the influence of dif-
ferent processing and filtering steps on classification
performance. Tokenization depends on word bound-
aries, for which we took ’.’, ’,’, ’;’, ’:’, ’?’, ’!’, brack-
ets, blanks, and newlines. Word stemming of tokens is
done using an own implementation of the Porter stem-
ming algorithm [Porter, 1980]. We filtered different
amounts of stop words, either 100, 1000, or 10.000
common English words [wortschatz lexikon, 2004,
Biemann et al., 2004]. In order to reduce the set of to-
kens to all nouns, or all nouns and verbs, we use QTAG
[Tufis and Mason, 1998] for part-of-speech tagging.
We mapped all numbers and percentages to general-
ized tokens, <NUMBER> and <PERCENTAGE>, re-
spectively. All documents in the data collection were

1Title, Authors, Affiliation, Journal, etc.



stored in HTML format, so that HTML tags and other
non-informative text blocks had to be filtered. Such
text blocks were, e.g. links for navigation within the
page, which often had the same name than the section
(heading) they link to.

Text Classifier
For our experiments, we applied a Nearest-Centroid
classifier (NCC) to the multi-class problem on our
data set. Han and Karypis (2000) showed high per-
formances for centroid-based classifiers, based on 20
different data sets (Reuters, OSHUMED, TREC, etc.).
The predicted label (i.e. class) of nearest-centroid clas-
sification is the label of the centroid lying next to the
new example in the vector space. Centroids are mean
vectors for each class, calculated as the average from
all representatives for this class:

∀ci ∈C : zi =
∑N

j=1 d j

N
,

where C is the set of classes, N refers the number of
documents d j in a class ci, and zi depicts the centroid
of class i. As distance measure between two docu-
ments (i.e., a new example and a centroid) we took the
cosine distance,

dist(x,y) = 1−
x◦ y

‖x‖ · ‖y‖
,

between two vectors x and y, using their dot-product
(◦) and norms (‖x‖). The predicted label of a new
document d′ is the label of the closest centroid found
among all class centroids:

h(d′) = argmin
zi∈Z

dist(d′
,zi)

Data Set and Evaluation
The documents we chose for evaluating our ap-
proach were taken from the OMIM-Database, an on-
line catalog for human genes and genetic disorders
[OMIM, 2000]. To obtain an evaluation corpus, we
collected 22 documents for each of 25 different hered-
itary diseases (listed in Table 5). We started with the
base entry (i.e. a general description) for each dis-
ease in OMIM, and found other relevant documents
using publications cited in these base entries. We
added 21 citations for which we were able to ob-
tain full texts (e.g., following links from OMIM to
PUBMED and finally to the publisher’s site). Be-
cause PDF to ASCII plain text conversion some-
times is erroneous, we looked for the first 21 doc-
uments available in HTML format. We added a
class consisting of 33 negative examples (documents
mentioning none of the 25 diseases). We provide
the document collection at http://www.informatik.hu-
berlin.de/˜hakenber/publ/suppl/. We performed a 10-
fold cross-validation, training on 2

3 of the collection
and evaluating on the remainder in each iteration.

Table 3: Results for combinations of individual sec-
tion weights. Column1 corresponds to the example in
Table 1.

Opening 1 0.31 0.5 1 1 1 0.4 1
Abstract 1 1.4 5 5 3 3 0.6 3
Intro 1 1.0 5 5 3 3 0.9 3
Mat&M. 1 0.4 3 5 1 1 0.6 1
Results 1 1.0 1.5 1 1 1 0.6 1
Discussion 1 1.6 1.5 1 3 1 1.0 1
References 1 0.3 1.5 1 1 3 0.5 1
F1 in % 67 68 68 70 71 71 71 74

Implementation All methods for preprocessing and
feature generation as well as classifiers were imple-
mented in Java, the class library being available on
request. On a standard workstation with 2.8GHz and
2GB main memory, each 10-fold cross-validation run
(train and test) lasted from 10 to 45 minutes, with an
even split between preprocessing and learning.

Results
As baseline for all experiments we chose nearest-
centroid classification with simple bag-of-words rep-
resentation of documents. We took all tokens as they
appeared in the documents, and weighted them with
default t f ·id f . This systems yielded 60% precision
at 53% recall (micro-average; F1-measure: 56%). Al-
tering preprocessing, the system obtained 71% preci-
sion at 64% recall (F1: 67%). This included filtering
of 10.000 stop-words, and reducing the vocabulary to
only nouns.
In addition, we used generalized tokens for numbers
and percentages. Stemming of nouns, thus ignoring
declensions and plurals, did not improve results any
further. Adding section weighting, the system yielded
77% precision at 71% recall (F1: 74%). This weight-
ing favored the sections Abstract and Introduction and
yielded the highest precision. The highest recall rates
(>70%) can be achieved when weighting Abstract, In-
troduction, and Materials and Methods higher than the
other sections. Some other weight distributions per-
formed comparably well, see Table 3.
Ranking the sections Abstract, Introduction, and Mate-
rials and Methods higher than the others improved pre-
diction performances in most cases. Table 3 presents
the most useful combinations of weights. In Table 4
we show results for altering the weight of only one
section, while all others get the same weight.

Discussion
Our results give a clear indication that weighting sec-
tions improves text classification with nearest-centroid



Table 4: Results for combinations of weights where all
but one section got the same weight.

Opening 1 1 1 1 1 1 1 1
Abstract 1 1 1 1 1 1 1 1
Intro 1 1 1 1 3 1 1 1
Mat&M. 1 2 3 5 1 1 1 1
Results 1 1 1 1 1 3 1 1
Discussion 1 1 1 1 1 1 3 1
References 1 1 1 1 1 1 1 3
F1 in % 67 65 70 65 68 62 66 69

Table 5: Hereditary diseases annotated in OMIM

comprising our evaluation corpus (25 text documents
each). Recall and precision values (in %) for each sin-
gle class.

Disease Rec. Prec.
Alopecia 71 56
Alport Syndrome 86 67
Asthma 100 64
Ataxia Telangiectasia 86 75
Cat Eye Syndrome 100 64
Charcot-Marie-Tooth Disease 86 75
Cri du Chat 86 60
Deafness 86 75
Gaucher Disease 86 86
Glaucoma 100 78
Macular Dystrophy 57 100
Neurofibromatosis 14 100
Obesity 71 50
Phenylketonuria 71 100
Porphyria Variegata 57 57
Prader-Willi Syndrome 29 100
Retinoblastoma 14 100
Rett Syndrome 60 60
Schizophrenia 71 71
Severe Combined Immundeficiency 86 100
Sickle Cell Anemia 100 78
von Hippel-Lindau Syndrome 86 100
Werner Syndrome 71 71
Wilson Syndrome 29 50
Zellweger Syndrome 86 100
Negative control 59 56
Average (F1=74) 71 77

classifiers. Our system gains 7% in F1-measure when
we add section weighting. Proper composition of fea-
tures is equally crucial, improving our results by 11%
(precision, recall, and F1). Combining both tech-
niques, the system yields a performance 18% higher
than the baseline classifier.

Information with discriminative power is not dis-
tributed equally within texts. However, this method is
only useful for text classification, and bears no direct
impact for further information extraction. Numbers for
information density and coverage are published or can
easily be computed, thus adapting weights to the exact
task definition. For the classification of publications
concerning experimental setting, treatment or therapy,
or other topics, weights different from our best set-

ting can be more appropriate. Looking into our own
data set, experimental settings are rarely discussed in
abstracts or introductions, and treatments often occur
only in the results or discussion.
The common view that the Materials and Methods sec-
tion found in scientific articles most often contains
no relevant information is contradictory to our find-
ing. Higher weights for this section (compared to
other sections) led to higher prediction performances.
We argue that the research articles studied for our ap-
proach contain a relatively high percentage of clinical
studies. Materials and Methods (quite often referred
to as Patients and Methods) thus describe character-
istic symptoms, evidences, tests and experiments, or
even measurements. This is the reason for the occur-
rence of comparably much keywords with discriminat-
ing power in this section.
We currently look into the representation of whole
sections as different parts in the vector space. At
the moment, all features (tokens) are mapped to a
single dimension. Classifiers applicable to high-
dimensional feature spaces, such as Support Vector
Machines, could then learn weights for features with
respect to their occurrences. Computation of weights
or trial-and-error approaches needing manual interven-
tion would be reduced to a minimum. A more sys-
tematic approach, however, might ultimately yield the
set of weights performing best on our and any arbi-
trary text collections. If the set of weights proves to be
highly specific for each data set, search algorithms or
other optimization strategies have to be considered to
automatically find an optimal solution.
Centroid-based classifiers allow for the introduction of
a minimal distance between new examples and cen-
troids. If a new example is further apart from every
centroid than this minimal distance, it is not assigned
the label of the nearest centroid, but none at all (mean-
ing no disease is assigned to this document). In addi-
tion, we could look at the m centroids lying within a
certain (minimal) range around the new example, and
assign multiple labels. Some other classifiers allow for
similar approaches. We discovered that some publica-
tions did not belong to only one class, because they
discussed multiple diseases. On the other hand, some
diseases depend on more than one factor, e.g. geno-
typic predisposition and environmental factors (for in-
stance, adiposity). Such factors are discussed in publi-
cations for multiple diseases, decreasing their discrim-
inating power.
Predictions of Nearest-Centroid and other classifiers
can easily be transferred to rankings for labels (or even
probabilities). These classifiers provide a ranking of
labels, with the most probable label on top. If the cor-
rect label of a document is not the predicted one, then



it would be interesting which rank the correct label
got. Semi-automated text filters would produce more
than one prediction, and users can easily validate the
results. With little human intervention, the new docu-
ment adds to the training sample as a labeled example.
Proper identification of sections is crucial to the
method presented in this paper. We currently rely
on fixed headings (and spelling variants) as marks for
each of the seven section types. Categorization of
sections using their respective content as input data
would certainly be a more flexible technique. Meth-
ods like zone identification (ZI) have been proposed
and evaluated, see e.g. [Mizuta and Collier, 2004,
Ruch et al., 2003]. Results from the TREC 2004 ge-
nomics track showed that the MESH terms included in
MEDLINE citations are the best predictors for a proper
GO annotation. Whenever a full paper can be re-
solved to its corresponding MEDLINE citation, includ-
ing these terms in the input data certainly improves
performance. Problems arise whenever text classifi-
cation systems supply relevance filters for new docu-
ments. This is often the case in real-life scenarios, but
MESH terms are not assigned immediately to a new
publication when a citation is added to MEDLINE.
OMIM provides almost 1700 descriptions of pheno-
types and catalogues more than 10.000 human genes
with known sequence. All descriptions are anno-
tated with references to the literature, all as links to
PUBMED (if available). OMIM proved to be an easy-
to-access source for text collections, reducing man-
ual intervention to a minimum. However, base entries
sometimes contain references to publications not di-
rectly related to the disease discussed (but to common
experimental settings, diagnostic methods, etc.).
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