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Abstract 
Gene Ontology (GO) enables scientists to describe 
and annotate gene products with three controlled 
vocabularies.  However, the nature of variation in 
terminology makes automatic annotation of gene 
products based on biomedical literature challenging.  
In this paper, gene annotation was modeled as 
relevance detection, and an information retrieval with 
reference corpus was proposed to annotate a gene 
product with a GO term given a piece of the evidence 
text.  Gene Reference into Functions (GeneRIFs) in 
NCBI LocusLink database served as the source of 
evidence in this study.  Evidence text, and GO terms 
along with their definitions were regarded as queries 
to a reference corpus, which consists of 525,936 
MEDLINE abstracts.  The similarity between 
retrieved results measured the degrees of relationship 
between evidence text and GO terms, and thus guided 
the annotation.  Different number of predicted GO 
terms, and different distances between predicted and 
correct terms in GO hierarchy were considered in this 
study.  The results showed that the best recall rate 
was 78.2% at distance 12 with 5 predicted GO terms, 
and the best precision rate was 66.2% at distance 12 
with one predicted term, when 200 relevant 
documents were returned by Okapi information 
retrieval system. 
 
1  INTRODUCTION  

As the number of biological and medical publications 
rapidly grows, the search for desired information 
becomes more and more difficult.  This is further 
hindered by the wide variations in terminology.  
Gene Ontology (Ashburner et al., 2000) was thus 
constructed to address the need for standardized 
descriptions of gene products in different databases.  
While the development of ontologies is indispensable, 
scientists cannot benefit from those constructed 
ontologies until the ontologies are put to broad use.  
GO is currently adopted by many model organism 
databases (http://www.geneontology.org/GO. 
consortiumlist.html) to annotate gene products.  But 
the annotation process requires curators to look into 
the articles passing some simple filtering processes.  
Methods for speeding up or automating the 

annotation process to meet the large volume of 
literature are thus worthy of investigation. 

Since annotating GO terms semi-automatically/ 
automatically is important, there were some 
competitions concerning with GO annotations 
recently.  For example, the BioCreative workshop 
2004 (http://www.pdg.cnb.uam.es/BioLink/ 
workshop_BioCreative_04/) initiated a task 
addressing the assignment of GO annotations to 
human proteins.  It required the participants to 
automatically annotate a protein with GO terms 
according to the information found in a publication.  
The participants also needed to provide the evidence 
text.  The categorization task of the TREC 2004 
Genomics Track (http://medir.ohsu.edu/~genomics/) 
also focused on GO.  The annotation subtask is 
simplified (i.e., not to annotate the precise GO terms) 
to assigning one or more GO main categories 
(“biological process”, “cellular component” and 
“molecular function”) to the articles. 

For the automated assignment of GO terms to 
sequences, the Gene Ontology Annotation (GOA) 
project (Camon et al., 2003) developed mappings 
between protein domains and GO terms, and between 
SWISS-PROT (Boeckmann et al., 2003) keywords 
and GO terms.  The sequence can be automatically 
labeled with certain GO terms after it has been 
annotated with a SWISS-PROT keyword.  Poulito et 
al. (2001) and Xie et al. (2002) attempted to find 
function relations between GO terms and genes from 
the scientific literature.  Perez et al. (2004) proposed 
a method to establish the mappings between GO and 
terms from the MEDLINE database of scientific 
literature.  Some researchers (Ray and Craven, 2004; 
Verspoor et al., 2004) tried to expand the GO terms 
by finding related words.  These approaches slightly 
improved the recall or coverage rates. 

Recently, several tools that made use of GOs were 
evolving (Al-Shahrour et al., 2004; Doniger et al., 
2003; Draghici et al., 2003).  It indicated that 
researchers were interested in exploring the gene with 
GO terms.  The GO consortium also created a link 
between the known genes and the associated GOs, 
without providing the evidence text in the literature.  
In this paper, we provided some GO candidate terms 
accompanying with the evidence.  This could help 



the annotators speed up their work because they no 
longer have to read full texts.  GeneRIF in the 
LocusLink database (http://www.ncbi.nlm.nih.gov/ 
LocusLink/) provides a simple mechanism to allow 
scientists to add the functional annotation of genes.  
Treating the GeneRIF of a gene product as a piece of 
supporting evidence, we tried to find the suitable GO 
terms. 

Intuitively, we can compute the similarity between 
GeneRIF and GO terms based on the number of 
matching words.  However, GeneRIFs and GO terms 
are too short to reflect complete concepts even with 
GO definitions included.  Here, we introduce the 
information retrieval technology to deal with this 
issue.   The postulation is: if the document sets 
retrieved by a GeneRIF and a GO concept are similar, 
they are considered to be relevant to each other, and 
thus a link can be established in between.  For 
example, the literature with PMID 11798066 was 
referenced by a GeneRIF of gene “Dag1”, and it was 
also referenced by three GO terms – say, “protein 
binding”, “morphogenesis of an epithelial sheet” and 
“dystroglycan complex”.  Meanwhile, “protein 
binding” comes from the GO category “molecular 
function”, “morphogenesis of an epithelial sheet” 
belongs to the category “biological process” and 
“dystroglycan complex” locates in the category 
“cellular component”.  It shows that the postulation 
of relating GeneRIFs and GO terms with all GO 
categories may be reasonable. 

The rest of this paper is organized as follows.  In 
Section 2, we present the flow of our annotating 
procedure.  The basic idea and the experimental 
methods in this study are introduced in Section 3.  
Section 4 shows the results and makes some 
discussions.  Finally, Section 5 contains concluding 
remarks and suggests the direction of future research. 
 
2  ANNOTATION FLOW 

Generally, a gene name may have several aliases.  
Different functions for a gene may be discovered in 
different articles.  For example, “Gli3” has aliases 
“Xt”, “Bph”, “Pdn” and “add”.  Meanwhile, there 
are nineteen functions discovered from several 
documents (e.g., PMID 12435627, 12435361, 
12435629, etc.) for the gene “Gli3”.  Users 
interested in the functions of a given gene can consult 
the existing resources such as GeneRIF in the 
LocusLink database, or read the newly published 
articles that are not yet referenced and annotated by 
the database curators.  Relevance detection will help 
database curators or ontology annotators maintain 
existing resources and keep them up to date.  An 
annotation system may consist of two major stages - 
(1) the extraction of molecular function of a gene 

from the literature and (2) the annotation of this 
function with a term in a controlled vocabulary 
(ontology).  In the first stage, we extract the 
evidence text from the literature that will support GO 
annotation in the second stage.  In this paper, 
MEDLINE abstracts, GeneRIF and GO served as 
experimental objects. 

Figure 1 shows an example illustrating our idea.  
The left part is a MEDLINE abstract with the 
function description highlighted.  The middle part is 
the corresponding GeneRIF, which is extracted from 
the partial sentence of the abstract.  The right part 
lists the GO annotations that are annotated by 
referencing the same abstract.  The matching words 
between MEDLINE and GeneRIF, or between GO 
and GeneRIF are in bold.  The issues in the first 
stage have been addressed by several researchers 
(deBruin et al, 2003; Jelier et al, 2003; Kayaalp et al, 
2003; Lee et al., 2004; Mitchell et al, 2003), and are 
not discussed in this paper.  This paper is focused on 
the second stage.  The GeneRIFs in the LocusLink 
database are used directly in our study.  Figure 1 
also shows that the number of matching words 
between GeneRIF and GO concepts is small, so that 
direct word matching is not practical. 

 
3  METHODS 

The outline of the methods is shown in Figure 2.  
We first prepared the data used in this study. Then, we 
computed the similarity measures between GeneRIFs 
and GO terms based on the relevance detection 
approach.  Finally, the predicted GO terms for 
GeneRIFs were proposed.  A detailed description of 
“Data preparation” is given in Section 3.1.  The 
method for “Similarity computation” with “Reference 
corpus” will be explained in Section 3.2.  Finally, 
Section 3.3 introduces the methods for generating the 
predicted GO terms. 
 
3.1 Data Preparation 

To find the relation between GO terms and articles, it 
is straightforward to use the corpus that identifies 
sentences from the article so that the sentences are the 
evidence of assigning GO terms.  Unfortunately, 
there exists no such the corpus freely available as we 
know.  Nevertheless, the GeneRIFs in the LocusLink 
database warrant the assignment of GO terms but it 
also does not highlight the sentences from the article 
to tell researchers why the connection is made.  
Since we regarded the GeneRIFs of a gene product as 
supporting evidence for the assignment of GO terms, 
a GeneRIF could only warrant the assignment of GO 
terms under the assumptions that both the GeneRIFs 
and the GO terms referenced to the same document.   



MEDLINE abstract GeneRIF GO annotation 

 

Fig. 1. An example of complete annotation from the literature to GO. 

role in the 
development of 
mouse embryonic 
salivary gland and 
lung 

Dystroglycan is a receptor 
for the basement membrane 
components laminin-1, -2, 
perlecan, and agrin. Genetic 
studies have revealed a role 
for dystroglycan in basement 
membrane formation of the 
early embryo. … 
Dystroglycan is a receptor 
for the basement membrane 
components laminin-1, -2, 
perlecan, and agrin. Genetic 
studies have revealed a role 
for dystroglycan in basement 
membrane formation of the 
early embryo. … Here we 
examined the role of this 
interaction for the 
development of mouse 
embryonic salivary gland 
and lung. Dystroglycan 
mRNA was expressed in 
epithelium of developing 
salivary gland and lung. … 
 
 
 
PMID: 11798066 

 GO:0005515  
term: protein binding 
definition: Interacting selectively with 
any protein, or protein complex (a 
complex of two or more proteins that 
may include other nonprotein 
molecules). 
 GO:0002011  
term: morphogenesis of an epithelial 
sheet 
definition: Formation and 
development of an epithelial sheet 
 GO:0016011  
term: dystroglycan complex 
definition: Includes alpha- and 
beta-dystroglycan; alternative products 
of the same gene; the laminin-binding 
component of the 
dystrophin-associated glycoprotein 
complex, providing a link between the 
subsarcolemmal cytoskeleton (in 
muscle cells) and the extracellular 
matrix. alpha-dystroglycan is an 
extracellular protein binding to 
alpha-laminin and to 
beta-dystroglycan; beta-dystroglycan is 
a transmembrane protein which binds 
alpha-dystroglycan and dystrophin. 
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Fig. 2. The flowchart of our methods. 

GeneRIF 

LocusLink 

Data 
preparation 

Gene 
Ontology 

Similarity 
computation

Reference 
corpus 

Predicted GO 
terms for the 
corresponding 
GeneRIF 



This method of data preparation looked biased but we 
collected it because GO terms and GeneRIFs indeed 
existed with some relationship under this assumption.  
We could find some relationship between them 
henceforth.  The experimental data was therefore 
collected as follows. 

We downloaded the data from the LocusLink 
database and got 208,877 genes.  For each entry in 
the LocusLink database, if  the gene under 
consideration has both GeneRIFs and GO terms 
referencing to the same MEDLINE abstracts, the pair 
of the GeneRIFs and GO terms was collected as 
supporting evidence and possible answer keys of 
annotation for this gene, respectively.  Furthermore, 
we examined the corresponding GO terms manually 
and filtered out those which were obviously unrelated 
to the corresponding GeneRIFs.  The manual 
checking procedure is to guarantee that the GeneRIFs 
and GO terms not only come from the same 
documents, but also have meaningful relationships.  
Figure 3 shows an example of gene “Dock2”.  The 
symbol * denotes that the corresponding GO terms 
are filtered out from the possible answer keys.  In 
this way, total 550 pairs of GeneRIFs and GO terms 
were obtained from 335 distinct genes, and used for 
testing. 
 

3.2  Similarity Measure 

A GeneRIF is often a sentence or a small passage that 
describes the function of a particular gene product.  
A GO term is composed of a few words and often 
comes along with a definition.  In the following 
sections, “a GO term plus its definition” is denoted as 
“a GO concept”.  Intuitively, we can compute the 
similarity between a GeneRIF and all the GO 
concepts by keyword matching to set up the linkage.  
However, the challenge is that GeneRIFs and GO 
concepts are both too short to provide sufficient 
information, which makes this approach less 
promising.  In the example shown in Figure 1, only 
one common stemmed word, i.e., ”development”, 
appears in both the GeneRIF and one GO concept.  
To deal with this problem, we introduce the idea of 
relevance detection in TREC Novelty Track (Harman, 
2002).  The novelty track aimed at detecting 
relevance and novelty from a set of sentences, and 
that required the computation of similarity between 
two sentences.  Tagging molecular functions with 
GO terms could be modeled as a relevance detection 
problem.  The information retrieval (IR) approach 
with reference corpus proposed by Chen, Tsai and 
Hsu (2004) was adopted to resolve this problem in 
this study. 

 

GO terms GeneRIFs 

GO: 0030675: Rac GTPase activator activity 
GO: 0042110: T-cell activation 
GO:0042098: T-cell proliferation 
GO: 0046631: alpha-beta T-cell activation 
GO: 0046633: alpha-beta T-cell proliferation 
*GO: 0001768: establishment of T-cell polarity 
*GO: 0001771: formation of immunological 
synapse 
*GO: 0001766: lipid raft polarization 
GO: 0045060: negative thymic T-cell selection 
GO: 0035022: positive regulation of Rac protein 
signal transduction 
GO: 0045059: positive thymic T-cell selection 

GeneRIF: DOCK2 regulates T 
cell responsiveness through 
remodeling of actin cytoskeleton 
via Rac activation. 

PMID: 12871644

GeneRIF: haematopoietic  
cell-specific CDM protein 
family member is indispensable 
for lymphocyte chemotaxis 

GO:0006935: chemotaxis 
*GO:0007010: cytoskeleton organization and 
biogenesis 

PMID: 11518968

Fig. 3. GeneRIFs and GO terms extracted from gene “Dock2” (LocusID: 94176). 



With this IR approach, the similarity/relevance 
between two sentences is obtained as follows.  Each 
sentence is treated as a query to an IR system, and the 
top 200 relevant documents along with a weight for 
each document are retrieved from the reference 
corpus.  The sentence is then represented by a list of 
weighted documents.  Finally, the Cosine function is 
used to measure the similarity between the two 
sentences. 
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Where vi and vj denote two vectors 
representing the sentences to be compared, and n 
is the number of documents in the corpus. 

Choosing the appropriate reference corpus, the IR 
system and the strategies for selecting predicted GO 
terms is important in our experiments.  We explored 
each issue in details as follows. 

First, the reference corpus consulted should be 
large enough to cover different themes for references.  
In our experiments, the documents used in TREC 
2003 Genomics Track were adopted as the reference 
corpus.  The text collection consists of 525,936 
MEDLINE records where indexing has been 
completed between 4/1/2002 and 4/1/2003.  
Secondly, a highly effective information retrieval 
system, Okapi (Online Keyword Access to Public 
Information), was adopted as our platform.  In the 
subsequent experiments, Okapi system with the basic 
setting of bm25 (Robertson et al., 1998) was 
employed.  It has the average precision of 0.2253 on 
the 50 training topics in TREC 2003 Genomics Track 

(Hersh and Bhupatiraju, 2003).  Finally, the methods 
for selecting the predicted GO terms are investigated 
in our study and will be discussed in Section 4. 
 
3.3  Generation of Predicted GO Terms  

Although GO is organized as a directed acyclic graph, 
we did not explore and utilize its hierarchical 
properties at first.  The 17,961 GO terms from three 
main hierarchies were viewed as a flat list of GO 
terms.  Therefore, each GO concept was expanded 
to a weighted document vector using the 
aforementioned IR approach.  Given a piece of 
supporting evidence for a gene product, i.e., a 
GeneRIF, it is first expanded to a weighted document 
vector using the same IR approach.  The similarity 
between this GeneRIF and every GO concept under 
the molecular function hierarchy is computed to 
obtain a ranked list of predicted GO terms with 
similarity value greater than zero.  The process is 
illustrated in Figure 4. 
 
4  RESULTS AND DISCUSSIONS 

GO terms have a hierarchical structure which is 
appropriate for a flexible annotation process 
(Ashburner et al., 2000).  Perez et al. (2004) 
proposed a metric to evaluate the annotation 
performance under the GO hierarchy.  They 
analyzed the distance in the GO hierarchy between 
the GO terms predicted and those in the answer set.  
The matched distance is n if the length of the shortest 
path between the predicted term and the answer term 
is n.  For example, if the predicted term is 
“minus-end-directed microtubule motor activity” 
(which depends on “microtubule motor activity” that 

Fig. 4. The flow of generating predicted GO terms. 
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depends on “motor activity”) and the correct term is 
“microfilament motor activity” (which depends on 
“motor activity”), then there is a match with a 
distance of 3 in the hierarchy.  We adopted the same 
evaluation metric as Perez et al.’s (2004). 

The number of predicted GO terms is also 
considered in this study.  If we propose only one GO 
term, the curators have only one candidate to choose.  
However, it is not always the case.  Figure 3 shows 
that GeneRIF (from the document with PMID: 
12871644) for “Dock2” can be related to eight GO 
terms.  Thus, the GeneRIF can obviously warrant 
the assignment of more than one GO term.  However, 
how many candidates we should propose is worth 
investigating.  In the primary experiment, we 
proposed the predicted GO terms from top 1 to top 5.  
Figures 5 and 6 show the recall rates and the 
precision rates under different settings, respectively.  
Different distances in the GO hierarchy between the 
predicted terms and the answer terms are evaluated. 

The experimental results show the recall rate is 
better than precision rate if at least two GO terms are 
proposed.  It is reasonable because there is an 
average of 1.41 GO terms for each GeneRIF in our 
answer set.  It is helpful for human curators because 
they can collect more possible answers.  These two 
figures demonstrate the same performance trend that 
“distance” and “recall/precision” are positively 
correlated, and they reach the stable situation at 
distance 12.  The recall rates show Top5 > Top4 > 
Top3 > Top2 > Top1 while the precision rates show 
Top1 > Top2 > Top3 > Top4 > Top5.  That is rational 
because proposing more predicted terms will increase 
the recall rates but decrease the precision rates.  
Let’s see an example of gene “Slc26a1” with 
LocusID 231583.  “Slc26a1” is annotated with the 
following four GO terms, i.e., “oxalate transporter 
activity”, “oxalate transport”, “chloride transporter 
activity” and “chloride transport”.  If we predicted 
one GO term, “oxalate transporter activity” is found 
with perfect matching.  If two predicted terms were 
produced, “oxalate transporter activity” and “oxalate 
transport” were produced with perfect matching.  
Considering three predicted terms, “anion exchanger 
activity” was added.  It depends on “chloride 
transporter activity” and therefore, was considered to 
match at a distance of 1 in the hierarchy.  The last 
one, “chloride transport”, was not found in the fourth 
prediction.  However, the fifth prediction was 
“sulfate transport” that is a child of “inorganic anion 
transport” and “chloride transport” is a child of 
“inorganic anion transport”.  Hence, they are 
siblings in the process hierarchy.  It was the case of a 
match at distance 2.  This example explained why 
recall rates are increased when the number of 
predicted terms or the evaluation distance is 

increased. 
In addition, the best recall rate is 78.2% at distance 

12 with five predicted GO terms where the precision 
rate is 22.1%.  The best precision rate is 66.2% at 
distance 12 with one predicted term, and the 
corresponding recall rate is 46.9%.  If considering 
the perfect matches and matches at distance 1 in the 
hierarchy, we got a recall of 28.4% with five 
predicted terms and a precision of 8.0%.  
Furthermore, predicting only one term, i.e., perfect 
matches, resulted in a recall of 13.3% and a precision 
of 18.7%. 

Some related research has been taken before.  
Let’s outline the brief results as follows.  Perez et al. 
(2004) annotated GO terms by associating MEDLINE 
MeSH references with a recall of 8% and a precision 
of 67%.  Pouliot et al. (2001) hand-made an 
ontology on protein domains, and then classified GO 
terms to their ontology.  They did not provide the 
evaluation results for all GO terms because the 
evaluation was human-checked.  Xie et al. (2002) 
used text information combined with a cellular 
localization predictive tool for prediction.  The 
evaluation considered only the best predicted GO 
term and they evaluated by GO categories instead of 
GO terms.  Because the experiments were made on 
different test sets and the evaluation criteria were 
different, it had not enough evidence to conclude 
which methods performed better.  Furthermore, 
since the corpus and the evaluation criteria were 
different in our work than in previous research, there 
was no real basis for comparing their results with ours.  
Here, we made another experiment without reference 
corpus for comparison, i.e., direct word matching.  
Considering the example shown in Figure 1, only the 
word “development” among correct GO concepts was 
matched under this experiment, and it was possible 
that words of GeneRIF matched with other incorrect 
GO concepts.  We define the increase ratio as 
follows to measure the performance difference 
between methods with/without reference corpus. 

Increase ratio =
Pem

Pem-Prc , 

where Prc indicates “Performance with reference 
corpus” and Pem stands for “Performance with exact 
matching”. 

The results of the methods with/without reference 
corpus are shown in Figures 7 and 8, which illustrated 
increase ratios of recall rates and precision rates, 
respectively.  We observed that the increase ratios of 
recall and precision rates are similar.  As illustrated 
in Figures 6 and 7, the increase ratios are between 
73.0% and 81.1% at distance 0.  It indicates that the 
reference corpus is quite useful, especially for perfect 
matches.  After distance 8, the performance of these 
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Fig. 5. Recall rates in different numbers of predicted GO terms. 

Propose Top N

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Distance

Pr
ec

is
io

n

Top1 0.115 0.187 0.277 0.356 0.408 0.446 0.508 0.538 0.567 0.592 0.623 0.649 0.662 0.662 0.662 0.664 0.664 0.664 0.664 0.664 0.664

Top2 0.086 0.144 0.215 0.253 0.285 0.318 0.35 0.365 0.379 0.395 0.413 0.424 0.432 0.433 0.435 0.436 0.436 0.436 0.436 0.436 0.436

Top3 0.071 0.11 0.162 0.191 0.219 0.243 0.265 0.277 0.289 0.302 0.315 0.324 0.33 0.331 0.331 0.332 0.332 0.332 0.332 0.332 0.332

Top4 0.062 0.092 0.133 0.154 0.176 0.194 0.211 0.222 0.229 0.239 0.249 0.254 0.257 0.258 0.258 0.258 0.258 0.258 0.258 0.258 0.258

Top5 0.056 0.08 0.114 0.133 0.149 0.165 0.179 0.192 0.2 0.207 0.213 0.218 0.221 0.221 0.221 0.222 0.222 0.222 0.222 0.222 0.222

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 100

 
Fig. 6. Precision rates in different numbers of predicted GO terms. 
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Fig. 7. Increase ratios of recall rates with/without reference corpus at different distances. 
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Fig. 8. Increase ratios of precision rates with/without reference corpus at different distances. 

 

two approaches is nearly of no difference.  It shows 
that the information retrieval approach with reference 
corpus has better performance within shorter 

distances.  In the statistics of GO branching, there 
are maximum 522 branches and minimum one branch.  
The average is 4.17 with standard deviation 11.33.  



Furthermore, the most frequent depth is 9.  In such a 
case, GO curators will not want to examine the 
predicted terms with large distances because long 
distances of the GO hierarchy means that the trace 
scope to determine the correct GO terms by curators 
is also wide. 

 
5  CONCLUDING REMARKS 

This paper models gene annotation as a relevance 
detection problem.  We proposed a semi-automatic 
way to assign a GO term to a gene based on its 
evidence description.  Instead of explicitly 
expanding the GO terms, we relied on an IR system 
and a reference corpus to expand both GeneRIFs and 
GO terms implicitly.  In the proposed IR approach 
with reference corpus, a GeneRIF and a GO concept 
are regarded as two sentences.  Similarity between 
the two sentences determines the assignment of a GO 
term to the gene product under consideration.  This 
idea, borrowed from the relevance detection in TREC 
novelty track, is the first attempt to ontology 
annotation. 

The preliminary experiments showed that the 
promising results will be helpful for the annotation 
task because only a limited amount of predicted GO 
terms rather than a complete set of 17,961 terms were 
proposed for further selection by curators.  The 
improvement space is still open.  Machine learning 
approaches for mining the relationship between 
GeneRIFs and GO concepts may be explored.  
Furthermore, combining the other approaches with 
ours may increase the performance and that will be 
the future work. 
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