
59

MOCAP: Towards the Semantic Web of Things
Kristina Sahlmann

HTW Berlin, University of Applied Sciences
Wilhelminenhofstraße 75A, 12459 Berlin, Germany

+49 30 5019 3626
kristina.sahlmann@htw-berlin.de

Thomas Schwotzer
HTW Berlin, University of Applied Sciences

Wilhelminenhofstraße 75A, 12459 Berlin, Germany
+49 30 5019 2604

thomas.schwotzer@htw-berlin.de

ABSTRACT
The original idea of the internet had a decentralized approach:
every internet host sends data packages along to its neighbors if
they are not addressed to itself. Every host is a sender and a
receiver at the same time. Nowadays we are moving towards
Internet of Things (IoT) and again all the small devices and
sensors get decentralized nature. They exchange data with their
environment and neighbors next to them. Data exchange requires
a mutual understanding of exchanged data. Semantic approaches,
namely a vocabulary help which leads to a Semantic Web of
Things. This paper describes a proposal for the Micro-Ontology
Context-Aware Protocol (MOCAP). Sensors can use micro-
ontologies which are always context-aware and send this semantic
information to other devices. The receivers gain valuable
information using the semantic description and data about micro-
ontology. Implementing M2M protocols on limited devices like
sensors is challenging. We introduce an extension to MQTT and
CoAP that exchanges data based on Micro-Ontologies. That leads
to semantic interoperability even on the level of sensor grids.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols – routing protocols.

General Terms
Design, Experimentation, Standardization, Theory

Keywords
Internet of Things, Semantic Web, Ontology, M2M Protocol,
MQTT, CoAP, Sensors

1. INTRODUCTION
At the 12. Google I/O conference 2015 Google introduced the
new operation system named Brillo for the smart home and the
Internet of Things (IoT). Google is also working on the Weave
API which should be used for communication in the IoT. This
API can be used cross-platform even on top of the existing stack.
The Google’s solution for the interoperability is furthermore a
core set of schemas1 for data exchange. Developers can extend
this schema in terms of certified program which should guaranty
that devices can exchange data seamlessly. This should improve
the user experience. Every Android device recognize
automatically any Brillo OS or Weave API based device. Users
can choose a device, set it up and use it immediately.

1 https://developers.google.com/brillo/

That seamless user experience is also the idea developed by the
Physical Web Project2. Every smart device has an URL. Users ask
for devices nearby and get the list. Then they can use the URL in
order to get more information. The project uses the URI Beacons
schema.

This paper describes the decentralized approach for data exchange
between small devices on the IoT using the low level M2M
protocols. We combine the common technologies like RDF with
constrained devices and their networks. The transported data is
enriched by semantic description. We introduce the common
M2M protocols and apply the idea of context-aware micro-
ontology. M2M protocols has to follow some rules and
restrictions.

2. RELATED WORK
There are several works on standardization of ontologies among
them for sensors, too. The SSN ontology [2] by W3C describes
high-level model for sensors, their capabilities, platform,
observation etc. on behalf of OWL. But it does not address the
units of measurement or other specific domain knowledge. There
should be simple semantic definition for the sensor data exchange.

There is a draft for SenML [6] providing the lightweight protocol
describing the media type i.e. for temperature sensor in protocols
like HTTP or CoAP. They introduce several representations
JavaScript Object Notation (JSON), eXtensible Markup Language
(XML) and Efficient XML Interchange (EXI). But the markup is
limited on sensors.

Other work in [12] proposes “a method of transforming sensor
data into the RDF conforming to SSN ontology”. They introduce
an XML-based language for annotation of sensors.

The work presented in [11] proposes the design for lightweight
ontology, linked IoT data, distributed semantic data storage and
semantic service discovery and ranking. It shows some concepts
to connect the sensors with the web and also use common web
practices like linked data and web services. But it does not
describe a M2M protocol binding or any semantic enhancements.

The researcher group developed a semantic engine for IoT [4].
They address some challenges for IoT and want to provide
interoperability and integrate semantic web technologies among
others. They introduce a semantic-based M2M architectures for
ETSI M2M and oneM2M.

There is another work [5] analyzed the semantic usage on the IoT.
They see the Semantic Web of Things (SWoT) as the next step
after IoT and Web of Things. The goal of SWoT is to connect the
physical and the digital world, and semantic is the key. They
analyze the protocols for the SWoT application, and see the

2 http://google.github.io/physical-web/

60

MQTT still in the telemetry market, and CoAP is more applicable
for IoT and higher level standards.

3. SCENARIO
The growth of the Internet of Things (IoT) has led to the spread of
various small devices, including wearables, beacons, sensors etc.
Every device can be seen as peer. Devices usually communicate
directly – in a direct, a P2P manner. Devices don't have to be
connected with Internet. Information exchange is usually
performed between nearest devices with near-field protocols.

Devices can be i.e. a couple sensors and a smartphone. Sensors
are constrained devices. They have small processors and little
storage. But they have an operation system and network access.
And they are built and used for the certain purpose (e.g. measure
temperature). That purpose is the context and the devices are
context-aware. In our scenario, sensors can measure different
environment data. The smartphone next to it should collect and
combine these information and present it users. This can occur as
well in the push as in the pull way. Either users scan for the
nearest sensor or will be notified. Sensors measure the
temperature, the humidity and the brightness in the house and
environment etc. Users get the information on smartphone but
also the automatic blinds for the windows in their home get these
information and close or open automatically. Users can control
the blinds with the smartphone, too. Devices need a common
understanding of exchanged data to work in that way. This
scenario is outlined in the Figure 1.

Figure 1. Context-aware data exchange.

Sensors have only less context-aware information (e.g. position,
measured values). Thus, even small devices have to describe and
exchange their context. In our model, information are only
merged if their context matches. Each information is enriched
with a micro-ontology data that describes that context. This is a
controlled vocabulary. It can be a part of the top-level ontology.

Back to our scenario the sensor knows only the micro-ontology
for its own measurement. Let’s assume it measures the
temperature. The smartphone knows this temperature micro-
ontology either because users added it before or the smartphone
has downloaded it from Internet in order to process the
information. Now they can communicate.

In the home scenario the sensors measurement should tell what
they measure and in which unit of measurement the results are.
The micro-ontology of the sensor is a subset of the environment
ontology. Thus the window blinds need to know this micro-
ontology for the measurement but also for its control. The
smartphone has knowledge about the environment ontology and
can process data from the other devices like temperature, humidity
or brightness sensors. And the smartphone knows the micro-
ontology for the blinds control as a subset of home control
ontology.

The way how these devices are going to exchange context-aware
data based on micro-ontology we are calling MOCAP – micro-
ontology context-aware protocol.

4. M2M PROTOCOLS
In these scenarios we have a machine to machine (M2M)
communication. There are two M2M protocols specified for the
Internet of Things (IoT): the Message Queuing Telemetry
Transport (MQTT) and the Constrained Application Protocol
(CoAP). They both work on level four of the Open Systems
Interconnection model (OSI Model), which makes them better
suitable for constrained environments than HTTP. Both protocols
are open standards: MQTT v. 3.1.1 is an OASIS Standard [1] and
CoAP is specified as Request for Comments (RFC) 7252 [9] by
Internet Engineering Task Force (IETF). The MQTT has an
extension for the sensor networks the MQTT-SN [10].

These protocols have different architecture and message formats.
They have a mutual understanding of the M2M data exchange and
constrained devices as well as IoT, though. We want apply a
context-aware data based on micro-ontology on M2M protocols.
Because it’s difficult to say which protocol may win by the end,
we take a look on all three protocols and analyze advantages and
disadvantages.

We use the Resource Description Framework (RDF)3 as a data
format for communication. This is a standard for Semantic Web.
Alternative we could use JSON-LD4 as a standard for Linked
Data, but for our home scenario is seems to be oversized. RDF
use the URI for resource and properties identification. On the
other hand RDF has several data representations among them N-
Triples and Turtle. N-Triples are used i.e. by DBpedia. Turtle
format seems to be more appropriated for the small devices
because it separates the data representation into two parts: a list of
prefixes and a list of the triples as shown in the Table 1. The data
representation is more compact.

Table 1. RDF Turtle example.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix sens: <http://environmentdata.com/sensor/> .
@prefix meas: <http://xmlns.com/sensor/> .
sens:mysensor rdf:type temperature;
meas:units “degree Celsius”;
meas:short “°C”;
rdf:value "20.5" .

4.1 MQTT
First we take a look on MQTT. This protocol is designed for
publish and subscribe messaging. It uses TCP/IP or “other
network protocols that provide ordered, lossless, bidirectional
connections” [1] for the transport. The protocol relies on
client/server architecture paradigm.

The MQTT protocol defines fourteen types of Control Packets.
Two of them are suitable for transporting semantic information:
PUBLISH and SUBSCRIBE.

The SUBSCRIBE Control Packet contains the client subscription
for one or more Topics. This packet is sent from the client to the
server. Topics have Topic Names which can be structured by topic
level separator as the forward slash (‘/’) and provide the
hierarchical structure. In our case the smartphone and the blinds

3 http://www.w3.org/standards/techs/rdf#
4 http://json-ld.org/

61

are subscriber by the temperature sensor. The sensor must
recognize the subscription Topic for micro-ontology. The
subscription Topics should be the namespaces of the ontology and
the micro-ontology. The PUBLISH packet may contain only one
Topic. Therefore the sensor publishes the message twice: one with
the ontology and one with the micro-ontology namespace. Our
scenario with MQTT is shown in the Figure 2.

Figure 2. MOCAP based on MQTT protocol.

The PUBLISH Control Packet transports an Application Message.
This packet can be send from a client to server or from a server to
a client. The Application Message contains among others a
variable header and a payload. The Topic Name is one field from
the variable header. It identifies the topic of the payload. The
payload contains the publish message. The MQTT Control Packet
can have a size up to 256 MB [1] due to variable length encoding
scheme. The payload in RDF format can contain N-Triples or
Turtle. For constrained devices and networks the message payload
should be reduced to the Turtle and consists only the triples.
Using prefixes allows sending an ontology within a single
package.

4.2 MQTT-SN
The MQTT-SN is specified by IBM. The protocol is intended for
Wireless Sensor Networks (WSNs) and constrained devices with a
limited processing and power capacity. This protocol addresses
the lower transmission rate. In case of WSN based on IEEE
802.15.4 the packet length is limited to 128 bytes [10] for the
whole message. Subtracting the overhead for security, etc. there
will be left only the half-length for the payload. MQTT-SN
doesn’t necessary need the TCP/IP layer. The protocol can work
on any network which supports “a bi-directional data transfer
service between any node and a particular one (a gateway)”
supporting the protocol. The protocol already supports UDP and
Zigbee. The MQTT-SN extends the MQTT protocol optimizing it
for constrained devices and networks.

Due to this limited capacities the Topic is replaced by a short
topic id of two bytes. Clients must register their Topics with the
gateway to get the corresponding topic id. Gateways mediate
between MQTT-SN and MQTT. Furthermore pre-defined topic
ids and short topics are introduced which don’t require
registration. The pre-defined topic is two byte long. The short
topics have a fixed length of two octets. Both the pre-defined and
short topics are used by PUBLISH message. We propose to use
that structure to transmit prefixes of the micro-ontology
namespaces in RDF Turtle format. The publish message contains
only the triples of Turtle. MQTT-SN is more suitable for sensors
and the semantic data can be reduced by using the RDF Turtle.

4.3 CoAP
The Constrained Application Protocol (CoAP) was developed for
use with constrained networks and nodes [3]. The protocol
“provides a request/response interaction model between
application endpoints” [9]. It uses UDP or other datagram-
oriented protocol like 6LoWPAN. The protocol can easily be
integrated with Web over HTTP under some circumstances.
CoAP-HTTP Proxy and HTTP-CoAP Proxy must be
implemented. Service and resource discovery is supported beside
multicast clients.

The Constrained RESTful Environments (CoRE) [8] uses the
REST architecture paradigm. Clients and servers exchange data
by means of GET, PUT POST and DELETE requests. CoAP
endpoints can be both, client and server. Resources are identified
by an URI with coap-prefix, e.g. “coap://server/temperature”.
Because of the underlying datagram-oriented transport and
constrained network, the size of the request/response is limited to
the datagram and IP packet size without fragmentation. For the
UDP it results in 1024 bytes for the payload size [9]. In case of
6LoWPAN L2 the packets are limited to 127 bytes including
overhead.

For our scenario the sensor have a server role, and the smartphone
and blinds have the client role to succeed the GET request for the
temperature, see Figure 3.

Figure 3. Scenario with CoAP.

The most common request is the GET request. It retrieves
information from the current resources. On success a 2.05
(Content) response code should be presented in the response. The
payload content has to indicate the content-format of the payload
in order to simplify the message processing. There is a sub-
registry for the subset of Internet media types which can be used
by CoAP as a numeric identifier. For an example
“application/xml” has the identifier “41” [9]. The payload itself
has a very limited size for transporting RDF enriched semantic
data. As we already have seen, the Turtle could be divided into
two parts: the prefix definitions and the triples. Thus we could
transfer only the triples assuming that clients know those prefixes.

There are two ways in CoAP how the endpoints get connected:
either by service discovery or by multicast. In case of service
discovery the client knows (or learns) the server’s address. The
resource discovery offered by the CoAP endpoint proceeds in
machine-to-machine way. For more interoperability the endpoints
should support the Constrained RESTful Environments (CoRE)
Link Format [8] of resources.

Using the entry point clients get the response with a payload in
the CoRE Link Format. It consists of resources hosted by the
server, i.e. a list of environment sensors i.e. for temperature,
humidity, etc. There are several examples described in the

62

RFC6690 [8]. They consider a server with two resources: for
temperature and humidity. The GET request returns a list of these
resources, see Table 2.

Table 2. CoAP GET request and response.

REQ: GET /.well-known/core
RES: 2.05 Content
</sensors>;ct=40;title="Sensor Index",
</sensors/temp>;rt="temperature-c";if="sensor",
</sensors/light>;rt="light-lux";if="sensor"

The resource URI could be the namespace of the micro-ontology
which is known by the sensor. The attribute “rt” describes the
resource type. In this case it is the unit measurement. The attribute
“if” describes the interface of the resource which is sensor. The
client can process this semantic data and match it to its known
ontologies.

In the multicast CoAP the endpoints listen on the default CoAP
port in order to offer services to multicast endpoints. This process
is described by RFC 7390 [7]. After they have received a
multicast request they can process the message or ignore it. The
message can contain the semantic information about micro-
ontology of the client. The endpoint matches these information to
its known ontologies and process it. Every message is identified
by Message ID used to detect duplicate messages. The request
may include further options and among them the client URI.

The CoAP protocol is more adapted for constrained nodes and
networks. The MOCAP protocol can be setup on top of it because
the nodes are context-aware and have limited vocabulary. The real
challenge is to reduce the semantic data for the limited
capabilities. The micro-ontology must be still recognizable and
the support for RDF included.

5. CONCLUSION AND FUTURE WORK
This paper shows the feasibility of the concept. The constrained
devices like sensors are context-aware because they have a certain
purpose or task i.e. measure the temperature in degree Celsius and
share it with other devices. This is their context. They only need
to know their own micro-ontology and the namespace of the top-
level ontology.

The micro-ontology is a subset of the top-level ontology. As there
are more capable devices like smartphones participating in data
exchange, they have knowledge about the top-level ontology and
can process the data. In our scenario the top-level ontology is
about environment, and the micro-ontology is about the
temperature.

The semantic data should be described in a standardized way i.e.
by RDF or JSON-LD. The Turtle representation of data is more
compact then other RDF formats. The length of a message is
limited. The challenge is to reduce the overhead caused by
semantic description. This can be done by splitting the Turtle in
prefixes definition and the triples themselves. Assuming the more
capable device knows the prefixes we transport only the triples.

We took a closer look at three M2M protocols: MQTT, MQTT-
SN and CoAP. We applied the principles above. Every protocol
follows another architecture paradigm or has a different intension
in sense of nodes or networks. Anyway we could apply our
principles to them all.

Summarizing we call this approach MOCAP – micro-ontology
context-aware protocol. The next step will be a case study with
some use cases and different device classes. We need to evaluate
the micro-ontology, its size etc. We follow the work of RDF
Stream Processing Community Group (RSP)5 and Web of Things
(WoT)6 community groups at W3C.

6. REFERENCES
[1] MQTT Version 3.1.1. Edited by Andrew Banks and Rahul

Gupta. 29 October 2014. OASIS Standard.
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-
os.html. Latest version: http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.

[2] Semantic Sensor Network XG Final Report. Edited by
Laurent Lefort, Cory Henson and Kerry Taylor. W3C
Incubator Group Report 28 June 2011.
http://www.w3.org/2005/Incubator/ssn/XGR-ssn-
20110628/. Latest version:
http://www.w3.org/2005/Incubator/ssn/XGR-ssn/.

[3] Bormann, C., Ersue, M., and Keranen, A. 2014.
Terminology for Constrained-Node Networks. RFC 7228.
RFC Editor, May 2014. DOI=10.17487/RFC7228.

[4] Gyrard A., Datta S. K., Bonnet C., Boudaoud K. 2015. A
Semantic Engine for Internet of Things: Cloud, Mobile
Devices and Gateways. http://www.eurecom.fr/en/
publication/4555/download/cm-publi-4555_1.pdf.

[5] Jara, A. J., Olivieri, A. C., Bocchi, Y., Jung, M., Kastner,
W., and Skarmeta, A. F. 2014. Semantic Web of Things: an
analysis of the application semantics for the IoT moving
towards the IoT convergence. IJWGS 10, 2/3, 244–260.
DOI=10.1504/IJWGS.2014.060260.

[6] Jennings C., Shelby Z., Arkko J. 2015. Media Types for
Sensor Markup Language (SENML).

[7] Rahman, A. and Dijk, E. 2014. Group Communication for
the Constrained Application Protocol (CoAP). RFC 7390,
October 2014. DOI=10.17487/RFC7390.

[8] Shelby, Z. 2012. Constrained RESTful Environments
(CoRE) Link Format. RFC 6690, August 2012.
DOI=10.17487/RFC6690.

[9] Shelby, Z., Hartke, K., and Bormann, C. 2014. The
Constrained Application Protocol (CoAP). RFC 7252, June
2014. DOI=10.17487/RFC7252.

[10] Stanford-Clark A., Truong H. L. 2013. MQTT For Sensor
Networks (MQTT-SN). Protocol Specification, Version 1.2.

[11] Wang, W., De, S., Cassar, G., and Moessner, K. 2013.
Knowledge Representation in the Internet of Things:
Semantic Modelling and its Applications. Automatika
Journal 54, 4, 388–400. DOI=10.7305/automatika.54-
4.414.

[12] Zhang X., Zhao Y., Liu W. 2015. Transforming Sensor
Data to RDF based on SSN Ontology. Advanced Science
and Technology Letters 2015, 81, 95–98.
DOI=10.14257/astl.2015.81.20.

5 https://www.w3.org/community/rsp/
6 http://www.w3.org/WoT/

