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For the development of simulation codes for a group of similar physical problems one
needs a tool of fast and flexible modification of the critical parts of the code. In
the present work the modification is performed with C++ templates and inheritance.
With inheritance one can transform a code for plasma simulation into a code for
relativistic beam simulation. Moreover, the GPU plasma simulation code itself was
built by means of C++ templates. Finally, the virtual methods is used to improve
accuracy of the simulation. In such a way, C++ templates facilitate the quick and easy
computation method replacement and also the transition from one supercomputer
architecture to another.

1. Introduction

1.1. Languages and tools

Within the development of simulation codes, C++ provides tools of fast and flexible mod-
ification of the critical parts of the code. The examples of such critical parts are boundary
conditions, field equation solvers, particle pushers, particle form factors and also the parts of
the code related to the specific computer architecture (e.g. GPU kernels or OpenMP sections).
In the present work the modification is performed with C++ templates and inheritance.

It should be explained why modern Fortran (Fortran 2003 or Fortran 2008) with its full-
scale object-oriented tools is not used in the present work. This is because Fortran codes are
much harder to debug and to make them reliable. Together with object-oriented tools and with
support of hybrid architectures (CUDA, or OpenCL, or Open MP etc.) it makes the development
of the code very complex. From this point of view, rewriting Fortran codes in C/C++ seems
to be lesser evil compared to supporting object-oriented CUDA Fortran codes. Of course, using
C++ will result in lesser performance compared to Fortran, but it will be most likely balanced
by the easiness of development and debug.

”Hybrid supercomputer” in the title means only GPU-based supercomputer in the present
work. Moreover, only Nvidia GPUs with CUDA will be mentioned. But why CUDA, and why
CUDA only? Just because here it is an example of how the code is being ported to some other
supercomputer architecture, most of the other tools like OpenCL, OpenMP, OpenACC may
be used in the same way. At present we do not use OpenCL because there are not so many
computers with AMD GPUs available. Moreover, there is no evidence that AMD devices with
OpenCL will give much better performance than Nvidia devices with CUDA. Another tool for
development of GPU codes, OpenACC is very attractive because of its relative simplicity, but
the performance of the resulting codes is not satisfactory at the moment.

One more important question that should be discussed in advance is the use of virtual
functions. In present work they are used to perform the same actions in some different way,
for example, to implement different particle form-factors, or to implement boundary conditions
on some different architecture. In such a way, virtual functions are strongly necessary for
convenience of programming. On the other hand, the use of virtual functions in some cases
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reduces reliability of the code. In this case some simpler tools like pointers to function may be
used instead.

1.2. Particle-In-Cell method

In computational electrodynamics the Particle-In-Cell [1, 2] method is widely used. At
present there is a lot of object-oriented implementations of the PIC method (e.g. OOPIC
library [3]), and also the template libraries for PIC method [4, 5], but mostly for CPU-based
supercomputers, not for hybrid ones.

The goal of this work is to make a general purpose code that is capable of solving a number
of similar physical problems. The proposed method of creating such a code is not to include
all the possible functionality and all the physical effects and all the numerical methods that
could be imagined. On the contrary, there must be a way to include in the code what is really
necessary for the solution of a particular physical problem. Such a way is provided by the C++
templates. In this paper the consideration is limited to beam physics and plasma physics, in
short, to particle electrodynamics, though it is not a principal limitation.

2. Particle-In-Cell plasma simulation code

2.1. The physical problem: beam-plasma interaction

The physical problem under study is the effect of anomalous heat conductivity observed at
the GOL-3 facility in the Budker Institute of Nuclear Physics [6]. The GOL-3 facility is a long
open trap where the dense plasma is heated up in a strong magnetic field during the injection
of the powerful relativistic electron beam of a microsecond duration. The effect is the decrease
of the plasma electron heat conductivity by 100 or 1000 times compared to the classical value
for the plasma with the temperature and density observed in the experiment. Anomalous heat
conductivity arises because of the turbulence that is caused by the relaxation of the relativistic
electron beam in the high-temperature Maxwellian plasma. The goal of simulation is to define
the origin and mechanism of the heat conductivity decrease. This is of great importance for
the fusion devices because the effect of anomalous heat conductivity helps to heat the plasma
and also to confine it. The problem of heat transport in fusion devices was widely discussed
(e.g. [7, 8]) and some recent works [9].

2.2. Basic equations

The mathematical model employed for the solution of the problem of beam relaxation in
plasma consists of the Vlasov equations for ion and electron components of the plasma and also
of the Maxwell equation system. These equations in the usual notation have the following form:
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In the present work this equation system is solved by the method described in [10]. All the
equations will be further given in the non-dimensional form. The following basic quantities are
used for the transition to the non-dimensional form:

• characteristic velocity is the velocity of light ṽ = c = 3× 1010 cm/sec

• characteristic plasma density ñ = 1014 cm−3

• characteristic time t̃ is the plasma period (a value inverse to the electron plasma frequency)

t̃ = ω−1
p =

(

4πn0e
2

me

)

−0.5

= 5.3× 10−12 sec

2.3. Numerical methods

The Vlasov equations are solved by the PIC method. This method implies the solution
of the equation of movement for model particles, or superparticles. The quantities with the
subscript i are related to ions and with the subscript e to electrons.
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The leapfrog scheme is employed to solve these equations.
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here τ is the timestep. The scheme proposed by Langdon and Lasinski [11] is used to obtain
the values of electric and magnetic fields. The scheme employs the finite-difference form of the
Faraday and Ampere laws. A detailed description of the scheme can be found in [10]. The
scheme gives the second order of approximation with respect to space and time.

2.4. The implementation

The methods described in section 2.3 were first implemented as a Fortran code for general-
purpose computers and then the code was parallelized. The parallel implementation is given
in [12]. This code was tested and proved to be producing physically correct results [13].

In order to make the code more flexible and suitable for simulation of a wide range of
physical phenomena it was rewritten in C++. The precision of computations remain the same,
the results of computations with the Fortran and C++ code correspond exactly, bit to bit.

In C++ implementation the classes for cell and particle were introduced for the Particle-In-
Cell method as well as the ”simulation domain” class. In order to use special types of particle
and special computational methods within a cell, the ”simulation domain” class and the cell
class were implemented as templates.
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template <template <class Particle > class Cell >
class GPUPlasma: public Plasma
{
public:
// electric field evaluation
void ElectricField(double *locEx ,double *locEy ,double *locEz ,

int nt ,double *locHx ,double *locHy ,double *locHz ,
double *loc_npJx ,double *loc_npJy ,double *loc_npJz );

// magnetic field evaluation
virtual void MagneticField(double *locQx ,double *locQy ,double *locQz ,

double *locHx ,double *locHy ,double *locHz ,
int nt ,double *locEx ,double *locEy ,double *locEz );

//copy the cells from CPU memory to GPU memory
void CopyCells(Cell <Particle > **cp);

virtual void SetInitialConditions ();

virtual void SetBoundaryConditions ();

// comparing GPU results to the basic Fortran code results: debug only
double CheckGPUArraySilent ()
}

Figure 1. The main components of the ”GPU simulation domain” class

3. Transition from the CPU plasma simulation code to the GPU

plasma simulation code

The GPU plasma simulation code was built by means of C++ template tools. The ”simu-
lation domain” class was previously implemented as a plain CPU code. The class has a set of
methods for electromagnetic field evaluation. In order to achieve good GPU performance these
field evaluation methods should be rewritten using CUDA kernels. It was performed through
the creation of the derived class ”GPU simulation domain” (GPUPlasma, Fig.1) and the virtual
methods implementing field evaluation. The bottleneck of PIC codes is the particle push. With
the CPUs it takes up to 90 % of runtime. It means that the methods of the cell class performing
the particle push were also rewritten using CUDA kernels.

On the basis of the PIC method template (class Plasma) a derived class was created (class
GPUPlasma), which is also a template. In the GPUPlasma the following methods were added:

• copying of the domain to GPU

• comparison of CPU and GPU results

• invocation of GPU kernels for field evaluation

The implementation of the ”cell” for GPU (GPUCell class) was inherited from Cell class.
It is important that particle storage within a cell must be optimized in terms of GPU memory,
thus structure or class arrays are not suitable, thus it is done through a simple pointer-to-double
doubParticleArray, Fig. 2. The GPUCell class, Fig. 3 also includes copying to and from device
and comparison of GPU and CPU cells. ”particle” implementation for GPU here is exactly the
same as for CPU. Here it is necessary for debug that computation method are implemented just
once for both CPU and GPU.

This gives the speedup of about 8 for Nvidia Tesla M2090 compared to 4 Xeon cores and
40 for Nvidia Kepler compared to 4 Intel Xeon cores .
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template <class Particle >
class Cell
{
public:

int i,l,k; // number of the cell along each dimension
double hx,hy ,hz ,tau; //cell size and time -step
double *doubleParticleArray ; // particles

// evaluating current produced by the particle "p"
__host__ __device__
void CurrentToMesh(double3 x,double3 x1 ,double mass ,double q_m ,

double tau ,
int *cells ,CurrentTensor *t1 ,
CurrentTensor *t2 ,Particle *p);

//form -factor funcion of the PIC1 method: used by CurrentToMesh
__host__ __device__ virtual void Kernel(CellDouble& Jx ,

int i11 , int i12 , int i13 ,
int i21 , int i22 , int i23 ,
int i31 , int i32 , int i33 ,
int i41 , int i42 , int i43 ,
double su ,double dy ,double dz ,
double dy1 ,double dz1 ,double s1);

// pushing the particles in this cell: the main function of the PIC method
__host__ __device__ virtual
int Move(unsigned int i, int *cells ,CurrentTensor *t1 ,CurrentTensor *t2 ,
double mass ,double q_mass ,

double *p_control , int jmp_control ,
CellDouble *Ex1 ,CellDouble *Ey1 ,CellDouble *Ez1 ,
CellDouble *Hx1 ,CellDouble *Hy1 ,CellDouble *Hz1)

}

Figure 2. The main components of the “Cell” class

4. Transition from plasma simulation code to beam simulation

code

With inheritance one can transform a code for plasma simulation into a code for relativistic
beam simulation. The parts of code being changed are the boundary conditions and initial
distribution.

Let us start with the GPUPlasma class that implements the PIC method for GPU in
application to relativistic plasma physics. The class has special method for field evaluation and
particle pushing and initial distribution setting. Moreover, it is already parallel and already
ported to GPU. In order to use all this staff with beam simulation a derived class GPUBeam is
made, as shown in Fig.4. As it can be seen from the picture, the constructor of the GPUBeam
class does nothing on its own, it just calls the constructor of the basic class. The parameters of
the constructor represent the number of grid nodes, domain size, number of particles per cell,
average density, charge-to-mass ratio and time-step.

The use of the defined class GPUBeam is quite simple, as shown in Fig.5. The Initialize

function is called, which actually does all memory allocations and initializations, and then Step

performs the timestep. All the differences between the plasma simulation and beam interac-
tion simulation are automatically taken into consideration through the mechanism of virtual
functions.

4.1. Initial distribution

Since the initial distribution for the beam-beam interaction problem is entirely different, it
is Gaussian instead of uniform, and, which is even more important, the particles occupy just a
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template <class Particle >
class GPUCell: public Cell <Particle >
{
public:

__host__ __device__
GPUCell( int i1 , int l1 , int k1,double Lx ,double Ly ,
double Lz , int Nx1 , int Ny1 , int Nz1 ,double tau1):

Cell <Particle >(i1,l1,k1 ,Lx ,Ly ,Lz ,Nx1 ,Ny1 ,Nz1 ,tau1 ){}

GPUCell <Particle >* copyCellFromDevice(Cell <Particle >* d_src);

// redefined here
int Move(unsigned int i, int *cells ,CurrentTensor *t1 ,
CurrentTensor *t2 ,double mass ,double q_mass ,

double *p_control , int jmp_control ,
CellDouble *Ex1 ,CellDouble *Ey1 ,CellDouble *Ez1 ,
CellDouble *Hx1 ,CellDouble *Hy1 ,CellDouble *Hz1) ;

}

Figure 3. The main components of the “GPUCell” class

template <template <class Particle > class Cell >
class GPUBeam: public GPUPlasma <Cell >
{

public:
GPUBeam (){}
~GPUBeam (){}

GPUBeam( int nx , int ny , int nz ,double lx ,double ly ,double lz,
double ni1 , int n_per_cell1 ,double q_m ,double TAU):

GPUPlasma <Cell >(nx ,ny,nz,lx ,ly ,lz ,ni1 ,
n_per_cell1 ,q_m ,TAU ){}

void InitParticles(thrust :: host_vector <Particle > & vp);

void BoundaryConditions ();
};

Figure 4. The definition of the ”simulation domain” (GPUBeam) class for beam simulation.

part of simulation domain, a new function should be made to implement the new distribution.
In fact, the InitParticles function is made virtual in the basic class. The function is called from
the Initialize method of the basic class. Here, in the derived class, InitParticles is redefined.

4.2. Boundary conditions

Ex(x, y, z) =
2q(x− x0)

hz((x− x0)2 + (y − y0)2)
, (2)

Ey(x, y, z) =
2q(y − y0)

hz((x− x0)2 + (y − y0)2)
, Ez = 0, ~H = [~v, ~E]. (3)

The boundary conditions are evaluated according to the formulae (2-3). In the plasma
physics problem which was the test suite for the GPUPlasma class, the boundary conditions are
periodic, thus a very simple CUDA kernel is called for just a few microseconds. Nevertheless,
there is a special wrapper functions that invokes this kernel. In the GPUBeam class it is replaced
but a more complex, still very fast kernel invoked by the BoundaryConditions function. he
BoundaryConditions function is made virtual in the basic class. The function is called from the
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GPUBeam <GPUCell > *plasma;

// number of grid nodes , domain size , number of particles per cell ,
// average density , charge -to-mass ratio and time -step

plasma = new GPUBeam <GPUCell >(100 ,100 ,100 ,1.5 ,
0.01 ,0.1 ,1.0 ,100 ,1.0 ,5e-5);

plasma ->Initialize ();

plasma ->Step ();

Figure 5. An example of the GPUBeam class object definition.

field evaluation method of the basic class. Here, in the derived class, BoundaryConditions is
redefined.

4.3. Performance

The program that is the template implementation of PIC algorithm for beam-beam inter-
action is called GPU-Beam here. The timings for one timestep with one single Nvidia Tesla
GPU are given in table 1 in comparison with the time for one timstep with 1 Intel Xeon core.
The run here involves 1 million model particles and a grid of 1003 nodes. The GPU code for
beam simulation made with templates is compared here to the genuine Fortran code (denoted
Fortran-Beam) made with the same numerical methods for beam simulation by M.A.Boronina
et al. [14]

Table 1. Computation time, ms

Program name GPU-Beam Fortran-Beam

Particle pushing time 429.193 0552.253

Field evaluation time 536.250 0180.426

Boundary condition computing time 05.43 2893.723

Thus, with this derived class one can obtain a code for beam simulation. And since the par-
allel and GPU-related parts of the code were not touched, the parallelization efficiency remains
at high level. At present, the GPU beam simulation code works 24 times faster compared to
the CPU version (a single Intel Xeon core) [14].

5. The easy replacement of the numerical methods in the plasma

simulation code

Finally, inheritance is used to improve accuracy of the simulation. In order to reduce the
noise level the different particle form-factors of different shapes were being used.

The form-factor function (sometimes also called the shape function) here have the following
form, as shown in figure 6.

1. S1 or PIC form-factor (classical form-factor of the Particle-In-Cell method)
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Figure 6. Particle form factors.

The form factors are quickly and simply replaced in the code by the use of C++ templates.
The simulation domain is implemented as a template class with the Cell class being template
parameter. One of the Cell class methods, Kernel in Fig. 2 is the form factor. Its is called by
the CurrentToMesh function, that computes the impact of the particle to all the components of
the current and to the density. The CurrentToMesh itself is called by the Move function, which
is the pusher. It should be noticed here, that the Kernel function only should be replaced to
introduce the new particle form-factor, all the other Cell class method remain intact.

This method is a virtual one. In such a way, this form factor can be easily replaced by a
different one when a derived class is made on the basis of Cell class. Then, when this derived
class with the new form factor method is given as a parameter to the simulation domain class,
it results in a new code employing the new form factor.

The same could be also done by passing the pointer to the form-factor function to an instance
of the Cell class. It may be necessary if virtual functions are not fully supported as it happened
with older CUDA versions.

6. Conclusion

In such a way, C++ templates facilitate the quick and easy form-factor replacement and
also the transition from one supercomputer architecture to another. At present the physical
problems under study are restricted to electrodynamics of charged particles, but in principle the
described technology can be applied to all particle method applications.
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Still, there is one more question that should be answered. What is the sense of rewriting
Fortran codes with some sophisticated C++ tools? First of all, the existing Fortran codes for
both problems mentioned in the paper can not give the result with the resolution high enough
in reasonable time. By turning them into C++ GPU codes such a resolution can be achieved.
Second, there is a lot of other problems of computational electrodynamics that can be solved
by the same or similar methods, like glow discharge simulation, solar wind simulation etc. Thus
one needs a technology to facilitate creating codes for new physical problems on the basis of the
existing codes instead of just writing the code every time from the very beginning for each new
physical problem. Such a technology is proposed in the present paper.

References

1. Bidsall Ch., Langdon B. Plasma Physics via Computer Simulation. — McGraw-Hill, 1985.

2. R.W Hockney, J.W Eastwood. Computer Simulation Using Particles CRC Press, 1988

3. Verboncoeur, J.P. OOPIC: object oriented particle-in-cell code. //Plasma Science, 1995.
IEEE Conference Record - Abstracts., 1995 IEEE International Conference.

4. Viktor K. Decyk. Skeleton PIC codes for parallel computers. //Computer Physics Commu-
nications. Volume 87, Issues 1–2, 2 May 1995, Pages 87–94

5. V.E.Malyshkin, A.A. Tsigulin, Avtometriya, 2003 -in Russian.

6. V.T.Astrelin,A.V.Burdakov,V.V.Postupaev. Generation of Ion-Acoustic Waves and Suppre-
sion of Heat Transport during Plasma Heating by an Electron Beam. Plasma Physics Reports.
Vol24, No. 5 pp.414-425.

7. B. I. Cohen, D. C. Barnes, J. M. Dawson, G. W. Hammett, W. W. Lee, G. D. Kerbel, J. -N.
Leboeuf, P. C. Liewer, T. Tajima, R. E. Waltz The numerical tokamak project: simulation of
turbulent transport. Computer Physics Communications, Volume 87, Issues 1-2, 2 May 1995,
Pages 1-15.

8. A. Jaun, K. Appert, J. Vaclavik, L. Villard. Global waves in resistive and hot tokamak
plasmas. Computer Physics Communications, Volume 92, Issues 2-3, December 1995, Pages
153-187.

9. J.-L. Gardarein, R.Reichle, F.Rigollet, C. Le Niliot, C. Pochea Calculation of heat flux and
evolution of equivalent thermal contact resistance of carbon deposits on Tore Supra neutralizer
Fusion Engineering and Design, Volume 83, Issues 5-6, October 2008, Pages 759-765.

10. Vshivkov V.A., Grigoryev Yu.N.,Fedoruk M.P. Numerical ”Particle-in-Cell” Methods. The-
ory and applications VSP, Utrecht-Boston, 249 p., 2002.

11. Langdon, A.B.and B. Lasinski, 1976, Meth. Comp. Phys.16, 327, ed. B. Alder et al.

12. A.V.Snytnikov. Supercomputer simulation of plasma electron heat conductivity decrease
due to relativistic electron beam relaxation.// Procedia Computer Science, Volume 1, Issue
1, May 2010, Pages 607-615

13. Note on quantitatively correct simulations of the kinetic beam-plasma instability K.V.Lotov,
I.V.Timofeev, E.A.Mesyats, A.V.Snytnikov, V.A.Vshivkov //Phys. Plasmas 22, 024502
(2015)

14. Vshivkov V.A., Boronina M.A. Three-dimensional simulation of ultrarelativistic charged
beams dynamics: study of initial and boundary conditions // Math. Mod. 2012. Vol. 24, N 2.
P. 67–83.

Суперкомпьютерные дни в России 2015 // Russian Supercomputing Days 2015 // RussianSCDays.org

25


