
Learning Static Constraints for Domain
Modeling from Training Plans

Rabia Jilani

University of Huddersfield, Huddersfield UK
rabia.jilani@hud.ac.uk

Abstract. Intelligent agents solving problems in the real-world require
domain models containing widespread knowledge of the world. Synthe-
sising operator descriptions and domain specific constraints by hand for
AI planning domain models is time-intense, error-prone and challenging.
To alleviate this, automatic domain model acquisition techniques have
been introduced. For example, the LOCM system requires as input some
plan traces only, and is effectively able to automatically encode the dy-
namic part of the domain model. However, the static part of the domain,
i.e., the underlying structure of the domain that can not be dynamically
changed, but that affects the way in which actions can be performed is
usually missed, since it can hardly be derived by observing transitions
only.
In this paper we introduce ASCoL, a tool that exploits graph analysis for
automatically identifying static relations, in order to enhance planning
domain models. ASCoL has been evaluated on domain models gener-
ated by LOCM for the international planning competition, and has been
shown to be effective.

Keywords: Automated Planning, Knowledge Engineering, Domain Model
Acquisition, Domain Constraints.

1 Introduction

Intelligent agents that solve problems in the real-world use models containing
vast knowledge of that world to plan their actions. Designing complete domain
models and gathering application knowledge is crucial not only for the efficiency
of intelligent planning systems, but also for the correctness of the resulting ac-
tion plans generated by intelligent agents. Creating such models is a difficult
task, that is usually done manually; it requires planning experts and it is time-
consuming and error-prone.

In this paper we present ASCoL, (Automated Static Constraint Learner), a
tool that can effectively identify static knowledge by considering plan traces as
the only source of information.

In the following sections, we first provide a general background of the areas
and concepts included in this research which is followed by the research question,
problem, contribution, the developed system and system evaluation. The paper
is concluded with a discussion of some future goals.



2 Background

2.1 AI Planning

The term Planning refers to the process of reasoning about actions and then
organizing those actions to accomplish a desired goal. It gives a full scheme
for doing or accomplishing something. In Artificial Intelligence (AI) terms this
scheme is known as a Plan. Plan generation is considered an important prop-
erty of intelligent behaviour. AI Planning has been a part of study in artificial
intelligence for over two decades.

Classical planning [2] deals with finding a (partially or totally ordered) se-
quence of actions transforming the static, deterministic and fully observable
environment from some initial state to a desired goal state. In the classical rep-
resentation atoms are predicates. States are defined as sets of ground (positive)
atoms. A planning operator op = (name(o), pre(o), eff−(o), eff+(o)) is speci-
fied such that name(o) = op name(x1, . . . , xk) (op name is a unique operator
name and x1, . . . xk are variable symbols (arguments of certain types) appear-
ing in the operator), pre(o) is a set of predicates representing the operator’s
preconditions, eff−(o) and eff+(o) are sets of predicates representing the op-
erator’s negative and positive effects. Actions are ground instances of planning
operators. An action A = (pre(A), eff−(A), eff+(A)) is applicable in a state s
if and only if pre(A) ⊆ s. Application of A in s (if possible) results in a state
(s \ eff−(A)) ∪ eff+(A).

2.2 Knowledge Engineering for AI Planning

Knowledge Acquisition and Knowledge Engineering (KE) have been significant
to Artificial Intelligence (AI) research since the fields inception. Acquiring do-
main knowledge from input training data has attracted much interest in research.

The domain model acquisition problem has mainly been tackled by exploiting
two approaches. On the one hand, knowledge engineering tools for planning
have been introduced over time, for supporting human experts in modelling the
knowledge. Two particular examples are itSIMPLE [10] and PDDL studio [8].
Recently, also crowd-sourcing has been exploited for acquiring planning domain
models [13]. On the other hand, a number of techniques are currently available
for automatic domain model acquisition; they rely on example data for deriving
domain models. For example ARMS [12], SLAF [9] and many more. Significant
differences can be found in terms of the quantity and quality of the required
inputs. [6] presents a brief overview of nine different knowledge engineering tools
used in planning and compares these systems on a set of criteria.

2.3 The LOCM System

One such knowledge acquisition tool is LOCM (Learning Object-Centred Mod-
els) [1] that carries out automated generation of a planning domain model from
a set of example training plans. Each plan is a sequence of actions, where each



action in the plan is stated as a name and a list of objects that are affected or
are needed during the actions execution. Different plan traces are generated by
observing the behaviour of an agent in its environment.

The LOCM method is unique in that it requires no prior knowledge and can
learn action schema without requiring any additional information about predi-
cates or initial, goal or intermediate state descriptions of objects for the example
action sequences. The exception to this is that LOCM effectively determines the
dynamic part of the domain model of objects but not the static part i.e., the
underlying structure of the domain that can not be dynamically changed, but
that affects the way in which actions can be performed.

1. Dynamic Knowledge: a set of parametrised operator schema representing
generic actions and resulting changes in the domain under study.

2. Static Knowledge: relationships/constraints that are implicit in the set of
operators and are not directly expressed but essentially are present while
defining a domain model. These can be seen to appear in the preconditions
of operators only and not in the effects. In simple words static facts never
change in the world. According to Wickler [11], let O = {O1, O2, . . . , On}
be a set of operators and let Pr = {Pr1, P r2, . . . , P rn} be a set of all the
predicate symbols that occur in these operators. A predicate Pri ∈ Pr is
fluent iff there is an operator Oj ∈ O that has an effect that changes the
truth of the predicate Pri. Otherwise the predicate is static.

In many domains, there are static relationships or constraints which restrict
the values of variables in domain modelling. For example learning the map of
roads in transport domains or the fixed card stacking rules between specific cards
in card-games domains, that never change with the execution of actions.

3 The Research

Our work is aimed at automating the acquisition of static constraints. We aim
to enhance the LOCM system to learn complete domain models including the
knowledge of static constraints by using sequences of plans as the only input
training data. The static knowledge is not explicitly captured in the plan traces
and so it is a big challenge to learn such static constraints from them.

We introduced ASCoL, an efficient and effective tool for identifying static
knowledge missed by domain models automatically acquired.

The proposed approach generates a directed graph for each pair of same-
type arguments of operators and, by analysing linearity properties of the graphs,
identifies relevant relations between arguments. Remarkably, the contributions of
ASCoL, as demonstrated by our large experimental analysis, are: (i) the ability
to identify different types of static relations, by exploiting graph analysis; (ii)
ASCoL can work with both optimal and suboptimal plan traces; (iii) considering
pairs of same-typed objects allows the identification of all the static relations
considered in the benchmark models, and (iv) it can be a useful debugging tool



for improving existing models, which can indicate hidden static relations helpful
for pruning the search space.

A preliminary version of ASCoL has been presented in [5]; this version was
able to identify inequality constraints only. After further development and a
large experimental analysis, in the recent AI*IA publication [7], we demonstrate
the ability of ASCoL in finding static relations for enhancing domain models
automatically acquired by LOCM.

3.1 The Learning Problem

We define the learning problem that ASCoL addresses as follows. Given the
knowledge about object types, operators and predicates, and a set of plan traces,
how can we automatically identify the static relation predicates that are needed
by operators’ preconditions? We base our methodology on the assumption that
plan traces contain tacit knowledge about constraints validation/acquisition.

Specifically, a learning problem description is a tuple (P, T), where P is a set
of plan traces and T is a set of types of action arguments in P (taken from the
LOCM learnt domain model). The output for a learning problem is a constraint
repository R that stores all admissible constraints on the arguments of each
action A in plan traces P.

4 The ASCoL Tool

We now briefly present the ASCoL tool that has been developed for identifying
useful static relations. The process steps can be summarised as follows:

1. Read the partial domain model (induced by LOCM) and the plan traces.
2. Identify, for all operators, all the pairs of arguments involving the same

object types.
3. For each of the pairs, generate a directed graph by considering the objects

involved in the matching actions from the plan traces.
4. Analyse the directed graphs for linearity and extract hidden static relations

between arguments.
5. Run inequality check.
6. Return the extended domain model that includes the identified static rela-

tions.

The main information available for ASCoL comes from the input plan traces.
As a first control, we remove from the plan traces all the actions that refer to
operators that do not contain at least two arguments of the same type.

Even though, theoretically, static relations can hold between objects of dif-
ferent types, they mostly arise between same-typed objects. This is the case in
transport domains, where static relations define connections between locations.
Moreover, considering only same-typed object pairs can reduce the computa-
tional time required for identifying relations. It is also worth noting that, in



Table 1. Overall results on considered domains. For each original domain, the num-
ber of operators (# Operators), and the total number of static relations (# SR) are
presented. ASCoL results are shown in terms of the number of identified static relation-
ships (Learnt SR) and number of additional static relations provided (Additional SR)
that were not included in the original domain model. The seventh and eighth columns
indicate respectively the number of plans provided in input to ASCoL, that allows it
to converge, and the average number of actions per plan (A/P). The last column shows
the CPU-time in milliseconds

Domain # Operators # SR Learnt SR Add. SR # Plans Avg. A/P CPU-time

TPP 4 7 7 0 7 28 171
Zenotravel 5 4 6 2 4 24 109
Miconic 4 2 2 0 1 177 143
Storage 5 5 5 0 24 15 175
Freecell 10 19 13 0 20 60 320
Hanoi 1 0 1 1 1 60 140
Logistics 6 0 1 1 3 12 98
Driverlog 6 2 2 0 3 12 35
Mprime 4 7 7 0 10 30 190
Spanner 3 1 1 0 1 8 144
Gripper 3 0 1 1 1 14 10
Ferry 3 1 2 1 1 18 130
Barman 12 3 3 0 1 150 158
Gold-miner 7 3 1 0 13 20 128
Trucks 4 3 3 0 6 25 158

most of the cases where static relations involve objects of different types, this is
due to a non-optimal modelling process. Furthermore, such relations can be eas-
ily identified by naively checking the objects involved in actions; whenever some
objects of different type always appear together, they are likely to be statically
related.

5 Experimental Evaluation

Remarkable results have been achieved in complex domains, with regards to the
number of static relations. We considered fifteen different domain models, taken
either from IPCs1 or from the FF domain collection (FFd)2.

We selected domains that are encoded using different modelling strategies,
and their operators include more than one argument per object type. Table 1
shows the results of the experimental analysis. A detailed interpretation of re-
sults can be found in the recent AI*IA publication. All domains but Gripper,
Logistics and Hanoi, exploit static relations. Input plans of these domains have
been generated by using the Metric-FF planner [4] on randomly generated prob-
lems, sharing the same objects. ASCoL has been implemented in Java, and run
on a Core 2 Duo/8GB processor. CPU-time usage of the ASCoL is in the range
of 35-320 (ms) for each domain.

Interestingly, we observe that ASCoL is usually able to identify all the static
relations of the considered domains. Moreover, in some domains it is providing

1 http://ipc.icaps-conference.org/
2 https://fai.cs.uni-saarland.de/hoffmann/ff-domains.html



additional static relations, which are not included in the original domain model.
Remarkably, such additional relations do not reduce the solvability of problems,
but reduce the size of the search space by pruning useless instantiations of op-
erators.

6 Conclusion and Future Goals

We are considering several paths for future work. Grant, in [3], discusses the
limitations of using plan traces as the source of input information. ASCoL faces
similar difficulties as the only input source to verify constraints are sequences
of plans. We are also interested in extending our approach for considering static
relations that involve more than two arguments In particular, we aim to extend
the approach for merging graphs of different couples of arguments. Finally, we
plan to identify heuristics for extracting useful information also from acyclic
graphs.

References

1. Cresswell, S.N., McCluskey, T.L., West, M.M.: Acquiring planning domain models
using LOCM. The Knowledge Engineering Review 28(02), 195–213 (2013)

2. Ghallab, M., Nau, D., Traverso, P.: Automated planning: theory & practice (2004)
3. Grant, T.: Identifying Domain Invariants from an Object-Relationship Model.

PlanSIG2010 p. 57 (2010)
4. Hoffmann, J.: The Metric-FF Planning System: Translating “Ignoring Delete Lists”

to Numeric State Variables 20, 291–341 (2003)
5. Jilani, R., Crampton, A., Kitchin, D.E., Vallati, M.: ASCoL: Automated acquisi-

tion of domain specific static constraints from plan traces. In: The UK Planning
and Scheduling Special Interest Group (UK PlanSIG) 2014 (2014)

6. Jilani, R., Crampton, A., Kitchin, D.E., Vallati, M.: Automated Knowledge Engi-
neering Tools in Planning: State-of-the-art and Future Challenges. In: The Knowl-
edge Engineering for Planning and Scheduling workshop (KEPS) (2014)

7. Jilani, R., Crampton, A., Kitchin, D.E., Vallati, M.: ASCoL: a tool for improving
automatic planning domain model acquisition. In: Proceedings of the 14th Confer-
ence of the Italian Association for Artificial Intelligence (AI*IA 2015) (2015)

8. Plch, T., Chomut, M., Brom, C., Barták, R.: Inspect, edit and debug PDDL doc-
uments: Simply and efficiently with PDDL studio. System Demonstrations and
Exhibits at ICAPS pp. 15–18 (2012)

9. Shahaf, D., Amir, E.: Learning partially observable action schemas. In: Proceedings
of the national conference on artificial intelligence (AAAI) (2006)

10. Vaquero, T.S., Romero, V., Tonidandel, F., Silva, J.R.: itSIMPLE 2.0: An Inte-
grated Tool for Designing Planning Domains. In: Proceedings of the International
Conference on Automated Planning and Scheduling (ICAPS). pp. 336–343 (2007)

11. Wickler, G.: Using planning domain features to facilitate knowledge engineering.
KEPS 2011 (2011)

12. Yang, Q., Wu, K., Jiang, Y.: Learning action models from plan examples using
weighted max-sat. Artificial Intelligence 171(2), 107–143 (2007)

13. Zhuo, H.H.: Crowdsourced Action-Model Acquisition for Planning. In: Proceedings
of the AAAI Conference on Artificial Intelligence (2015)


