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Abstract. One key step towards machine learning scenarios is the reproducibil-
ity of an experiment as well as the interchanging of machine learning metadata.
A notorious existing problem on different machine learning architectures is ei-
ther the interchangeability of measures generated by executions of an algorithm
and general provenance information for the experiment configuration. This de-
mand tends to bring forth a cumbersome task of redefining schemas in order to
facilitate the exchanging of information over different system implementations.
This scenario is due to the missing of a standard specification. In this paper, we
address this gap by presenting a built upon on a flexible and lightweight vocab-
ulary dubbed MEX. We benefit from the linked data technologies to provide a
public format in order to achieve a higher level of interoperability over different
architectures.

1 Introduction

So far, we have seen a variety of publications on the Machine Learning (ML) topics,
many of them contributing to the state of the art in their respective fields. However,
the last years experienced a knowledge gap in the standardization of experiment re-
sults for mapping and storing produced performance measures. This technological gap
can be summed up by the following question: “How fo achieve interoperability among
machine learning experiments over different system architectures?”. In other words,
experimental results are not delivered in a common machine-readable way, causing the
information extraction and processing to be tricky and burdensome [[1]. Generally, the
missing of a consensus for a lightweight and flexible format to achieve the interoper-
ability for machine learning experiments over any system implementation sakes on the
development of schema based on existing machine readable formats, using established
formats (e.g.: Extensible Markup Language (XML), Comma-separated values (CSV)),
which do not allow high levels of interoperability though. In this paper, we introduce
an application program interface (API) based on MEX Vocabulary [2] to tackle with
this gap, allowing the generation of common outputs to be either reused or processed
by other systems regardless software implementation and platform (Figure [T). To the
best of our knowledge, this is the first report in the literature of an API for exporting
metadata of machine learning iterations based on an interchange format.
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Fig. 1: An interchange format for common variables related with a run of a machine
learning algorithm. The intersection of two different machine learning scenarios (part-
of-speech and classification problem) using different implementations (X and Y) high-
lighting examples of frequent machine learning variables between them.

2 MEX Format: a lightweight interchange format

The MEX vocabulary [2]] has been designed to tackle the problem of sharing prove-
nance information particularly on the machine learning iterations (for Classification,
Regression and Clustering problems) in a lightweight and flexible format, built upon on
the W3C PROV Ontology (PROV-0O) [3], i.e., the format aims to allow the interchange of
variables existing on each run of a machine learning algorithm among different systems
implementations. The MEX vocabulary is composed by three layers: mexcore (for-
malizes the key entities for representing the iterations on the machine learning execu-
tions, where each iteration has parameters as input and measures as output) ;mexalgo
(represents the context of machine learning algorithms) ;mexperf (provides the ba-
sic entities for representing the associated measures). Variables concerning the ML
pipeline, which often involves a sequence of data pre-processing, model fitting, feature
extraction analysis, and validation stages are out of scope for this work. They can be
managed properly by implementing an existing scientific workflow system ([4]], [3]),
however presenting a low level of interoperability for different system architectures.
The MEX focuses on a lightweight format of the basic elements for each iteration of
a machine learning algorithm in order to achieve a higher level of interoperability: the
performed execution itself and its parameters, as well as the produced measures.



3 Demonstration

In this demo paper, we show the MEX usage for two different programming-languages:
JaV and NodeJ We argue that a higher level of interoperability can be achieved
exporting the variables using MEX as a format. The Figure [2] depicts an overview of
the system architecture, where the three layers provide the full MEX schema, whereas
the Jena AP]E] (representing the RDF Library for the Java scenario) represents the RDF
serialization. We present the development of the Java and NodeJS APIs [2] and similar
use cases as examples, showing the advantage of defining MEX as a format for the
machine learning iterations.
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Fig.2: Achieving a higher level of interoperability with the MEX APIs. A concep-
tual representation of machine learning open source tools (Weka, LibSVM, DL-Learner,
FAMa, RapidMiner) and programming language libraries (Java, C++, C#), stated as
“User Application” exchanging provenance information of machine learning executions
through the MEX wrappers (based on the 3 layers of the MEX Vocabulary)

The MEX files for these examples can be found here [2] as well as the use case im-
plementation for Java and Weka. Moreover, to assist with the tedious task of generating
Latex tables based on the machine learning performance outputs (a manual task com-
monly executed by the user), we implemented functions to automatize this task based
on MEX files[6]. Finally, we also provide a GUI to generate the basic MEX file (Figure
E]) for non-expert users[6].

3https://java.com/pt_BR/download/
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Fig. 3: The MEX GUI generator for non-expert users

4 Conclusions and Future Work

We defined a novel interface for the representation of the variables associated with the
machine learning model executions and developed a Java and NodeJS APIs based on
that, allowing the exporting of a flexible and lightweight format for data interchanging.
As future work, we plan the integration with more established platforms (e.g.: [5]) and
new programming languages, such as Wekaﬁ and C ++ﬂ for instance. Also, a repository
for MEX files linked with nanopublicationﬂ and the examination of more machine
learning representations are desired. Finally, we argue that experiment databases [1]
can benefit from the defined MEX interchange format and its APIs.
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