
Semantic Access to Siemens Streaming Data:
the OPTIQUE Way?

E. Kharlamov1 S. Brandt2 M. Giese3 E. Jiménez-Ruiz1 S. Lamparter2
C. Neuenstadt4 Ö. Özçep4 C. Pinkel5 A. Soylu3,6 D. Zheleznyakov1

M. Roshchin2 S. Watson7 I. Horrocks1

1 University of Oxford; 2 Siemens CT; 3 University of Oslo; 4 University of Lübeck;
5 fluid Operations AG; 6 Gjøvik University College; 7 Siemens Energy

1 Introduction
Siemens Energy runs several service centres for power plants. The main task of a service
centre is remote monitoring and diagnostics of many thousands appliances, such as
gas and steam turbines, generators, and compressors installed in plants. Monitoring
and diagnostics are performed by service engineers and are typically conducted in four
steps: (i) engineers receive a notification about a potential or detected issue with an
appliance, (ii) they gather data relevant to the case, (iii) analyse the data, and finally
(iv) report about ways to address the issue to the appliance owner. Currently, Step (ii)
of the process is the bottleneck consuming, as statistics shows [5], up to 80% of the
overall time needed by the engineer to accomplish the task. The main reason for this
time consumption is the indirect data access, i.e., in many cases the engineers have
to access data via IT experts. Involvement of IT experts in the process slows it down
dramatically due to various reasons such as their overload, miscommunication between
IT experts and the engineers.

Enhancing Step (ii) by enabling direct data access for Siemens’ engineers, i.e., with-
out IT experts being involved, is important for enhancing the overall performance of
the monitoring [5]. This task is challenging for several reasons. One reason is the con-
ceptual mismatch between the way the engineers expect the data to look like, i.e., the
language and structures they use to describe the data, and the way the data is actu-
ally described and structured in Siemens databases. Moreover, the data accessible from
Siemens service centres have various formats, large in volume, and it changes at a high
rate, thus reflecting the dimensions of Big Data. Indeed, it is stored in several thousands
databases, its size is in the order of hundreds of terabytes, and it currently grows with
the average rate of 30 GB per day. At the moment only Siemens IT experts fully under-
stand these data and thus currently only they can write queries over these databases in
order to extract information relevant for engineers.

Ontology Based Data Access (OBDA) [8] has been recently proposed to enhance
end-user direct data access. The key idea behind OBDA is to use ontologies, to mediate
between users and data. Ontologies describe the domain of interest on a higher level
of abstraction and in terms that are clear for domain experts. In OBDA users formulate
their information needs as queries using terms defined in the ontology, and ontological
queries are then translated into SQL or some other database query languages and exe-
cuted automatically, without an IT expert’s intervention. To this end a set of mappings
describes the relationship between the ontological vocabulary and the data schema.
? This research has been partially supported by the EU project Optique (FP7-IP-318338), the

Royal Society, the EPSRC grants Score!, DBonto, and MaSI3.

CREATE STREAM S_out AS
CONSTRUCT GRAPH NOW { ?c2 rdf:type :MonInc }
FROM STREAM S_Msmt [NOW-10s, NOW]->"1S"ˆˆxsd:duration,

STATIC ABOX <http://www.optique-project.eu/siemens/ABoxstatic>,
TBOX <http://www.optique-project.eu/siemens/TBox>

USING PULSE WITH START = "00:10:00CET", FREQUENCY = "1S"
WHERE {?c1 a sie:Assembly. ?c2 a sie:Sensor. ?c1 sie:inAssembly ?c2.}
SEQUENCE BY StdSeq AS seq
HAVING MONOTONIC.HAVING(?c2,sie:hasValue)

CREATE AGGREGATE MONOTONIC:HAVING ($var,$att) AS
HAVING EXISTS ?k IN SEQ: GRAPH ?k { ?c2 sie:showsFailure } AND

FORALL ?i < ?j IN seq, ?x, ?y:
IF (?i, ?j < ?k AND GRAPH ?i {$var $attr ?x} AND GRAPH ?j {$var $attr ?y})
THEN ?x<=?y

Fig. 1. Monitoring task in STARQL, where the prefix sie stands for www.siemens.com/demo#

In this demo we present our OBDA solution for Siemens Energy [5] which we de-
velop as a part of the OPTIQUE project [3, 4] The demo will focus on three aspects of
the solution: (i) deployment module: to semi-automatically deploy the platform over the
Siemens relational data streams with the help of ontology and mapping bootstrapping
and importing, (ii) component for formulation and registration of monitoring tasks: to
create general monitoring tasks as parametrised continuous queries and register con-
crete instances of these tasks over specific data streams, (iii) monitoring dashboards: to
visualise results of monitoring tasks. We demonstrate OPTIQUE on an anonymized ver-
sion of Siemens data streams gathered from 200 gas/steam turbines between 2002 and
2011 and using 20 representative monitoring tasks from Siemens service centres that
are gathered as a part of requirement analyses for developing our OBDA solution [5].

2 System Overview
In this section we give details of our three OBDA components. All components are
integrated in a unified OPTIQUE solution that is based on Information Workbench, a
generic and extensible platform for semantic data management that provides many base
components for our solution such as APIs, datastores, and visualisation engines.

Deployment Support. In order to deploy an OBDA system over relational data streams,
one has to develop a new or reuse a third party domain ontology that describes the do-
main behind the streams. E.g., for Siemens monitoring the ontology should describe
structure and functionality of turbines, technical characteristics of turbines’ compo-
nents including deployed sensors. Besides, the ontology should capture additional rel-
evant information such as results of previous monitoring tasks and repairs, weather
forecasts, etc. Creating such ontology and then developing mappings to relate it to
Siemens databases is a costly process. We addressed this problem by providing a tool
BOOTOX [2, 7] for semi-automatic extraction of OWL 2 ontologies and R2RML map-
pings from relational databases and for incorporation of third party OWL 2 ontologies
in an existing OBDA system deployment either by aligning it to the ontology used in
the deployment or by connecting it to the databases underlying the deployment with so
called direct mappings. We applied our deployment support solution to Siemens data
and obtained an OWL 2 QL ontology with dozens classes and properties, and about 50
axioms. Our OBDA platform also allows for mapping editing and we used the editor to
complement the semi-automatic deployment with another dozen of classes and proper-
ties, and 20 axioms. You can see a screenshot of our deployment module in Figure 2.

Monitoring Queries. In order to express monitoring tasks we developed (i) a devoted
query language STARQL [6] for temporal and streaming queries and (ii) a visual query

system OPTIQUEVQS for end users without a prior knowledge of formal query lan-
guages that allows to formulate conjunctive STARQL queries. The main features of
STARQL are: it allows to express typical mathematical, statistical, and event pattern
features needed in real-time monitoring scenarios; it comes with a formal syntax and
semantics [5, 6] that combines open and closed-world reasoning and extends snapshot
semantics for window operators [1] with a sequencing semantics that can handle in-
tegrity constraints such as functionality assertions. In spite of its expressivity, answering
STARQL queries is still efficient since they can be transformed into relational stream
queries. Both inputs and outputs of STARQL queries are timestamped RDF triples.
Therefore, triples, coming from the result of one query, can be used as input when con-
structing another query. While producing a STARQL query, one can select an ontology
and streams over which the query will be evaluated.

Consider an example of a monitoring task: Detect a real-time failure of the tur-
bine caused by the a temperature increase within 10 seconds. This task can be formu-
lated in STARQL as in Figure 1. An output stream S out is defined by the follow-
ing language constructs: The CONSTRUCT specifies the format of the output stream,
here instantiated by RDF triples asserting that there was a monotonic increase. The
FROM clause specifies the resources on which the query is evaluated: the ontology
(here separated in TBox containing intensional knowledge and the ABox containing
factual data), and the input stream(s) for which a window operator is specified with
window range (here 10 seconds) and with slide (here 1 second). The PULSE declara-
tion specifies the output frequency. In the WHERE clause bindings for sensors (attached
to some assembly) are chosen. For every binding, the relevant condition of the mon-
itoring task is tested on the window contents. Here this condition is abbreviated by
MONINC.HAVING(?c, sie:hasValue) using a macro that is defined at the bot-
tom of Fig. 1 in an AGGREGATE declaration. In words, the conditions asks whether
there is some state ?k in the window s.t. the sensor shows a failure message at ?k and
s.t. for all states before ?k the attribute value ?attr (in the example instantiated by
sie:hasValue) is monotonically increasing.

The example query can also be formulated with the help of STREAMVQS, a vari-
ant of OPTIQUEVQS [9], see the screenshot in Figure 2. STREAMVQS allows domain
experts to construct queries by combining classes and properties using a box-and-arrow
visualisation metaphor. During query construction, the user can choose dynamic classes
and properties, i.e. properties and classes whose extensions are time dependent. More-
over, the user may specify additional predefined patterns of functions on dynamically
updated window contents. The idea is that the power user or the IT expert constructs
these patterns for each use case by looking at the special needs and re-occurring calcu-
lations as well as sub-queries and hence builds a library of relevant patterns—similar to
having a library of mappings, ontologies, and queries from which the user can choose.
Diagnostic Dashboard. In order to address diverse needs of end users in answer visu-
alisation we developed a flexible wiki-based Diagnostic Dashboard that can be easily
customised by end users themselves. The dashboard allows to visualise query answers,
inspect query results, do incremental query refinement, and export of relevant result
fragments to external diagnostic tools. Moreover, it allows to perform monitoring of
incoming data streams and query answers for continuos queries over these streams. In
Figure 2, we present four examples of our visualisation widgets. Depending on the type
of data (e.g., time series data, appliance structure), a suitable visualisation paradigm
has to be selected (e.g., pivot table, trend diagram, histogram). The diagnostic dash-

StreamVQS)

Visualiza/on)widgets)

BootOX)

Year 2 in Short
"   3 types of bootstrappers

" Logical: logical axioms, direct map.
" Provenance: mappings to query

for where answers come from
" Visual: enhancing onto vocabulary with annotations for visual QF

"   Improved ontology importing module
"   Alignment: checks for undesired logical consequences
"   Layering: new importing regime

"   Integration
"   All modules are tightly integrated in the platform
"   Integrated bootstrapping interface

"   Evaluation and Demo
"   Extensive experiments with Statoil, Siemens, other schemas
"   Preliminary version of bootstrapping benchmark
"   Statistical modules: quantitative and qualitative evaluation of Bootstr.

"   Ongoing
"   Research on bootstrapping of complex mappings (logical bootstr.)
"   Further enhancement of provenance and visual bootstrapping
"   Papers submission

•  4

[ISWC-14-in-use-1]
[ISWC-14-in-use-2]

Fig. 2. Screenshots of the OPTIQUE platform deployed over Siemens streaming data

board can also choose the representation paradigm for query answers automatically by
analysing the corresponding SPARQL query.

3 Demonstration Scenario
We will demonstrate semantic access to Siemens relational streams with OPTIQUE us-
ing anonymised version of streams gathered from 200 Siemens gas and steam turbines
between 2002 and 2011, and 20 representative Siemens monitoring tasks. The attendees
will be able to deployment of the platform over schemas of the relational streams using
bootstrapping and importing. Then, they will be able to register streaming queries by
either choosing them from a catalog of preconfigured queries or by formulating them in
the query system. Finally, they will be able to run queries and observe the results of the
evaluation in the monitoring dashboard.

4 References
[1] A. Arasu et al. The CQL continuous query language: semantic foundations and query exe-

cution. In: The VLDB Journal 15 (2 2006).
[2] E. Jiménez-Ruiz et al. BootOX: Practical Mapping of RDBs to OWL 2. In: ISWC. 2015.
[3] E. Kharlamov et al. Optique: Towards OBDA Systems for Industry. In: ESWC (SE). 2013.
[4] E. Kharlamov et al. Enabling Ontology Based Access at an Oil and Gas Company Statoil.

In: ISWC. 2015.
[5] E. Kharlamov et al. How Semantic Technologies Can Enhance Data Access at Siemens

Energy. In: ISWC. 2014.
[6] Ö. L. Özçep et al. A Stream-Temporal Query Language for Ontology Based Data Access.

In: KI 2014. Vol. 8736. 2014.
[7] C. Pinkel et al. RODI: A Benchmark for Automatic Mapping Generation in Relational-to-

Ontology Data Integration. In: ESWC. 2015.
[8] A. Poggi et al. Linking Data to Ontologies. In: J. Data Sem. 10 (2008).
[9] A. Soylu et al. A Preliminary Approach on Ontology-Based Visual Query Formulation for

Big Data. In: MTSR. 2013.

