
StoryBlink
a Semantic Web Approach for Linking Stories

Ben De Meester, Tom De Nies, Laurens De Vocht,
Ruben Verborgh, Erik Mannens, and Rik Van de Walle

Ghent University – iMinds – Multimedia Lab, Belgium
{firstname.lastname}@ugent.be

Abstract. Finding relevant content automatically is not straightforward due to
the unstructured nature of large text corpora. Moreover, traditional techniques to
extract structured information out of these corpora are mostly very fine-grained,
which deteriorates the needed high-level overview to compare publications. Also,
publishing this information as Linked Data can provide for very important context
information. This demo paper describes “StoryBlink”, a Web application that
enables the discovery of stories through linked books. By finding paths between
stories that are represented by a compact set of semantic concepts, it provides
the user with relevant stories, based on previously selected publications. By also
returning the common concepts between these stories, it gives the user a quick
insight into how certain stories are connected. As such, StoryBlink enables an
automatic content-based discovery journey between linked stories.

Keywords: Linked Data, NLP, Path Finding

1 Introduction

The continuous increase of publications – albeit printed or digital, journals or novels
– needs better and better systems that find relevant publications for an end user1. This
is usually achieved by comparing publications, and discovering its similarities. In this
paper, the two most important functional requirements for this comparison are having an
automatic system (to cope with the huge amount of published content), and comparing
these publications regarding their most important features. In the case of stories, one
of the most important features is its content. For example, recommending a publication
solely because it is written by the same author will not always give a desired result, as
this recommended publication could handle completely different content.

StoryBlink2 automatically discovers relevant publications, and provides the user with
these relevant publications and the semantic links between them. Each publication is
represented as a set of concepts that are prevalent in the publication. Based on these
concepts, strong and weak connections can be found between publications. The user can
interpret these connections to assess the relevancy of a publication.

1 Relevancy is from hereon defined as containing similar content.
2 http://uvdt.test.iminds.be/storyblink/

http://uvdt.test.iminds.be/storyblink/


2 Ben De Meester et al.

2 Related work

To automatically find relevant publications, it is necessary to extract structured data
(e.g., XML or RDF) from plain text. Natural Language Processing (NLP) is concerned
with all interactions between computers and natural languages. NLP is a very broad
field, of which two tasks are applicable to create a machine-interpretable representation
of a large piece of text (i.e., the story of the publication), namely (i) understanding
natural language sentences in terms of, e.g., mentioned concepts and relations, and (ii)
summarizing natural language into a smaller yet just as informative text.

Mechanisms to understand natural language sentences – such as Named Entity
Recognition and Disambiguation (NER and NED) – provide a machine-interpretable
representation of mentioned concepts [1]. However, this research domain is currently
mostly targeted at small pieces of text (e.g., paragraphs and tweets), and the resulting
data is too detailed, for every sentence, that it becomes no longer practical to work with
the entire resulting data set. A more high-level representation of a piece of text is, to the
best of our knowledge, not possible using current techniques.

Summarization of text is the research domain of representing a large corpus into
a smaller yet just as relevant text [4]. Although semantic solutions are in use (i.e.,
take the semantic meaning of words into account to improve the summarization result),
NLP summarization methods are targeted at human use, i.e., the resulting text is a
human-understandable piece of text. To the best of our knowledge, no summarization
techniques have been developed that return a short representation of a large text corpus
in a machine-interpretable format.

3 Technical overview

By executing NER and NED engines on the text of digital publications, and filtering the
resulting tags, we can return the most important concepts that a story comprises in a
machine-interpretable (i.e., semantic) format. These tags can be used to link publications
based on their content. Moreover, as this representation can be published as Linked Data,
we can use the context of these concepts to better assess why certain stories are linked to
each other, e.g., knowing that two stories mention the French city Paris is more valuable
than knowing that two stories mention the word Paris (which could mean the city in
one story and the Hollywood personality in the other). The Web application StoryBlink
shows how this can be used as a discovery mechanism for related publications.

We choose to detect the concepts of the full text of the publication, and filter out the
most important concepts, instead of detecting the concepts of a summary. Otherwise,
the quality of the set of representative tags would be dependent of the quality of the
summary. Also, this second approach would not allow to link a detected concept with
its original context, whilst the first approach does.

We use DBpedia Spotlight [3] as NER and NED engine. Other disambiguation
engines exist, but we choose DBpedia Spotlight, as it is open-source, and automatically
connects the detected concepts to their URI on http://dbpedia.org. DBpedia Spotlight
– being only able to link to DBpedia concepts – is biased towards famous people and
places, and is not capable to disambiguate all fictional characters. This is however

http://dbpedia.org


StoryBlink 3

no blocking factor, as StoryBlink’s aim is to connect books based on their common
concepts, and fictional characters are rarely common concepts between different stories.
The resulting URIs are then exported to RDF to describe a book using a set of DBpedia
URIs as representative tags, e.g., :book :mentions :Paris.

Since extracting all detected concepts in a publication inevitably introduces noise,
we use a filter. This filter keeps the most frequently detected concepts. The amount
of detections per concept are counted per publication, and only the most mentioned
concepts that account for 50% of the total amount of detections are included in the
final set of representative tags. This filter step reduces the total amount of triples from
22 132 to 1 091, whilst still finding 94.06% of all potential paths. After processing each
publication, these individual results are then published together in one Triple Pattern
Fragments endpoint3. Triple Pattern Fragments is used as it allows hosting and querying
Linked Data in an affordable and reliable way [5], and thus allows for the creation of
Linked Data applications on top of live endpoints. The current endpoint houses the
analysis results of 20 classic works, as found on Project Gutenberg4.

We can then use this endpoint to find connections between relevant publications.
Using the Everything is Connected engine [2], it is possible to find relevant paths
between two points in a graph. In this paper, the Everything is Connected engine finds
paths between two selected books by comparing their sets of DBpedia links, and possibly
using intermediate books as linking point. These paths are weighted depending on the
amount of tags two books have in common, and depending on the amount of hops
between them for a given path. Thus, direct links are found between books using a
common set of representative tags, or indirect links are found using related books as
intermediate nodes.

4 StoryBlink

StoryBlink is available at http://uvdt.test.iminds.be/storyblink/. After selecting
two publications, the user can click “StoryBlink!” to let the Everything is Connected
engine find relevant paths between the two chosen publications (as illustrated in Figure 1).
When measuring the calculation time for finding the paths between 190 different pairs
of publications, we can conclude that the average calculation time is 5.28s. Taken into
account that all calculations are done on the fly, using a public Triple Pattern Fragments
endpoint, this calculation time is reasonable.

The resulting paths – and in-between publications – are then visualized. All publi-
cations (including the two starting publications) are connected according to the found
paths, and the width of the links denote the link strength. As such, StoryBlink provides
an overview of the links and their strengths between all relevant publications. By clicking
on a link between publications, StoryBlink will query the data endpoint to ask for the
commonalities between these two publications. The resulting concepts give the user an
indication on why these two publications are connected, and thus help the user to assess
whether the linked publication is relevant for him or her.

3 http://uvdt.test.iminds.be/storyblinkdata/books

4 http://www.gutenberg.org/

http://uvdt.test.iminds.be/storyblinkdata/books?subject=&predicate=http%3A%2F%2Fschema.org%2Fmentions&object=http%3A%2F%2Fdbpedia.org%2Fresource%2FParis
http://uvdt.test.iminds.be/storyblink/
http://uvdt.test.iminds.be/storyblinkdata/books
http://www.gutenberg.org/


4 Ben De Meester et al.

Storyblink
exploring stories through linked books

How are famous classics works connected to each other? Find out!

And now...

 StoryBlink! 

NotreDame De Paris

The Count of Monte Cristo, Illustrated

A Journey to the Centre of the Earth

Les Misérables

Twenty Thousand Leagues Under the Seas: An Underwater Tour of the World

The Time Machine

War and Peace

The War of the Worlds

Tarzan of the Apes

Frankenstein; Or, The Modern Prometheus

Barry Lyndon

First, select a starting book...

Select startpoint:

NotreDame De Paris

Then, select an ending book...

Select endpoint:

Les Misérables



Fig. 1. StoryBlink shows relevant links between classic works in a diagram where different stories
are linked to each other, and where the weight of the paths is indicated by the width of the links.

5 Conclusion

Using StoryBlink, a user can discover links between classic works. Adding extra pub-
lications to StoryBlink requires minimal effort as the semantic summaries are created
automatically. StoryBlink thus enables users to discover publications from the backlog
of a publisher, without biasing the results towards popular works, as is usually the case
with, e.g., social recommendation systems. Future work includes improving the perfor-
mance, evaluating the filtering method (e.g., comparing it to tf-idf), and making use
of named entity recommendation systems to find paths between publications that have
related concepts in common instead of exactly the same concepts. Other knowledge
bases could be used to prevent DBpedia’s bias towards famous people and places.

References
1. Cucerzan, S.: Large-scaleNamedEntityDisambiguation based onWikipedia data. In: EMNLP-

CoNLL. vol. 7, pp. 708–716 (2007)
2. De Vocht, L., Coppens, S., Verborgh, R., Vander Sande, M., Mannens, E., Van de Walle, R.:

Discovering meaningful connections between resources in the Web of Data. In: Bizer, C.,
Heath, T., Berners-Lee, T., Hausenblas, M., Auer, S. (eds.) Linked Data on the Web (LDOW).
pp. 1–8. CEUR, Rio De Janeiro, Brazil (May 2013)

3. Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: DBpedia Spotlight: Shedding light on the
Web of documents. In: Proceedings of the 7th International Conference on Semantic Systems.
pp. 1–8. ACM (2011)

4. Nenkova, A., McKeown, K.: A survey of text summarization techniques. In: Aggarwal, C.C.,
Zhai, C. (eds.) Mining Text Data, pp. 43–76. Springer US (January 2012)

5. Verborgh, R., Hartig, O., De Meester, B., Haesendonck, G., De Vocht, L., Vander Sande, M.,
Cyganiak, R., Colpaert, P., Mannens, E., Van de Walle, R.: Querying datasets on the Web with
high availability. In: International Semantic Web Conference 2014. pp. 180–196. Springer
(2014)


	StoryBlink
	Introduction
	Related work
	Technical overview
	StoryBlink
	Conclusion


