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Abstract. Context-aware systems, such as in-car infotainment systems,
aim at improving the interaction between computers and humans by us-
ing contextual information about the system, the user and the environ-
ment. Previous work has shown that ontologies have significant benefits
for modeling such context-aware systems, e.g., when inferring knowledge.
However, the potential performance impact on the overall system when
adopting ontologies, especially with rules, to model context-awareness is
yet unknown. In this paper, we introduce a benchmark infrastructure
and perform benchmarks on multiple ontologies of context-aware sys-
tems in order to determine factors that influence performance. From the
results of these benchmarks, we derive guidelines for designing ontolo-
gies with rules for context-aware systems. These guidelines allow making
conscious decisions about performance trade-offs and, in consequence,
may improve suitability of ontologies for use in implementing industrial
context-aware systems as they guide the creation of high-performance
ontology-based context-aware systems.

1 Introduction

Context-aware systems aim at improving the interaction between computers and
humans by using contextual information about the system, the user and their
environment to provide suitable functionality for a particular context. For ex-
ample, context-aware in-car infotainment systems may adapt to the respective
drivers, their current situation and their intentions. In such a system, the car
may, e.g., play rock music when the driver was identified as being tired. To real-
ize such change in functionality, contextual values have to be captured and their
effect on the system has to be specified in suitable models. In previous work [I],
we showed that using ontologies to model context-aware systems has benefi-
cial qualities, such as logical reasoning (e.g., Pellet ReasoneTEI), standardized
APIs (e.g., OWL API for JavaED, and extensive tool support (e.g., Protég(ﬂ).

!'http://www.clarkparsia.com/pellet
2 http://owlapi.sourceforge.net
3 http://protege.stanford.edu


http://www.clarkparsia.com/pellet
http://owlapi.sourceforge.net
http://protege.stanford.edu

However, depending on the modeling of the context-aware system within the
ontology, using this technology may result in a performance impact on the over-
all system, which may be hinder adoption within in-car infotainment systems
as they have an inherent requirement on high performance due to frequent rea-
soning on the ontology. In this paper, we address this problem by introducing a
benchmark infrastructure for ontology-based context-aware systems and by per-
forming benchmarks on various differently modeled ontologies. From the results
of these benchmarks, we derive design guidelines that may be used to model
high-performance context-aware systems using ontologies.

This paper is structured as follows: In Section [2] we provide background
information on context-aware systems and their modeling. In Section [3] we in-
troduce the benchmark setup used to inspect the performance of ontology-based
context-aware in-car infotainment systems. In Section [d] we describe the execu-
tion and present the results of our benchmarks by revealing significant influences
certain properties of ontologies have on the performance of the overall system. In
Section [5] we discuss these results and use them to derive design guidelines for
building high-performance ontology-based context-aware systems. In Section [}
we elaborate on related work. Finally, in Section [7} we summarize the contribu-
tions and provide an outlook to future work to conclude the paper.

2 Background

Context-aware systems consider contextual values to alter their functionality to
be suitable for a specific operator in a specific situation and a particular envi-
ronment. Context-aware systems receive low level contextual information (e.g.,
from sensors), process these to high level contextual information and react to the
change in context by altering their functionality appropriately [2]. Contextual
information includes all values that may have an impact on the change of system
behavior.

Context-aware systems from the automotive domain, especially in in-car in-
fotainment systems, distinguish three main categories of contextual information:
the driver, the car and their environment [34], e.g., for information such as the
current stress level of the driver, available fuel amount of the car and the ge-
ographical position within the environment, respectively. To utilize contextual
information in computer systems, the respective context values have to be cap-
tured in a specific model so that they may be processed further. A suitable
notation for modeling context-aware systems are ontologies [2/5]. In our pre-
vious work, we exploited benefits to model context-aware in-car infotainment
systems using ontologies [I] by using the Web Ontology Language (OWL) [6]
with the Semantic Web Rule Language (SWRL) [7] as a rule-based extension
to OWL. This approach allows the development of in-car infotainment systems
that are able to behave differently with respect to the current situation of the
car, the driver and their environment. The general idea is to use ontologies to
model real world facts as classes of this ontology and relations between those
classes. During run-time, observed data is added as individuals of those classes



to the ontology and reasoning techniques are used to infer knowledge that was
not modeled explicitly during modeling-time. In our industrial practices, we ob-
served that ontologies mostly vary in two facts: a) the amount of classes used
to model the real world, and b) the use or disuse of SWRL rules. As the ontol-
ogy contains all information about input and output data that enters or leaves
the context-aware in-car infotainment system, it can be used to generate various
code fragments that put data into the ontology or receive data from the ontology
during run-time. However, capitalizing on these benefits by using ontologies may
entail an impact on performance of the overall system due to the complexity of
the necessary computations for reasoning depending on the concrete modeling of
the context within the ontology. Although it may not be necessary for an in-car
infotainment system to react in a range of milliseconds to a changing context,
intense and time-consuming reasoning processes should be avoided to not block
computational resources for other system tasks, which makes the processing of
ontologies performance-critical. To create a suitable design of a context-aware
system using ontologies, a conscious decision about the trade-off between the
aforementioned benefits and the potential impact on performance is necessary.

3 Benchmark Setup

Despite the benefits of modeling context-aware systems with ontologies [I], there
may be a performance impact on the overall system depending on how the sys-
tem is modeled within the ontology. However, at the current state, no data exists
on potential performance trade-offs entailed by employing ontologies for mod-
eling context-aware systems, such as in-car infotainment systems. To remedy
this shortcoming, we devised and performed a benchmark to inspect the perfor-
mance impact entailed by various styles of modeling a context-aware system as
an ontology.

In this section, we introduce the software setup that allows benchmarking the
performance of ontology-based context-aware systems. Furthermore, we elabo-
rate on the procedure to generate random ontologies to diversify the input to
the benchmark in order to determine the performance of ontology-based context-
aware systems.

3.1 Software Architecture

As foundation of the benchmark, we employ a component based architecture.
The respective components are used to represent the individual functions found
in a context-aware system as well as to synthesize data creation and consump-
tion in the form of mock-ups. As we are using ontologies to understand the
current situation of the user as described in [I], these components need to be
able to a) add observed data to an active ontology during run-time, b) to
use an ontology’s reasoning techniques to infer knowledge during run-time, and
¢) to distribute this knowledge within the entire system. Figure [1|is a schematic
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Fig. 1: Software components and data flow of the benchmark architecture.

overview of the software architecture used for executing benchmarks based on
such software components.

Context Data Sources provide contextual information in a generic format for
the Context Management. The Contexrt Management loads the model in terms
of an ontology saved in the OWL file format and creates individuals within the
provided ontology for each contextual information sent by any Contert Data
Source and updates these individuals whenever it receives new data. Hence,
the number of individuals will never exceed the number of classes within the
ontology. Afterwards, the Context Management starts reasoning on the ontology
to infer knowledge, e.g., the Context Management could reason about the driver’s
condition based on his or her interaction with the car. For this purpose, the
benchmark infrastructure uses the Pellet Reasoner. In a last step, the Context
Management queries the ontology for added inferred knowledge and notifies the
corresponding Context Data Supplier of any changes.

As described in [I], a mapping between Context Data Sources and an ontology
is used to ensure that sensor data can be added to the ontology during run-time.
This mapping is done by annotating classes of the ontology. Classes that are
annotated with the name of a Context Data Sources are called Input Classes
and represent incoming data to the ontology. Classes that are annotated with
the name of a Context Data Supplier are called Output Classes and represent
description of the current situation, e.g., whether the driver is tired or awake.

When the Context Management launches, it creates generic Context Receivers
that establish connections to every Contexrt Data Source. In addition, names of
Context Data Suppliers are attached to every Output Class defined within the
ontology. Hence, the Context Management can again create generic Context Sup-



pliers that establish connections to their corresponding Context Data Supplier
during run-time.

3.2 Input Data

It is our intent to benchmark a wide variety of ontologies for context-aware
systems following different design approaches. Furthermore, to reliably determine
the impact of different design approaches on performance, a significant size of
an ontology is required, which exceeds the size of the case studies used in our
previous work [I].

For these reasons, we decided to devise a generation algorithm for ontolo-
gies following different design approaches that have may be varied in size. Fur-
thermore, we also created a procedure to generate appropriate software compo-
nents that are used to interact with the ontology during run-time, e.g., Context
Data Sources and Context Data Supplier. Our ontology generation algorithm is
aligned with best practices of ontologies that were created by domain experts of
ontology-based context-aware in-car infotainment systems during several indus-
trial projects.

Ontology Generation To ensure that the results measured from our bench-
mark are not specific to a particular design approach for ontologies, we decided
to generate several ontologies following different design approaches. For exam-
ple, we align the depth of the inheritance hierarchy with our experience from
industrial practice but allow parametrization of the number of direct subclasses.
These are automatically generated with respect to a set of manually defined
parameters:

— the amount of Input and QOutput Classes
— the amount of SWRL rules used for reasoning

Using these parameters, we are able to create a wide variety of ontologies that
can be used as input to the benchmark as well as to generate Context Data
Sources and Context Data Supplier. We assured that the generated ontologies
closely resemble our industrial modeling practices for ontologies in a context-
aware in-car infotainment.

Code Generation The basic implementation of the benchmark architecture
presented in Figure [I] is provided as generic components, such as the Context
Management, which can be reused in various scenarios. To further benchmark
concrete context-aware systems based on ontologies, we generate Context Data
Sources and Context Data Supplier from a specified ontology. During run-time,
the generated Context Data Sources fire data change events for each of their Input
Classes in arbitrary intervals to ensure a constant system load. Context Data
Suppliers receive notifications whenever one of their Qutput Classes was inferred
by the Context Management. Hence, the model and every software component of
our benchmark are either generic or automatically generated by a corresponding
code/ontology generator.



4 Execution and Results

Using the previously described setup, we performed benchmarks for various dif-
ferent ontologies. This section elaborates on the method of execution for the
benchmarks and presents the respective results regarding the performance of
using ontologies to model context-aware systems.

4.1 Execution

We make two assumptions how an ontology’s size and the amount of SWRL
rules used for reasoning may influence the performance of the overall system:

Assumption 1: An ontology’s size has a negative effect on the performance of
the overall system. Bigger ontologies are expected to slow down the system
performance.

Assumption 2: The number of SWRL rules used for reasoning has a nega-
tive impact on the performance of the overall system. Ontologies with more
SWRL rules are exected to slow down the system performance. However, to
renounce on SWRL rules would massively limit expressiveness of our model
of contextual information.

To check these assumptions, we create two metrics representing two different
time frames during run-time of an ontology-based context-aware system:

— Reasoning Time: The time it takes the Pellet Reasoner to do the reasoning
on the ontology during run-time.

— Query Time: The time that is needed to query the ontology for inferred
knowledge and to notify a Context Data Supplier.

4.2 Assumption 1

To check our first assumption, we generated multiple ontologies of different sizes
(i.e., 10, 50, 100, 150 and 200 classes). For each size, we generated three ontolo-
gies. Every one of these was stressed in three separate runs by receiving data
from three different Context Data Sources. We stopped the recording as soon as
the reasoning had made 1,000 cycles.

Figure [2alshows that the reasoning time of ontologies increases exponentially
with an increasing size of the ontology. Even more important, the standard
deviation of the reasoning time increases dramatically with size. The maximum
reasoning time that occurred during our benchmark of ontologies with 200 input
classes was as high as 2,128.0ms and the minimum was as low as 1.0ms by a
mean of 16.74ms. The standard deviation was at 29.56ms. This implies, that
the reasoning time of larger ontologies cannot be predicted as accurately as that
of smaller ontologies.

Figure shows a significant increase of mean query time as well as its
standard deviation. This means that it takes much more time to query larger



. 501 4,000 4 T
g 407 25000 |
g 30 1 A 2,471.6
=i [
Z 20 | 16.74 £ 2,000 |
ESry! LoaT 599 =
g 1.39 2.11§ : £ 1.000 | 903.8
g0 ° 5 325.6
g .
~ 4.2 )
1 1 : : = 0t 10'438 5? ‘ ‘ ‘
10 50 100 150 200 10 50 100 150 200
Ontology Size Ontology Size
(a) Mean reasoning time and standard (b) Mean query time and standard devia-
deviation compared to ontology size. tion compared to ontology size.
0w
g
g 15
(]
£ 10
B o5 4283 4.279
o)
E 0
=
2 : *
g Ontology with Ontology without

SWRL rules SWRL rules

(¢c) Mean reasoning time and standard deviation compared to ontologies with and
without SWRL rules.

Fig. 2: Reasoning and query time compared to ontology size and usage of SWRL
rules.

ontologies for inferred knowledge than it takes for smaller ontologies. In addition,
the accuracy of predictions regarding the required query time deteriorates with
the size of an ontology as can be seen by the high standard deviation. For on-
tologies with 200 classes, we measured query times between 20ms and 12, 765ms
at a mean of 2472ms and a standard deviation of 1514ms.

4.3 Assumption 2

To check our second assumption, we compared the execution time of the pre-
viously used ontologies with that of similar ontologies without rules. For this
purpose, we removed all SWRL rules from all three ontologies of size 100 and
again performed 1,000 reasoning cycles in three separate runs.

Figure [2¢ compares the results of ontologies with and without SWRL rules.
The results show that the existence of SWRL rules does not have any significant



effect on the reasoning time of an ontology. The mean reasoning time is almost
unaffected (4.283ms with SWRL rules compared to 4.279ms without SWRL
rules) and standard deviation increases only slightly when using SWRL rules
(7.636ms with SWRL rules compared to 7.044ms without SWRL rules). We
also recorded a higher maximum value when reasoning ontologies with SWRL
rules (531ms with SWRL rules compared to 369ms without SWRL rules).

5 Discussion and Design Guidelines

In this section, we discuss the implications of the results of our benchmarks
presented in Section [4] Furthermore, we use the insights gained from these re-
sults to derive guidelines for the modeling of high-performance ontology-based
context-aware in-car infotainment systems.

For one, the benchmark results show that the reasoning time increases sig-
nificantly with the number of classes in the ontology, which may lead to a bad
performance of the overall system as the reasoner blocks computational resources
during reasoning. Hence, our first assumption can be confirmed. Furthermore,
the results also show that SWRL rules within ontologies do not have any signifi-
cant impact on the overall system performance as mean and standard deviation
are very close with and without SWRL rules. Hence, our second assumption can-
not be confirmed. This provides liberty to modelers creating an ontology-based
context-aware in-car infotainment system with regard to using SWRL rules in
their ontologies and, hence, build even more powerful ontologies.

Derived from the performed benchmarks and presented results, we define
the following design guidelines for modeling high-performance ontology-based
context-aware in-car infotainment systems.

Guideline 1: Reconsider an ontology’s number of classes.

As our benchmark results have shown, an increasing number of classes within
an ontology has a negative impact on the performance of an ontology-based
context-aware in-car infotainment system. In absolute terms, we were pleasantly
surprised that the Pellet Reasoner performed sufficiently well even with larger
ontologies. However, at the current time, the overall approach for modeling in-
car infotainment systems based on ontologies presented in [I] requires significant
amounts of time when querying the ontology for inferred knowledge. Hence, we
advise to carefully assess the necessity of each class in an ontology due to the
potential performance impact.

Guideline 2: Divide and conquer.

If the context-aware in-car infotainment system depends on a large amount of
contextual information that is the basis for reasoning, an ontology and, there
exist distinct groups of contextual information without any connections between
them, it is well advised to avoid modeling a single monolithic ontology. To im-
prove the performance of reasoning, the ontology should be split up over multiple
constituent ontologies that contain elements with particularly high cohesion but
only reference the ontologies that contain elements with less cohesion (in respect
to the first ontology). Especially on a multi-core hardware, the overall system



performance would benefit, as the Pellet Reasoner currently does not to seem
to automatically optimize reasoning for systems with more than one CPU core.
For context-aware in-car systems, a suitable structuring of ontologies might be
aligned with the aforementioned distinction of contextual information regarding
the driver, the car and the environment.

Guideline 3: Feel free to use SWRL rules.
Our benchmark results show that SWRL rules only have a marginal impact on
the performance of an ontology-based context-aware in-car infotainment system.
In consequence, this means that the approach presented in [I] can be used to
build high-performance and expressive ontologies with rules. Especially in our
automotive domain it is beneficial to have a range of expressive possibilities
without a loss of performance.

Following these guidelines, the modeler of a context-aware in-car infotain-
ment system may capitalize on ontologies with rules for a both powerful and
high-performance system.

6 Related Work

Several different types of context models can be found in the literature. An
overview is provided in the survey paper by Strang and Linnhoff-Popien [5] as
well as the survey paper by Bettini et al. [2]. Furthermore, benchmarks of ontolo-
gies can be found in literature. A well-known benchmark for ontologies including
ontology generation is LUBM [8]. However, from our point of view, LUBM lacks
support for generated random ontologies. Furthermore, L UBM does not support
generating SWRL rules, which are crucial in our industrial practices. Weithoner
et al. derived requirements for future benchmarks to make them more useful for
developers of ontology-based systems [9]. There is also work in the literature
that claims that current reasoners are not sufficiently fast for the intended use
cases [I0] and work that tries to optimize current reasoners [1I]. More recently,
there has also been work on how to predict the performance of a certain ontol-
ogy [12]. We think, that predicting the performance can give a good indication
but will not be a substitute for a benchmark as presented in this paper.

7 Conclusion

In this paper, we introduced a benchmark infrastructure to inspect the per-
formance of modeling context-aware systems using ontologies. We presented a
generator for plausible ontologies and associated source code, which both re-
spect design principles derived from industrial practice. We performed multiple
benchmarks on various different ontologies and derived guidelines for the design
of ontology-based context-aware systems. With these guidelines, we intend to
foster the adoption of ontologies by providing means for modeling and imple-
menting high performance context-aware systems based on ontologies, such as
in-car infotainment systems.



In our future work, we will optimize querying ontologies for inferred knowl-
edge, as this seems to be the major issue when aiming for a high-performance
ontology-based context-aware system. In addition, we will investigate other prop-
erties of ontologies that potentially have an impact on the overall system perfor-
mance, such as the depth of the inheritance hierarchy in the ontology. Finally, we
will evaluate the accuracy of the benchmark results within an industrial setting.
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