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Abstract. Electronic Control Units (ECUs), such as for automotive engine
control, execute highly interdependent software units. These software units
and their interaction are optimized for single-cores and need to be parallelized
for upcoming multi-core processors. In this paper we investigate how to
leverage the parallelism of the physical environment for the parallelization
of legacy control software. Key for efficient parallelization is the knowledge
of the physically required data flow timing which is often more relaxed than
the timing of the single-core implementation. As this knowledge is often not
documented, a domain expert needs to be involved. We propose an iterative
model-based approach that minimizes the evaluation effort of the domain
expert when parallelizing. In our case study, using a real-world automotive
engine control software, we show that the presented approach can exploit
parallelism while guaranteeing a correct data flow timing.
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1 Introduction

Future automotive control algorithms become more and more sophisticated due to
increasing comfort, safety, and power-train functionalities. The resulting complex
functionality is implemented in embedded real-time control software with an
increasing demand for computing power. Multi-core processors are the most
promising solution to cope with the computational demand. Though, decades of
ECU software development for single-core processors have left a huge amount of
legacy software, structured in cyclically activated tasks. Using the concept of Logical
Execution Time (LET) [7], tasks can run in parallel with a deterministic behavior
independent of their distribution to cores. However, even single tasks which consist
of a growing number of software units may exceed the computational power of a
single core. Thus, such a task has to be parallelized by reassigning the software units
to multiple parallel tasks. But control software is very sensitive to timing-relevant
changes like these, as they can cause an incorrect system behavior. Also, control
software in the automotive domain is composed of highly interdependent software
units, cf. Fig. [I] for a real-world example. When partitioning, dependencies have to
be maintained by synchronization to ensure the legacy data flow. This limits the
parallizability and is prohibitively expensive in terms of synchronization overhead.

Our solution approach thus suggests to leverage domain knowledge of experts to
identify where a dependency can be relaxed in terms of its timing. This may lead to
a behavior which is different from the legacy implementation. A domain expert has
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Fig. 1: A typical task in an industrial embedded real-time control software.

to evaluate if this behavior is still correct. Though, evaluating all dependencies is
unfeasible due to time and cost reasons. In contrast, a small number of dependencies,
as depicted in Fig. [1) on the right side, can be evaluated. The main thesis of this
paper is that there are dependencies which are more relevant and probable to ease
the partitioning challenge and thus more promising candidates for evaluation
than others. The main contribution is a model-based workflow to determine these
evaluation candidates through a machine-assisted iterative approach. In our case
study, we have evaluated a real-world gasoline Engine Management System (EMS),
which is one of the most complex control software applications in the automotive
domain. Our approach allows to find a correct and suitable degree of parallelism
with reduced evaluation effort.

The rest of this paper is organized as follows: In the next section we present the
background related to the used models in our approach. Section 3 explains our
workflow and its algorithms in detail. Experimental results are presented in Section
4. We discuss related work in Section 5 and conclude in Section 6.

2 Background

In this section we introduce the system model and its graph representation used
for our approach. We use AMALTHEA [J] as an example model in the presented
approach because of its focus on parallel applications. In general, other models with
the same semantics, e.g. AUTOSAR [2] can be used as well.

2.1 System Model

AMALTHEA is a model and tool platform for automotive embedded-system engineering
and provides integration into established industrial development processes. In
AMALTHEA, a software unit is called runnable and a set of communicating runnables
provides a desired functionality. A runnable r € R is an encapsulated portion of
sequential code, i.e., a void-void function. The runnables communicate indirectly via
labels. A label d € D can be of different data type, e.g. bit, array, or characteristic
map and is stored in shared memory. Large data types such as a map are typically
read-only and only segments are accessed. Each read-write and write-read relation
between two runnables via a label is a dependency ¢ € Q C (R x R). A dependency
between two runnables 7;,7; € R is denoted as ¢; ; and distinct through the



corresponding label di. The unit of scheduling for the underlying operating system
is a task ¢; € T that manages the execution of runnables. Runnables are mapped to
a task by the function m : R — T. Let ¢; be a task, then the order of execution of
runnables is defined as the totally ordered set P(Ry,, <). If rq < 1y (rq precedes 73),
then runnable 7, terminates its execution before 7y is executed. A task is cyclically
activated with a period P, has a relative deadline Dy, that is typically equal to
P;,, and releases an infinite number of jobs Jy, 1, k € N. Each job Jy, j of task ¢; is
activated at ay, p1 = a¢, x + Pr, with at, 0 = 0. The execution time of a task ¢; is
denoted as I;,. It is the sum of the execution timeﬂ of all runnables managed by
task ¢;. A task t; can be split into multiple task partitions t; p, k € N. Ny, 1 is
hereby the ratio of execution time of partition Iy, ; to execution time of task I,.
We represent the AMALTHEA model as a graph. The runnable graph is a cyclic
multigraph Gr = (V, E) that describes the communication dependencies between
runnables. It consists of nodes V = R and the multiset of edges E = Q.

2.2 Communication

For the communication between tasks, we use the concept of Logical Execution
Time (LET) [7]. For a job Jy, x, the LET starts with its activation ay, , and ends
with the next activation a¢, x+1. The communication between jobs happens logically
instantaneous at fixed points in time: at the beginning and end of each LET.
Thus, on the task-level LET provides determinism such that the same output is
produced from the same input independent of distribution, workload, or exact task
execution timing. To express timing of the communication between runnables, we
annotate dependencies with the communication behavior of LET. For runnables of
one task that communicate with runnables of another task, LET introduces a
communication latency. This latency is the result of the delayed publication of the
produced data. Let m be a mapping, such that runnable r, is mapped to producer
task m(r,) = t, and runnable 7, to consumer task m(ry) = t.. The runnables
communicate via a dependency ¢4 . Then, the publication pub(g,,p) of the data in
job Ji, r is delayed until ay, 1. Likewise, the communication is delayed for two
runnables that are mapped to the same task m(r,) = t; and m(ry) = t; but are
executed in opposite order 7, < r,. The forward communication dependencies
inside a job are not affected by LET since they are typically realized as shared
variables and are read/written inside the runnable context. Thus, the produced data
of these dependencies is published instantly. The example in Fig. 2| shows two
consecutive job instances of the task ¢; split into two task partitions ¢; ; and ¢; 5.
For all communication dependencies (illustrated as dotted lines), except between
runnable 75 and r3 (illustrated as solid line), the timing does not change when the
task is split. In this case, the overall communication latency from r; via ro and 73
to r4 is doubled from P;, to 2 % P, as a result of the task splitting. An expert has
to evaluate if this additional latency maintains a correct behavior. We define that a
dependency ¢, € Q has an associated criticality crit : Q — {critical, uncritical}.

3 Depending on the application characteristic, AMALTHEA provides the best, mean (e.g.
for load balancing), and worst case (e.g. for hard real-time) execution times.
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Fig. 2: Communication based on LET when a task is split.

It represents the timing constraint for the communication between the producer
rq and consumer r, when data is produced in job Jy, ;, for a mapping m, such
that m(r,) =t;, and m(ry) = t;. A dependency ¢, is considered uncritical if the
communication allows additional latencies through LET, i.e., pub(qq.p) = G, k+1-
Otherwise they are considered critical, i.e., pub(q,p) is instantly. Relaxing the
criticality of a dependency is the verified transformation from critical to uncritical.

The cluster graph G¢ is the transformed graph of G such that all uncritical
dependencies are removed. Each subgraph in G¢ represents a task cluster ¢ € C.
Task clusters are the graph representation of task partitions. All runnables inside a
cluster have critical dependencies and are thus functionally (in respect to timing)
dependent on each other.

3 Machine-assisted Dependency Analysis

Our ezpert-in-the-loop workflow determines the criticality of dependencies in which
the expert and the machine are in an interactive loop. The input is an AMALTHEA
task with communication based on LET and a parallel target scenario. Initially, all
dependencies of this task are critical. During the workflow, the expert is guided
toward a parallel target scenario by evaluating one dependency for its criticality on
every iteration. One iteration in our workflow consists of five steps, cf. Fig.

1. Every unevaluated dependency is analyzed according to a number of criteria.

2. The criteria results of each dependency are aggregated. A dependency becomes
a candidate if it has a potential impact toward the given parallel target scenario
and has a high probability to be uncritical.

3. The analysis proposes the dependency candidate that is most suitable and
probable for evaluation to the domain expert.

4. The domain expert evaluates whether the criticality of the dependency candidate
can be relaxed.

5. The resulting, potentially relaxed, criticality is refined in the model.

The parallel scenario is computed via a bin-packing approach on every workflow
iteration. A parallel scenario s € S is defined as the execution time ratios of all task
partitions Ny, 1. E.g. a scenario with two equally sized task partitions is denoted as
s = (N, 1, Ny, 2) = (0.5,0.5). The parallel target scenario s; allows a variation
Vi, of the task partitions to the target. For example, if two equally sized task
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Analysis

partitions with a variation of 10 % are allowed, we denote the target scenario as
st = ((Ne,1» Nty ), Vi) = ((0.5,0.5), 10 %). The workflow is finished as soon as the
s¢ is reached. The workflow also respects more fine-grained partitions because
partitions can always be merged. E.g. the workflow halts if it finds a scenario with
(0.45,0.24,0.31). In the following, we present steps 1-5 of our workflow.

3.1 Criteria

In the first step of our workflow, the dependencies are quantified according to
certain criteria which evaluate these properties. There are two types of criteria: 1)
An impact criterion indicates the benefit toward the parallel target scenario if the
criticality is relaxed. It is the normalized function impact : Q — [0,1] € R. The
benefit is relative to the impact: an impact of ]0, 1] is beneficial, an impact of 0
indicates no benefit. 2) A probability criterion indicates the probability of the
criticality. It is the function prob: Q — [0,1] € R, i.e., if a dependency is likely
critical it is in [0,0.5] or if it is likely uncritical it is in ]0.5,1]. If the criterion
cannot be decided to either criticality, it is 0.5. We present five criteria in the
following subsections.

Minimum Feedback Arc Set (MFAS). For a correct execution, dependency
cycles of the task have to be resolved. Such cycles can be resolved by relaxing the
criticality of at least one dependency in the cycle. To reduce the evaluation effort, it
is important to find the smallest set of dependencies (MFAS) to resolve. As shown
in , the criterion impactyras is 1 for dependencies that are part of this set as
they reduce the evaluation effort.

1, if qi,j € MFAS
0, otherwise

(1)

impactyiras (¢i,5) = {

Strongly Connected Component (SCC). Even if a dependency is not part
of MFAS, it can be a member of a cycle. To find cycles, i.e., SCCs in our graph we
use the algorithm by K. A. Hawick and H. A. James [6]. For each SCC found by the
algorithm, every containing runnable is reachable from every other runnable via



one or more dependencies. Relaxing the criticality of such a dependency may
resolve many cycles at once and reduces the evaluation effort. The number of cycles
a dependency can resolve #cycles(g; ;) is determined by the number of SCCs
the dependency is a member of. Thus, the criterion impactscc is the ratio of the
number of cycles the dependency would resolve to the total number of cycles in the
graph #cycles(GR):

_ #eycles(qiy)

impactscc (¢i,j) = #cyTs(GRY #cycles(Gr) > 0 (2)

Forward Evaluation (FE). Relaxing the criticality of a dependency can create
new task clusters. Therefore, we can evaluate the potential benefit for the number
of task clusters if the criticality of the dependency is uncritical. The Forward
Evaluation (FE) impact assumes that the dependency candidate is uncritical. It
measures the number of task clusters with and without this assumption. The
resulting boolean variable N, . is 1 if the dependency creates an additional task
cluster, otherwise 0. One uncritical dependency can create one additional cluster at
most. Therefore, we can differentiate further. The impact is relative to the balance
of the created clusters and its consisting runnables. We define the balance of the
clusters based on the sum of the runnables’ execution time per cluster Iy, 5. The
clusters are equally balanced if the standard deviation of the execution time per
cluster o(1, 1) is zero. The aggregated criterion impactpg is

1/U(Ik), if NQi,j =1 and O’(Ik) 75 0.
0, otherwise .

impactyg (¢;,j) = { (3)

Dependency Classification (DC). The values communicated between run-
nables via dependencies have different dynamics. For example, crank-angle based
values change with higher dynamics while temperature values are steadier over
time. Hence, relaxing the criticality of a dependency that communicates slowly
altering values may have only a neglecting effect on the behavior. Thus, such a
dependency has a high probability to be uncritical. Based on this domain-specific
knowledge, control-engineers can create classes ¢; € C prior to the analysis. A class
features dependencies of the same dynamics and is assigned a specific probability P
that a member is uncritical. This also shows how probable it is that a manual
evaluation of such a dependency by a domain expert confirms this assumption.
Thus, dependency classes with a high probability that members are uncritical
reduce the evaluation effort. The classes are created from the associated label of a
dependency which represents an ECU variable. ECU variables are described using
A2L [1], the standard description format for measurement and calibration data in
the automotive industry. It describes e.g. the data type, format, and computation
method is used for measurement and calibration purposes. A control engineer
interprets this information according to its dynamics and creates the classes prior to
the analysis. The key to each class is the A2L information such that the function
class : Q — C' can identify the corresponding class of a dependency during the



analysis. The Dependency Classification (DC) criterion probpc of a dependency is
the probability of the associated class:

proboe (¢ij) = P (class (i ;) (4)

Reference Implementation (RI). The criterion RI is a special kind of prob-
ability criterion as it can propose reference criticalities of a verified single- or
multi-core implementation with absolute certainty. This is useful for two scenarios:
1) To create an initial model with verified criticalities for further analysis. 2) As
fallback and reference of the legacy control software for the domain expert. The
result of this criterion is safe because AMALTHEA models provide a verified order of
execution that has been integrated and tested on real ECUs. According to the fixed
order of execution, the following information can be inferred for a dependency gq »:
If 7y < 74, then the dependency ¢, was considered uncritical in the legacy model,
otherwise critical. This information is proposed to the domain expert in the form of
probry: If ry < 14, then the result for this dependency is 1 (uncritical), else it
is 0 (critical)—cf. . Via the Reference Implementation, all dependencies can
be evaluated for their criticality. Cyclic dependencies as well as other uncritical
dependencies that are based on domain knowledge can be resolved.

1, ifTiP’f’j .
0, ifTi<7’j .

probri (¢i;) = { (5)

3.2 Analysis

After evaluating the criteria of each dependency, the results are aggregated in this
second step. Each dependency is hereby analyzed for candidacy which is represented
by a score. The score(qq) of a dependency is the product of the total impact
times the total probability:

n n
score (qqp) = Hprobi(qa,b) * Z w; * impact;(ga,p) (6)
i=0 i=0

To evaluate the total impact of a dependency, the impact criteria are weighted.
During the workflow these weights change and thus control the analysis. For
example, in the beginning of the workflow the main objective besides the target
scenario is to resolve cycles. For that purpose, the analysis adjusts the weights w; to
favor the MFAS and SCC criteria. As soon as all cycles are resolved, the two
criteria will yield no further impact. The product of all probability criteria estimates
how likely it is that a dependency is evaluated as uncritical. For example, if a
dependency originally was critical based on the RI criterion, but the DC criterion
yields a probability of 0.8, the dependency is a more probable candidate. Depending
on the score, a criticality is proposed. The score and the dependency create an
evaluation candidate. These candidates are inserted into a prioritized queue. The
evaluation candidate with the highest score is proposed to the domain expert in
step three of our workflow. For the current iteration, the candidate with the highest

score represents the most suitable and probable dependency for an evaluation.



3.3 Expert Evaluation and Refinement

In step four, the domain expert evaluates if the proposed dependency candidate allows
a relaxed timing. The dependency candidate is part of a controller with a certain
functionality. When relaxing the timing of this dependency, the communicated
data is delayed (as shown in Section . This delay increases the reaction
time of the controller that potentially alters the functionality: Depending on the
controller design, the delay may violate latency or stability requirements, and
other performance criteria. But a complete specification of these requirements for
each single controller and their interactions is not available, such that a manual
evaluation by an expert in this domain is mandatory. For the evaluation, our
workflow presents the dependency candidate together with the criteria values to the
expert. The criteria values give hints why this dependency candidate is the most
suitable and probable one among the others. This may influence how the expert
evaluates the dependency candidate. There are various techniques to evaluate
the execution timing impact on the functionality of the controller such as formal
verification or simulation [I3]. Based on this decision, the resulting potentially
relaxed criticality is added to the model and finishes the current workflow iteration.

4 Case Study

We have implemented the presented approach as an AMALTHEA [9] toolchain
element and evaluate it on a real-world Engine Management System (EMS) which is
a complex example of embedded real-time control software. For this case study
we have selected a heavy task t. with 234 runnables and 248 communication
dependencies. For simplicity reasons, all cycles are resolved based on the reference
implementation. Figure [fa] shows the initial task cluster distribution. The biggest
cluster has 65 % of the task’s execution time and is thus the main focus for the
cluster impact factors; all other clusters are smaller than 4.9 %. The parallel target
scenario we want to achieve in this study consists of two equally sized task clusters
with an allowed variation of 2%, so s; = ((0.5,0.5),2 %). Due to the complexity of
this EMS, we would need to involve many different experts to evaluate the functional
impact on each controller. To efficiently assess our approach, we therefore emulate
the experts based on the Dependency Classification criterion. For each proposed
dependency, the emulated expert decides randomly with the probability probpc if
the dependency is uncritical. This follows our argument that probpc indicates how
the expert would decide. In the future we plan to test our approach with different
domain experts and compare the results. To assess the benefit of our approach, the
key metric is the number of workflow iterations. Assuming that it takes a fixed
amount of work for the expert to evaluate a dependency, this metric represents the
evaluation effort. For comparison, we executed the same workflow but selected
dependencies for evaluation at random. Both approaches were executed 100 times.

The results in Fig. [{a] and [Ab] show how our approach partitioned the task ..
Note that 128 clusters with a size of one runnable are left out for illustration
reasons. On average, after 9.4 (min: 8, max: 24) iterations, our approach finds
a partitioning that satisfies the parallel target scenario. In comparison, when
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Fig. 4: Task t. in comparison from iteration #0 to iteration #9.

dependencies were selected randomly, it took approximately 72 (min: 17, max:
123) iterations with the expert on average to reach the target scenario. Note that
one dependency is evaluated by the expert in one iteration. This shows that our
approach successfully guides the selection of dependencies for evaluation and
significantly reduces the number of iterations and thus the amount of manual work
for reaching the parallelization goal.

5 Related Work

Based on the abstraction level of tasks, the problem of partitioning has been
studied in the following contributions. Using the AMALTHEA platform, Hottger
et al. [8] describe and evaluate partitioning of weighted directed acyclic graphs
(WDAGS) considering the system’s critical path (CP) or by applying earliest
start scheduling (ESS). For the AUTOSAR ecosystem, Faragardi et al. [5] present
partitioning and mapping techniques with the goal to minimize the inter-runnable
communication time through evolutionary algorithms. In contrast, Pani¢ et al.
[11] propose the idea to allocate runnables based on a variant of the worst-fit
decreasing heuristic directly to cores. Using Integer Linear Programming (ILP),
the work of Saidi et al. [I2] also maps runnables from AUTOSAR applications
directly to cores, optimizing the load-balance and minimize the communication
effort. With the Hierarchical Task Graph (HLT) described by Cordes et al. [4],
the execution time and energy consumption is optimized at the instruction level
with ILP and Genetic Algorithms (GAs). The semi-automatic approach of the
MPSoC Application Programming Studio (MAPS) [3] assists a programmer in
developing parallel C applications by combining machine analysis and domain
knowledge to suggest partitions to the programmer. The approach by Jahr et al.
[10], also semi-automatic, features a model-based way to parallelize existing legacy
software with Activity and Pattern Diagrams (APD) by searching for Parallel
Design Patterns (PDP) in the sequential code.

In contrast to the above related approaches that maintain dependencies through
synchronization, our approach relaxes the timing of dependencies to increase
parallelizability. The relaxed dependencies could then be used as input for the
discussed approaches and yield improved results.



6 Conclusion

In this paper, we have presented an approach to ease the partitioning challenge
of control software by relaxing the timing constraints of dependencies. Relaxed
timing constraints increase the efficiency of partitioning techniques and reduce
synchronization overhead. Our main contribution is the semi-automatic and iterative
workflow to find the most beneficial and probable dependencies for evaluation by a
domain expert. Our analysis leverages domain knowledge and thus the parallelism
of the physical environment. We have demonstrated our approach by partitioning a
heavy task of a real-world Engine Management System (EMS) by selecting and
evaluating only 3.6 % of the dependencies through an expert.

As a future work, we plan to include additional criteria such as end-to-end
latency constraints over chains of runnables. We also consider a possible propagation
of criticality along dependency chains based on static code analysis.
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