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Abstract. The adoption of model-driven engineering in the automotive
domain resulted in the standardization of a layered architectural descrip-
tion language, namely EAST-ADL, which provides means for enforcing
abstraction and separation of concerns, but no support for automation
among its abstraction levels. This support is particularly helpful when
manual transitions among levels are tedious and error-prone. This is the
case of design and implementation levels. Certain fundamental analyses
(e.g., timing), which have a significant impact on design decisions, give
precise results only if performed on implementation level models, which
are currently created manually by the developer. Dealing with complex
systems, this task becomes soon overwhelming leading to the creation
of a subset of models based on the developers experience; relevant im-
plementation level models may therefore be missed. In this work, we
describe means for automation between EAST-ADL design and imple-
mentation levels to anticipate end-to-end delay analysis at design level
for driving design decisions.

1 Introduction
The importance of software is growing in practically all industrial sectors. In
the automotive domain, software is used, e.g., for improving the safety of the
vehicle, the driving experience, and the comfort of the passengers. The electronic
system of a modern car can be composed of more than 70 embedded systems
running up to 100 million lines of code [1]. As a consequence, development of
these systems is a daunting task. Especially painful is to make late discoveries,
during testing, that the software system does not deliver a service of acceptable
quality w.r.t. timing errors and delays that cause suboptimal performance of
important systems such as engine- or stability-control. Thus, early analysis of
expected timing-behaviors and feasibility of architectural decisions w.r.t. timing
requirements would be very welcome as support for design decisions. In this
paper we propose a technique to achieve early timing4 analysis.

Among the many methodologies advocating abstraction, separation of con-
cerns, and automation as powerful instruments for dealing with complexity

4 Although other relevant extra-functional properties and related analyses exist, the
focus of this work is on timing-related properties and analysis.



of software development, Model-Driven Engineering (MDE) has progressively
gained industrial attention in the past 15 years [2]. In automotive, the adoption
of MDE resulted in the standardization of a layered architectural description
language, namely EAST-ADL [3].

EAST-ADL proposes a top-down approach relying on four different abstrac-
tion levels, i.e., vehicle, analysis, design and implementation, and it provides
abstraction and implicitly ensures separation of concerns through the different
engineering phases5. Each abstraction level, except implementation, is equipped
with a specific modeling language. At implementation level EAST-ADL proposes
the adoption of existing modeling languages, e.g., AUTOSAR6 or the Rubus
Component Model (RCM) [4]. Due to its high precision timing analysis [5], we
consider RCM as the reference modeling language exploited at implementation
level. EAST-ADL provides mediums for achieving abstraction and separation
of concerns, but it does not come with explicit support for automation among
the different abstraction levels. The lack of this crucial means, imperative for
a full-fledged MDE approach, leads to a scattered development process where
consistency among artefacts is a burden for the developer to bear.

Due to the lack of detailed timing information (e.g., control flow ports, clocks,
to mention few) [5] at design level, timing analysis cannot be performed on design
models, which indeed need to be translated to implementation models equipped
with needed timing details (e.g., clocks). This translation is usually done man-
ually, driven by the developer’s experience and, due to size and complexity of
the task, it often considers a one-to-one mapping only. This, besides being te-
dious and error-prone, may lead to the loss of relevant implementation-model
candidates when dealing with complex industrial systems.

In this work, we discuss a methodology which provides automation means
for seamlessly linking EAST-ADL design and implementation levels to enable
end-to-end delay analysis at design level7 for supporting design decisions. The
importance of exploiting implementation level analysis for taking design deci-
sions resides in the fact that it is more accurate than design level analysis, which
usually provides estimations and does not suffice industrial needs. The initial
idea was introduced in [6], while in this work we focus on its enhancement,
concrete implementation and deployment in the automotive context.

The rest of the paper is organized as follows. In Section 2 we present re-
lated work documented in the literature. In Section 3 we describe a running
example taken from the automotive domain, and in Section 4 we apply the pro-
posed methodology to it. In Section 5 we discuss benefits and limitations of the
proposed methodology and conclude the paper in Section 6.

2 Related Work
Model-based approaches supporting timing analyses can be distinguished be-
tween those detached from design models, e.g. [7], and those deriving (part of)
the necessary information from the design, like [8, 5]. In general, the latter have
the advantage of avoiding discontinuities due to the abstraction gap between
design and analysis [9], even though they have to deal with the intrinsic issue
of evaluating multiple implementation choices [10, 11]. Some approaches propose
manual mappings to reduce uncertainty between architectural and intermediate
models, which is tedious and error-prone when dealing with hundreds of imple-
mentation alternatives. Other approaches introduce automation by specifying a

5 In the remainder of the paper we will refer to design level models simply as design
models and to implementation level models as implementation models.

6 http://www.autosar.org/
7 For design level we mean the EAST-ADL design level throughout the paper.



predefined one-to-one mapping between architectural and intermediate model
elements, like [12] and in a broader way the refinement process prescribed by
the Model-Driven Architecture standard8. Even though this alleviates time and
error-proneness issues of manual approaches, it still relies on a predefined map-
ping, while in general different implementation alternatives, for the same design,
should be evaluated [11].

Our solution proposes to generate a set of possible implementations, each of
which entailing (possibly) different timing characteristics. Then, end-to-end de-
lay analysis is run to evaluate them in terms of their timing characteristics and to
select the best candidate(s). In this way, relevant design decisions can be antici-
pated before the final implementation is reached. It is worth noting that a similar
mechanism could be realized, notably, by adopting other non-bijective trans-
formation languages, architectural languages (e.g., AADL [13]), and/or other
model-based timing analyses approaches (e.g., Simulink9 or MARTE10). How-
ever, some preconditions should hold: i) the transformation language should fully
support non-bijectivitness; ii) the architectural language shall provide adequate
support for timing information at design level of abstraction; iii) the timing anal-
yses shall keep their reliability by relying on the sole design level information
(plus the alternatives generated during the derivation process).

The mechanism of implementation models generation resembles the general
concept of design-space exploration (DSE) [14], and in particular rule-based
DSE [15]. Our approach performs an exhaustive generation of implementation
models, enriched with timing details, as derivable from the system architec-
ture designed through EAST-ADL, and constrained by domain-specific rules.
Therefore, as opposed to typical DSE, the generation is not meant to provide
optimization hints at architectural level [12], rather it shows the best (timing
configuration) result given a certain system architecture as input. This procedure
is technically identified as quality-driven model transformations [16, 17].

3 A Running Example: the Steer-by-wire System
A steering system in a vehicle employs mechanical and hydraulic components
between wheels and steering wheel. The Steer-by-wire (SBW) system, which we
leverage as running example, replaces most of these components with electronic
ones. We model the SBW system at the EAST-ADL design level with the help of
the Rubus-ICE11 tool suite. In the hierarchy of a design model, the leaf element
is the so-called design function prototype (DFP). EAST-ADL implements the
type-prototype mechanism, meaning that a DFP represents a specific instance
of design function type, which defines the type. Within EAST-ADL, DFPs com-
municate through function ports, which are linked via function connectors.

It should be noted that one of the main goals of this example is to demon-
strate the validity of the proposed methodology. Therefore, in order to better
understand the transformation and corresponding selection process, we only con-
sider the internal software architecture of the SC ECU as depicted in Figure 1.
The internal software architecture of the SC ECU consists of six DFPs.

Steer Angle is responsible for acquiring the steer angle sensor input. It
passes the acquired values to Steer Angle Preprocessing. The preprocessed
steer angle signal is passed toInput Processing. which also receives the speed

8 http://www.omg.org/mda/
9 http://www.mathworks.com/products/simulink/

10 http://www.omg.org/spec/MARTE/
11 http://www.arcticus-systems.com



of the vehicle from Vehicle Speed. Input Processing passes the processed in-
put data to FB Steer Torque Computation, which in turn produces the feedback
steering torque and passes it to Steer Sensation Actuator, which produces the
signals for the steering actuator.

The WCETs specified on Steer Angle, Steer Angle Preporcessing, Input
Processing, Vehicle Speed, FB Steer Torque Computation and Steer Sens-
ation Actuator are 120, 200, 280, 120, 1200 and 100 µs, respectively. Since the
implementation details are not available at the design level, the WCETs are
estimated based on the expert’s judgements. The following timing requirement
is specified too:

– “The calculated age and reaction delays shall not exceed 25 ms and 35 ms,
respectively.”

Within EAST-ADL, timing requirements are specified by timing constraints [18].
Therefore, there are two end-to-end delay constraints, namely age and reaction,
specified on the software architecture of the SC ECU as shown in Figure 1. The
values of the age and reaction constraints are 25 ms and 35 ms respectively.

Fig. 1: Internal software architecture of SC ECU at design level.

4 Applying the methodology
Design models do not contain the timing information (e.g., control flow) needed
for running end-to-end delay analysis. Therefore, in order to leverage this analy-
sis at design level, we propose to automatically translate design to implementa-
tion models, which contain the needed timing information. Such a translation is
non-bijective, meaning that multiple implementation models can be valid trans-
lations of a given design model. To this end, the proposed methodology generates
all the meaningful (from an analysis perspective) implementation models.

The approach, depicted in Figure 2, leverages the interplay of model-driven
techniques and model-based analysis and it consists of four main phases, namely
transformation, end-to-end delay analysis, filtering and propagation. Starting
from a design model of an automotive functionality, the approach generates a
set of corresponding meaningful implementation models (transformation phase,
1 in Figure 2) enriched with timing elements whose values are set at generation
time by the developer or via configuration files. At this point, end-to-end delay
analysis is run on the generated models resulting in a set of analysis results (end-
to-end delay analysis phase, 2 in Figure 2). These results are checked against
a non-empty set of timing constraints derived from the timing requirements
expressed on the vehicle functionality. The result which better meets the given



timing constraints is selected (filtering phase, 3 in Figure 2); note that multiple
results might be equally good and thereby selected. Eventually, the selected
candidates are propagated back to the design level by means of annotations to
the design model (propagation phase, 4 in Figure 2).

Fig. 2: Methodology supporting delay analysis at design level.

4.1 Transformation Phase

The transformation phase relies on a model-to-model transformation, called
DL2RCM, between the EAST-ADL design level and RCM metamodels. DL2RCM
is a non-bijective transformation realized within the Eclipse Modeling Frame-
work (EMF)12 using the Janus Transformation Language (JTL) [19].

JTL is a constraint-based bidirectional model transformation language specif-
ically tailored to support non-bijectivity by generating all the possible solutions
at once. It adopts a QVTr-like syntax and allows a declarative specification of re-
lationships between MOF models. The language supports object pattern match-
ing, and implicitly creates traces to record what occurred during a transforma-
tion execution. The JTL implementation relies on the Answer Set Programming
(ASP) [20], which is a type of declarative programming able to address hard
(primarily NP-hard) search problems and based on the model (answer set) se-
mantics of logic programming. The ASP solver finds and generates, in a single
execution, all the possible models which are consistent with the transformation
rules by a deductive process.

The DL2RCM transformation consists of 28 rules mapping design elements to
correspondent implementation elements. In the hierarchy of an RCM implemen-
tation model, which represents the transformation’s output format, a software
circuit (SWC) is the leaf element and encapsulates basic software functions.
RCM distinguishes between data and control flow therefore a SWC has data
port and trigger port. Within RCM, Data connectors link data ports while Trig-
ger connectors link trigger ports. Clocks and trigger sinks are used to initiate
and terminate the execution of a SWC, respectively.

Listing 1.1 depicts a fragment of the DL2RCM transformation13, which is
expressed in the textual concrete syntax of JTL and applied on models given by
means of their Ecore representation in EMF. In particular, the following rules
are defined:

12 http://www.eclipse.org/modeling/emf/
13 Implementation available at http://jtl.di.univaq.it/downloads/DL2RCM.zip



– C2C, which maps a function connector to both a data and trigger connectors
and triggers the transformation of the connected DFPs;

– E2C, which maps a DFP, connected via a function connector, to a SWC;
– E2CCS, which maps a DFP, connected via a function connector, to a SWC

equipped with a clock and a sink.
The when and where clauses specify conditions on the relation. For instance,
the where clause on Line 17 selects the function ports linked by the considered
function connector and triggers the subsequent rules.

E2C and E2CCS define a non-bijective portion of the transformation. In fact,
a DFP connected via a connector may be mapped to either a SWC or a SWC
equipped with a clock and a sink. This means that, from one single design model,
the transformation is able to generate multiple implementation models, each of
which containing a unique control flow.

1 transformation DL2RCM(dl:designlevel , rcm:RCM) {
2 relation C2C {
3 name , id: String;
4 checkonly domain dl con : designlevel :: FunctionConnector {
5 name=name ,
6 id=id
7 };
8 enforce domain rcm a : RCM:: Assembly {
9 connectorData = cd:RCM:: ConnectorData {

10 name=name ,
11 id=id+"_d",
12 sourcePort = RCM:: PortDataOut { ... },
13 targetPort = RCM:: PortDataIn { ... }
14 },
15 connectorTrig = ...
16 };
17 where { (con.ends ->select(end | end.functionPort.oclIsKindOf(designlevel ::

FunctionFlowPort) and end.designFunctionPrototype.isOfType.isElementary
=true)->forAll(end | E2C(end ,a) and E2CCS(end ,a) )); }

18 }
19 relation E2CCS {
20 name2 , id2: String;
21 checkonly domain dl e : designlevel :: FunctionConnectorInstanceReference {
22
23 designFunctionPrototype = dfp :designlevel :: DesignFunctionPrototype {
24 name=name2 ,
25 id=id2
26 }};
27 enforce domain rcm a : RCM:: Assembly {
28 clock = clk: RCM:: Clock {
29 name=name2+’_clock ’,
30 name=id2+’_clock ’
31 },
32 sink = snk: RCM::Sink {
33 name=name2+’_sink ’,
34 name=id2+’_sink ’
35 },
36 circuit = cir :RCM:: Circuit {
37 name=name2 ,
38 id=id2 ,
39 interface = int :RCM:: Interface {
40 name=name2+’_interface ’,
41 id=id2+’_interface ’
42 }}};
43 where { ... }}
44 relation E2C {
45 ...
46 }}

Listing 1.1: Fragment of the DL2RCM transformation in JTL.

The DL2RCM model transformation, applied to our design model in Figure 1,
generates 64 implementation models 14 (one of them is depicted in Figure 3).

14 Each SWC can be transformed either via the E2C rule or via the E2CCS rule.



However, considering the end-to-end delay analysis we want to perform, we are
only interested in the combinations of those DFPs that are enclosed by the
start and end points of the timing constraints. To this end, we added an OCL
logic constraint (shown in Listing 1.2) to the DL2RCM transformation for re-
ducing the set of generated implementation models. It imposes the selection of
the implementation model alternatives in which Steer Angle, Vehicle Speed and
Steering Sensation Actuator are transformed by the E2CCS rule.

Circuit.allInstances ()->excluding(self.getConstrainedSWC ())->select(c:Circuit
| c.getClock ().oclIsUndefined () and c.getSink ().oclIsUndefined ())

Listing 1.2: Logic constraint applied to the DL2RCM transformation.

Therefore by enforcing the bijectivity on the Steer Angle, Vehicle Speed and
Steering Sensation Actuator, the DL2RCM transformation generates 8 imple-
mentation models15.

Fig. 3: Generated implementation model example.

4.2 End-to-end Delay Analysis Phase

In this phase, we predict the timing behavior of each generated implementation
model by performing the end-to-end delay analysis [21, 5]. We are interested in
the calculations of two different delays, namely age and reaction [5]. Age delay
is important in control applications where the interest lies in the freshness of
received data. Reaction delay is used to determine the first reaction time for a
given stimulus. Our focus is on the Controller Area Network (CAN) which is a
event-triggered serial communication bus protocol. We do not use global time
stamps (that require tracking of global chronological time) to predict the timing
behavior. Instead we use response-time analysis and end-to-end delay analysis.
We refer the reader to [21, 5] for the details about the calculations of age and
reaction delays.

Once the analysis has been performed on each generated implementation
model, the analysis results, which include calculated age and reaction delays for
each individual implementation model as shown in Table 1, are forwarded to the
filtering phase.

For calculating age and reaction delays, the methodology employs the timing
analysis engines implemented in the Rubus-ICE.15 All the combinations of the Steer Angle Preprocessing, Input Processing and

FB Steering Torque Computation are generated by not enforcing bijectivity.



Delay Analysis (µs) Delay Analysis (µs)
Age Delay Reaction Delay Age Delay Reaction Delay

Model

(a) 26020 30020

Model

(e) 26020 30020
(b) 26020 42020 (f) 26020 42020
(c) 18020 22010 (g) 18020 18020
(d) 2020 10020 (h) 18020 18020

Table 1: Delay Analysis Result for the generated implementation models.

4.3 Filtering and Propagation Phases

The filtering phase consists of two cascaded filters: the elimination filter and the
selection filter. The timing analysis results are provided as input to the elimina-
tion filter together with the non-empty set of timing constraints. In our example,
the elimination filter compares the analysis results of each implementation model
with the specified age and reaction constraints of 25 and 35 ms respectively. The
implementation models identified as (a), (b), (e) and (f) in Table 1 violate one
or both timing constraints; hence, they are discarded. The remaining models,
which satisfy the specified timing constraints (i.e., (c), (d), (g) and (h)), are
forwarded to the selection filter.

The selection filter selects the best implementation model based on the re-
quirement concerning the type of application, also received as input. To this
end, an application i) contains only single-rate chains, or ii) contains multi-rate
chains. In our example, the system shall be developed using multi-rate chains.
This means that the implementation models that contain single-rate chains be-
tween start and end points of the specified timing constraints are negligible.
Therefore, the models identified in Table 1 as (c), depicted in Figure 3, and (g)
are selected16. Finally, the models and their analysis results are propagated back
to the design model (as annotations done by text-to-model transformations).

5 Discussion

Running and leveraging implementation level analysis at higher abstraction lev-
els (e.g., design) brings multiple advantages. First of all, it can help the designer
in taking architectural decisions based on much more precise feedback than com-
mon design level analysis, which, being based on estimated or guessed properties,
are usually just conceived as complementary to implementation level analysis in
industrial settings. Moreover, it allows the developer to only focus on design
activities exploiting implementation level analysis results without having to in-
vestigate nor manually edit implementation models, which are automatically
produced and transparent to the developer.

We employ JTL to generate multiple implementation models from one de-
sign model by providing different combinations of implementation elements, de-
rived from the design model, and timing elements, added by the transformation.
Clearly, the generation of all possible combinations, besides being unnecessary
in most scenarios, becomes soon unbearable from a scalability perspective when
dealing with complex systems of industrial size. For this reason, we exploit JTL’s
capability of entailing ASP logic constraints for narrowing the generation space.

16 The selection filter selects the implementation model with shorter age and reaction
delays. In our case two models have same analysis results, thus they are both selected.



We provide a set of default constraints to prune solutions that are evidently
meaningless for our analysis. This means that we can enable support for the gen-
eration of different classes of models by providing different default constraints.
Nonetheless, default constraints do not prevent the generation of dimly mean-
ingless solutions nor high transformation time in case of very complex design
models. While the first issue can be solved through analysis and filtering mech-
anisms, the latter demands additional user-defined constraining based on the
specific modeled functionality.

It is interesting to note that the methodology may propagate more than one
generated implementation model, along with its timing analysis results, to the
design model. This happens only when those results are equally good. In this
case, the designer is given the possibility to select among them.

By considering the general development scenario, through our methodology
it is possible to disclose the opportunity of shortening time-to-market and lever-
age expensive resources (e.g., architects, timing experts) more efficiently. More
concretely, the simple software system illustrated in this work contains more
than fifty components, seventeen in the SC ECU and ten in each of the four
WC ECUs. This means that starting from such an architecture a designer will-
ing to manually define a proper implementation model would face a space of 257

possible alternatives. It becomes evident that having an automated mechanism
that is able to derive those alternatives and select the best one(s) brings a gain
in terms of time, costs and risks in the construction of the implementation.

6 Conclusion
The approach proposed in this paper tackles the problem of identifying a suitable
implementation choice, in terms of timing characteristics, starting from the soft-
ware architecture. In general this issue requires the consideration of a number
of alternatives that grows exponentially with the number of software compo-
nents in the architecture. We proposed to solve this by adopting a quality-driven
model transformation approach and defining a precise mapping between EAST-
ADL design and implementation models (defined in terms of the Rubus Compo-
nent Model). Since in general the mapping of design to implementation models
equipped with timing elements is non-bijective, we leveraged the properties of a
constraint-based transformation language, JTL, to automatically derive all the
meaningful implementation alternatives. Subsequently, generated implementa-
tion models are classified in terms of timing results enabling the selection of the
best implementation model candidate(s) derivable from the input design model.

The experiment we conducted in collaboration with industrial partners in
automotive showed promising results w.r.t. time gains and reduction of possible
errors in the creation of a suitable implementation model. Despite the generation
and selection processes are transparent to the developer, issues about scalability
remain open. In particular, the size of the problem could reach a point such
that the generation of implementation alternatives would be intractable. In this
respect, a main future investigation direction encompasses the study of smarter
generation rules. Another line of research will be devoted to the study of combin-
ing the optimisation of multiple system (especially extra-functional) properties.
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