
Running out of Bindings? Integrating Facts and Events
in Linked Data Stream Processing

Shen Gao, Thomas Scharrenbach, Jörg-Uwe Kietz, and Abraham Bernstein

University of Zurich∗

{shengao,scharrenbach,juk,bernstein}@ifi.uzh.ch

Abstract. Processing streams of linked data has gained increased importance
over the past years. In many cases the streams contain events generated by sen-
sors such as traffic control systems or news releases. As a reaction to this in-
creased need, a number of languages and systems were developed that are aimed
at processing linked data streams. These systems/languages follow one of two
pertinent traditions: either they perform complex event processing or stream rea-
soning. However, both kinds of systems only support simulating system states as
a sequence of events.
This paper proposes to model a new kind of data – Facts. Facts are temporal states
stored in systems that combine events. Essentially, they trade space complexity
for time complexity and reduce the intermediate variable bindings compared to
other approaches. They also have the advantage of keeping queries relatively
simple. In our evaluation, we compile queries for typical sensor-based use-cases
in TEF-SPARQL, our SPARQL extension supporting Facts, C-SPARQL, and
EP-SPARQL to the well-established Event Processing Language (EPL) running
on the Esper complex event processing engine. Compared to simulate Facts, we
show that modeling Facts directly only creates less than 1% of intermediate bind-
ings and improves the throughput by up to 4 times.

1 Introduction

Data on the web is no longer purely static, but increasingly dynamic. Traffic infor-
mation is continuously updated, live streams of weather data are published, and news
releases are, oftentimes, even semantically tagged. To address this dynamic nature, a
number of languages and systems were developed to process streams of linked data
rather than static datasets. When processing Linked Data streams we have to handle
three kinds of data: first, classic static background knowledge, i.e., things we consider
to be true, which are not expected to change their value during the lifetime of the sys-
tem. Second, events in a stream, i.e. observations of things that happened with a clearly
defined time range during which they happened. While the first two are well estab-
lished, in this paper we discuss a third kind of data, i.e., facts. It models the current
states of a system [5] making stateful stream processing more efficient.

Current systems/languages follow one of two pertinent traditions: either they per-
form complex event processing or stream reasoning. Today’s Linked Data complex

∗ The research leading to these results has received funding from the European Union Seventh
Framework Programme FP7/2007-2011 under grant agreement no 296126.

event processing systems, such as EP-SPARQL [1], were designed to perform graph
pattern matching on streams of events. It focuses more on detecting the temporal or-
der of RDF triples, such as the SEQ operator. EP-SPARQL’s capabilities of handling
system states, however, are limited, and states have to be “simulated” by a sequence
of ordered events. For stream reasoning systems such as C-SPARQL, CQELS, and
SPARQLstream the situation is the opposite: they were designed to perform graph pat-
tern matching and aggregation on streams of facts. They perform graph pattern match-
ing on a context that is oftentimes defined as sliding or tumbling time-windows. How-
ever, there is a significant overhead of retaining facts associated with such window
operation. Furthermore, handling two and more facts at a time will make the queries
extremely complicated and create even more overhead.

Consider the following running example: suppose we have one stream S that con-
tains events of IPTV users switching from one channel to another such as:

〈Alice, join,ChannelA[1, 1]〉
〈Bob, join,ChannelB[3, 3]〉

By using a time-based tumbling window to cache the events arrived in the last 5 seconds
we want to determine the average time users stay in each channel and repeat this query
every 5 seconds. In both stream reasoning and complex event processing systems, a
tumbling window normally “forgets” the data in the previous window when a new
one starts. However, for this query, we cannot simply ignore the data of the previous
window. We need to retain information about users who have not left a channel by
either copying each binding to a new window until users leave the channel or sending
“refresh” or “keep-alive” events representing the current system state.

Inspired by this example this paper proposes Facts, which convert insights com-
puted from events and store them in a temporal table to save the cost of maintaining
events between windows. Modeling both facts and events in the same formalism allows
reducing the cost (in terms of time) of maintaining states in-memory. We show that it
takes O(n2) time to maintain events in systems without Facts, whilst employing Facts
reduces time complexity to the linear O(n) time.

To fairly investigate the trade-offs involved, we implemented and compared the
performance of well-established state-aware complex event processing system Esper
queries that are written in three different ways, each of them is inspired by the follow-
ing three systems, respectively: 1) EP-SPARQL, a stateless complex event processing
system; 2) C-SPARQL, a stateless stream reasoning system; 3)TEF-SPARQL [5], our
Fact/event integrated language. We establish empirically that storing Facts can signifi-
cantly reduce the number of intermediate variable bindings produced.

In the following, we first introduce the concepts of events and Facts in detail, which
is followed by a discussion of our three use-cases. Then we present the implementation
of the use-cases and their evaluation followed by a discussion of our findings/limita-
tions. We close with an overview over related work and some general conclusions.

2 Streams, Events, and Facts: Definitions and Implementation

Most current RDF stream processing (RSP) systems rely on events or using events
to simulate states/facts. The basic proposition of this paper is that these two concepts

Events and Facts need to be integrated to allow for sufficient expressiveness whilst
curbing an explosion of bindings for certain queries. To state this proposition, this
section first defines the relevant concepts such as ‘events’ and ‘Facts’ in the context of
RSP, illustrating how to implement Facts, and then presents our main hypotheses.

2.1 Concept definitions

Background knowledge are immutable statements that we consider as true. There are no
explicit valid time intervals associated with them. They are not consumed via streams
but are available to a RSP engine via SPARQL queries.

Streams are the input supplied to the RSP engines. Each data element in streams
consists of a partially ordered unbound collection of RDF triples 〈s, p, o〉. A data ele-
ment is associated with a time interval [ts, te], where ts and te represent the starting and
ending time for the data element. Therefore, a data elements is usually represented as:1

〈s, p, o〉∗[ts, te], where ∗ represents one or more RDF triples.

Events are statements about things that happened, conceptually. For example “Al-
ice joins ChannelA” is an event. Events are typically modeled by RDF triples in the
streams. Once happened, an event never becomes invalid, but it may be irrelevant after
a while. For example, a query is counting the number of events in the past 5 seconds.
Events have no states but they may change the states of a system.

Facts are statements that a system currently considers true. Similar to Background
knowledge, they represent the states of a system with the difference that Facts start
being valid at a certain point in time (or −∞), and they may be considered invalid
after a certain period of time. E.g., “Alice is inChannelA” is a Fact and we know that
this Fact has a well-defined start and end timestamp. Note that the end time may be
∞, indicating that the system believes this Fact to be true forever. Furthermore, even
invalid Facts may still be part of future results. For example, computing the average
number of viewers in the last hour may need to rely on Facts that ended in the last hour.
While such invalid Facts may still be contained in the stream processing operators’
caches as they remain immutable. In particular, the end timestamp of a Fact invalid can
no longer change ensuring monotonicity.

Events vs. Facts Events can trigger Facts and vice versa. Systems can derive new
states from events. For example, Alice joining channel B can trigger the Fact that Alice
watches channel B. Some events can also make Facts invalid, e.g., Alice leaving chan-
nel B invalidates the Fact that Alice watches channel B. Facts, in turn, can also trigger
events, for example, by maintaining each viewer’s viewership, the system can generate
the event for counting how many users for each channel every 5 minutes.

2.2 Implementing Facts

Simulating Facts by Events means maintaining the system’s states on the stream for
systems that cannot represent states explicitly. In the viewership use-case, e.g., one
approach is to insert the users that have been watching a certain channel in the last
matching context as a refresh event back into the stream. As a result, for each new
context we have to produce a new binding for every channel.

1 Note that we make no assumptions on how the triples are consumed by the system.

S1: <Alice, join, ChannelA> [1, 1]

S2: <Bob, join, ChannelB> [3, 3]"

Window 1

S3: <Cathy, join, ChannelB> [7, 7]

S4: <David, join, ChannelB> [8, 8]

Window 2

S1’: <Alice, join, ChannelA> [1, 1]

S2’: <Bob, join, ChannelB> [3, 3]" S3’: <Cathy, join, ChannelB> [7, 7]

S4’: <David, join, ChannelB> [8, 8]

S1’’: <Alice, join, ChannelA> [1, 1]

S2’’: <Bob, join, ChannelB> [3, 3]"

Window 3

S5: <Eric, join, ChannelA> [11, 11]

S6: <Fiona, join, ChannelB>[12, 12] Time

Fig. 1: Retaining Events between windows

S1: <Alice, join, ChannelA> [1, 1]

S2: <Bob, join, ChannelB> [3, 3]"

S3: <Cathy, join, ChannelB> [7, 7]

S4: <David, join , ChannelB> [8, 8]

Window 1

Window 2

Window 3
S5: <Eric, join, ChannelA> [11, 11]

S6: <Fiona, join, ChannelB>[12, 12]

S P O Tstart Tend

Alice isIn ChannelA 1 ∞

Bob isIn ChannelB 3 ∞

Cathy isIn ChannelB 7 ∞

David isIn ChannelB 8 ∞

Eric isIn ChannelA 11 ∞

Fiona isIn ChannelB 12 ∞

Fact Table

Tim
e

Fig. 2: Storing Events as Facts in a table

Generally, for each stream Fact we have to produce a fresh binding for every match-
ing context. To avoid stream Fact duplication, the fresh Fact binding must only occur
once. For tumbling time windows, we can easily fulfill this requirement by inserting
the fresh binding as an event into the direct successor context of the matching context.
Assuming we have a tumbling time window of 5seconds and the stream Fact would
be valid at time [1, 5]. Then we would insert the refresh event to the next window.
As shown in Figure 1, we have to create intermediate events, such as creating and
copying 〈:Alice :isIn :ChannelA〉[1, 1] (the gray triples) from Window 1 to Win-
dow 2. However, as long as Alice does not leave the channel, we have to retain such
refresh events by copying them between windows. In a traditional tumbling window
implementation, when a new window starts, it will trash all the events in the previ-
ous window. However, in our case, we have to examine every refresh event and copy
those that are still valid. Therefore, in Figure 1 Window 3, we have not only the refresh
events of S 3′ and S 4′, but also the S 1′′ and S 2′′ that are copied from Window 2. Sim-
ulating Fact by events will retain the events in the previous window. However, it has
the shortcoming of creating excessive intermediate bindings.

Storing Facts. Instead of simulating Facts, we can directly store Facts in a table. As
shown in Figure 2, we have the Fact 〈Alice, is,ChannelA[1,∞]〉, when event S 1 enters
the system. Note that we leave the ending time of the Fact as∞, which means the Fact
is currently valid. When a future event of 〈Alice, quits,ChannelA[20, 20]〉 comes, we
invalid the Fact to be S : 〈Alice,watches,ChannelA[1, 20]〉. In this way, the fact table
will record the temporal state of the system by only processing each event only once.

Complexity analysis: When simulating Facts with Events a worst-case situation im-
plies that we need recursively copy all the events from previous window to the current
one. When assuming the total input has n events and the average number of events in
each window is ω that results in the following number of events to be copied:

T (n) = T (n − ω) + T (ω) = T (n − 2ω) + 2T (ω) =

n/w∑
i=1

T (ω) =
1
2

(1 +
n
w

)
n
w

T (ω)

It will take quadratic running time O(n2

ω
), since we need to process each data in the pre-

vious window whenever a new one starts. The worst-case space complexity for storing
all events is O(n). Note that the running time O(n2

ω
) also depends on the size of a win-

dow. As will be shown in the experiments, longer window length reduces the overhead.
In an extreme case, we can define a separate window with an infinite length to hold
bindings. However, this case has already employed the idea of storing events as Facts.

If we store Facts in a temporal table, it is obvious that we need O(n) time to process
all the events, as we only process each event once. The space complexity remains the
same: O(n) to store all the facts.

Given these definitions we can now give our proposition of integrating events and
facts as the following Hypotheses:

H1 Simulating Facts adds a significant overhead to RSP systems compared to model-
ing Facts in the language and the execution model explicitly.

H2 The ability of modeling Facts in the language leads to simpler queries.

We have shown that storing Facts can reduce the time complexity, compared to simu-
late facts. In the following, we will use three use-cases to empirically demonstrate the
differences between the two approaches.

3 Use-Cases
This section will introduce three use-cases to support our claims. The use-cases are
taken from the EU FP7 project ViSTA-TV.2 We will show that they generalize in a
straightforward manner. Our use-cases consider two input streams. The first stream
contains events of IPTV users switching from one channel to another. The second
stream provides information about the shows currently broadcast on each channel.
IPTV providers are interested in the number of users currently watching a channel
(Sec. 3.1), the average time of active users that stay with a channel (Sec. 3.2) and a TV
show (Sec. 3.3).

3.1 Use-case 1: Viewership per IPTV Channel
The first use-case has a stream of input events that state when a user joins or quits a
channel, and we need compute the number of current users per channel. In general, this
use-case refers to computing an aggregate over a set of facts. We do not have to store all
single facts (i.e., when a user join and quit a channel) but restrict ourselves to store the
current value of the aggregate. Note that the aggregate is a stream fact itself. Since facts
are immutable we have to create a new stream fact for each matching context (e.g., time
window). Therefore, for this use-case, we expect stateful systems to perform equally
well as stateless systems.

TEF-SPARQL will first construct a fact for each user that stores the time of joining
a specific channel.

CONSTRUCT FACT UserFact {?user :watching ?channel .}

(UNION (SINCE ?user :join ?channel)

(UNTIL ?user :quit ?channel))

To compute the number of users per channel, we need to aggregate facts over channels:

2 http://vista-tv.eu

SELECT ?channel AS CHANNEL, ?user as USER

(AGGREGATE ?channel, COUNT ?user

WHERE (CURRENT ?user :watching ?channel)

GROUP BY ?channel EVERY "P10S"ˆˆxsd:Duration)

As long as every user can watch only one channel at a time, COUNT ?user is correct,
otherwise COUNT DISTINCT ?user has to be used.

C-SPARQL first computes the number of “join” and “quit” events per channel and
outputs these to another stream.

REGISTER STREAM UserJoinQuitCounts AS

CONSTRUCT { ?cnl uc:joinCount ?joinCount ; uc:quitCount ?quitCount . }

FROM STREAM <http://vista-tv.eu/userEvents/> [RANGE 10s TUMBLING]

WHERE { { SELECT (COUNT(?userJoin) as ?joinCount) ?cnl

WHERE { ?userJoin ue:join ?cnl } GROUP BY ?cnl }

{ SELECT (COUNT(?userQuit) as ?quitCount) ?cnl

WHERE { ?userQuit ue:quit ?cnl } GROUP BY ?cnl } }

The second query performs the counting of user per channel. Since the informa-
tion of join counts, quit counts and current users is available on the input stream, C-
SPARQL can compute a new number of total current users and the new number of cur-
rent users is inserted again into the source stream. Note that the new stream of counts
is the overhead of maintaining facts. At the end of each window, it has to copy all of
them to the new window. This overhead will be amplified in the next two use-cases.
REGISTER STREAM UserChannelCountsQuery AS

CONSTRUCT {?cnl uc:currentCount ?newCount . }

FROM STREAM <http://vista-tv.eu/userChannelCounts/> [RANGE 10s TUMBLING]

WHERE { { SELECT (?currentCount + ?joinCount - ?quitCount as ?newCount) ?cnl

WHERE { ?cnl uc:joinCount ?joinCount ; uc:quitCount ?quitCount ;

uc:currentCount ?currentCount . } } }

EP-SPARQL. The number of users currently watching a channel A is a stateful
information. Instead of copying the aggregate count event as C-SPARQL, EP-SPARQL
has to model this by sending the incremented count on a stream whenever we consume
an observation that a user joins channel A. In turn, we have to send the decremented
count whenever we consume a quit event for channel A.
CONSTRUCT { _:xxx a :CountEvent ; :channel ?channel ; :count ?ncount . }

WHERE { ?count_event a :CountEvent ; :channel ?channel ; :count ?count .

SEQ { ?user_event a :UserEvent ; :channel ?channel ; :action :join . }

<ensure consecutive sequence>

BIND(?ncount as ?count +1) }

Beside the additional count event overhead, there is no direct way in EP-SPARQL
to ensure that 2 events form a direct consecutive sequence.

<ensure consecutive sequence>:

EQUALSOPTIONAL { {?count_event a :CountEvent . }

SEQ { {?other_event a :CountEvent ; :channel ?channel . }

UNION {?other_event a :UserEvent ; :channel ?channel .} }

SEQ {?user_event a :UserEvent . }

} FILTER (!bound(?other_event))

We must repeat this query for quit events with BIND(?ncount as ?count - 1). Therefore,
for each incoming event, it has the overhead of creating a new count event.

3.2 Use-Case 2: Average Viewing Time per Channel

This use-case contains a stream of events that state whether a user joins or quits a
channel, and we want to compute the average time all active users (i.e., those currently
watching a channel) have been watching that channel in the last time period. The com-
putation shall be performed for each channel.

In general, this use-case refers to storing many instances of a kind of fact (i.e., one
fact per user session). For a stateful system we only have to update each fact when
it ends (i.e., the user quits the session); for other systems, we still have the overhead
of retaining events between windows. For this use-case we expect stateful systems to
outperform stateless systems.

TEF-SPARQL has queries that are very similar to use-case 1 with the addition that
we need access to the start and end time of the UserFact from use-case 1. ?user
:watching ?channel [?SC,?EC] will bind ?SC to the time point when this fact be-
came true and ?EC to the current time for the ones that are still true, which is enforced
by CURRENT.
SELECT ?channel AS Channel, ?Count AS CurrentUsers,

?TotalTime/?Count AS AverageDuration ,

(AGGREGATE ?channel, SUM DURATION(?SC,?EC) AS ?TotalTime, COUNT ?user AS ?Count

WHERE (CURRENT ?user :watching ?channel [?SC,?EC])

GROUP BY ?channel

EVERY "PT1M"ˆˆxsd:Duration)

C-SPARQL queries work in the same way as it did in use-case 1. However, here
we need to store the current state of a user-session on a separate stream along with its
join time. This allows us computing the current watching time per session. Compared
to a single aggregate count event in user-case 1, the overhead of storing states for
each user is much higher. Furthermore, as we will show in the experiment section, the
overhead depends on the size of window. When window size is small, we need maintain
events more frequently, which causes even higher cost. For the sake of brevity we omit
providing the actual EPL implementation of C-SPARQL queries in the paper. Please
note that all queries are available online.3

EP-SPARQL For EP-SPARQL, we see two theoretical approaches to handle this
use-case, however both fail in practice given the amount of data that needs to be han-
dled. The first approach will use a window large enough to cache all the “join” events
and then count the users and sum their duration for every join event of a user to a chan-
nel that have not got a “quit” event afterwards. However users may stay in channels for
a very long time (i.e., we had cases where people stayed online in the same channel
for several days). With millions of events per day and a window of several days long,
the overhead is forbiddingly high. The second approach would be similar to the C-
SPARQL solution above, which involves an extremely high overhead. For this reason,
we omitted presenting the queries in EP-SPARQL for use-case 2.

3.3 Use-Case 3: Joining User Facts and Program Facts

In use-case 3, we are given a stream of events that describes the start and end of a
session for any user watching a channel and a stream of events determines the start

3 The queries are available at: https://goo.gl/igcYi9

and end of each program per channel. We want to compute the number of users per
program and how long they watched this program on average. In general, this use-case
corresponds to matching two types of facts. Both may be valid at the same time and
influence each other during each other’s lifetime.

TEF-SPARQL. For this use-case, we use the same UserFact from use-case 1. Addi-
tionally, we create a similar fact, called ProgramFact, that states which channel shows
which show during which time.

CONSTRUCT FACT ProgramFact {?channel :showing ?program .}

(UNION (SINCE ?channel :start ?program)

(UNTIL ?channel :finish ?program))

When both the UserFact and the ProgramFact are true at the same time, we know
the user is watching the show and create a Fact ViewShipFact to maintain this state.

CONSTRUCT FACT ViewShipFact {?user :attends ?program .}

{?user :watching ?channel ?channel :showing ?program}

Note that if the program on a channel C1 changes from program P1 to P2 while
a user is currently watching channel C1, we have to emit a quit event for program P1
and a join event for program P2. In turn, when a user quits channel C1 we have to
emit a quit event for program P1. Furthermore, we need to adjust the ViewShipFact to
maintain such state. A user may zap through the programs and attend a show several
times, to get his total time watching a show we need to aggregate all the ?user :attends
?show facts that are or were true in the window ? : broadcasts ?show:

SELECT ?show AS Show, ?DiffUser AS USER, ?TotalTime/?DiffUser AS AverageViewTime

(AGGREGATE ?show, SUM DURATION(?SA,?EA) AS ?TotalTime, COUNT DISTINCT ?user AS ?DiffUser

WHERE ?user :attends ?show [?SA,?EA]

GROUP BY ?show WHILE ?_ :showing ?show [?SS,?ES]

EVERY "PT1M"ˆˆxsd:Duration)

In the above query, ?user :attends ?show [?SA,?EA] (resp. ? : showing
?show [?SS,?ES]) will bind ?SA (resp. ?SS) to the time point when this fact became
true and ?SE (resp. ?ES) to the time when it became out-of-scope for past facts (still in
the window) and to the current time for the ones that are still true.

C-SPARQL and EP-SPARQL. This use-case requires maintaining the states of both
the user sessions as well as the program sessions. Since stream reasoning systems pro-
vide no way of handling such event that a user switches twice and no program changes
twice during the matching context (i.e., the window). We hence provide no queries for
C-SPARQL but note that pure stream reasoning systems involve extreme difficulties
with handling more than one stream fact in parallel. For EP-SPARQL, use-case 3 is
even more complex than use-cases 1 and 2. For the same reasons as for use-case 2, we
hence omit creating queries for EP-SPARQL. It would not give any further support or
counterarguments for our claim.

4 Experimental Results

We evaluate our use-cases on TEF-SPARQL, C-SPARQL and EP-SPARQL to illustrate
the differences among three stream processing models.

1

10

100

1000

In
te

rm
ed

ia
te

 E
ve

nt
s/

Fa
ct

s
(x

10
00

)

EP-SPARQL

C-SPARQL(10s)

C-SPARQL(100s)

C-SPARQL(200s)

C-SPARQL(400s)

TEF-SPARQL

(a) Num. of Intermediate Events/Facts

0

50000

100000

150000

200000

250000

10 sec 100 sec 200 sec 400 sec T
hr

ou
gh

pu
t (

E
ve

nt
s/

se
c)

Window Size

EP-SPARQL C-SPARQL TEF-SPARQL

(b) Throughput

Fig. 3: Results of EP-SPARQL, C-SPARQL and TEF-SPARQL in use-case 1

4.1 Experimental Setup
We choose the amount of intermediate variable bindings (for the refresh events sim-
ulating stream facts) as a major Key Performance Indicator (KPI), which principally
reveals the processing overheads. We also report throughput as another KPI.

We model each use-case in all languages as EPL queries for the execution engine–
Esper.4 We chose Esper for three reasons: first, it is an open-source software widely
adopted both by industry and academia. Second, it supports both event processing and
stream reasoning. Also, we can implement facts by using so-called named windows or
context. Third, the implementation of all three queries in the same execution engine
reduces the bias when comparing the performance for our three use-cases.

We executed all use-cases on a real-world dataset of IPTV from the ViSTA-TV
project. The data set we employed for use-case 1 and 2 contains 100,000 events of
anonymous IPTV viewership logs (Log), where there are 234 different channels and
22,872 users. For use-case 3, we include an additional stream of Electronic Program
Guide (EPG) events as described in Section 3.

For use-cases 1 and 2, we conducted experiments for various window sizes. For the
throughput measurements, we report average values over three repetitions. All exper-
iments were conducted on a MacBookPro with a 2.7 GHz Intel Core i7 and 16GB of
RAM running Mac OSX 10.9.1.

4.2 Results

Use-case 1: Overhead. In use-case 1, we implemented EP-SPARQL and C-SPARQL
by creating a new binding type, named “Count Event”.

As shown in Fig. 3a, EP-SPARQL produces exactly 100,000 intermediate Count
Events, whose amount equals to that of input Log Events. For each incoming event, EP-
SPARQL needs to produce an additional variable binding for maintaining the counter.
C-SPARQL’s amount of intermediate bindings depends on the window sizes. When the
window size decreases, the amount of intermediate binding also decreases roughly at
a linear rate. Smaller windows produce more count events, as they are created on a per
window base. The number of count events significant influences the throughout. The
stateful representation of stream facts in TEF-SPARQL requires no refresh events. In-
stead we maintain a UserFact table. Each “joins” Log Event create an entry in that table

4 The actual queries are available online: http://goo.gl/jSa6yY

1

10

100

1000

10000

In
te

rm
ed

ia
te

 E
ve

nt
s/

Fa
ct

s
(x

10
00

)

C-SPARQL(10s)

C-SPARQL(100s)

C-SPARQL(200s)

C-SPARQL(400s)

TEF-SPARQL

(a) Num. of Intermediate Events/Facts

0

50000

100000

150000

200000

250000

10 sec 100 sec 200 sec 400 sec T
hr

ou
gh

pu
t (

E
ve

nt
s/

se
c)

Window Size

C-SPARQL TEF-SPARQL

(b) Throughput

Fig. 4: Results of C-SPARQL and TEF-SPARQL in use-case 2

whereas a “quit” Log Event will delete it. From the query we can observe that TEF-
SPARQL creates an entry for each pair of user and channel, while C-SPARQL only
creates the Count Events for each window. For this specific use-case, when the window
size is large, C-SPARQL will have less overhead than TEF-SPARQL. Therefore, we
have to consider the trade-off between direct modelling or simulating Facts.

Use-case 1: Throughput. Fig. 3b reports the throughput for different models. EP-
SPARQL has the lowest throughput, which results from its replication of the input
stream. For each event in the stream, it performs at least as many joins as the num-
ber of events in the time-window. C-SPARQL’s per-window overhead improves the
performance, compared with EP-SPARQL.

TEF-SPARQL outperforms C-SPARQL by up to 4 times for small window sizes,
but the effect diminishes when the window size increases. A window is essentially
an in-memory store. Increasing the window size in C-SPARQL makes stored refresh
events more persistent per time-unit and reduce the overhead. On the other hand, it
clearly shows that the overhead of refresh events can have a negative impact on system
performance with small window size.

Use-case 2. In use-case 2, simulating facts has to maintain several orders of mag-
nitude more events than in use-case 1. We hence expect the results for use-case 1 to
be replicated with an even stronger impact of overhead on system performance. We
therefore omitted the performance of EP-SPARQL, which can only be worse. For C-
SPARQL the overhead (Fig. 4a) is about 10 times larger than for use-case 1 while we
have to maintain about 100 times more stream facts (one for each of the 220 channels
for use-case 1 and one for each of the 22,000 users in use-case 2). This is reflected by
the results for input throughput for use-case 2 (Fig. 4). C-SPARQL catches up with
TEF-SPARQL with increasing window size, yet at a slower pace.

Use-case 3. We report results for TEF-SPARQL only, since we cannot model this
use-case with C-SPARQL (Sec. 2). The input-throughput is roughly 150,000 events
per second and is comparable to our previous findings. We hence conclude that also
handling multiple concurrent facts is feasible.

5 Discussion
While we developed TEF-SPARQL [5] as a universal algebra for stateful RDF stream
processing, we never intended to create a custom tailored execution engine. This is in
contrast to other existing stream processing languages, which were designed or at least

influenced by their corresponding execution model. TEF-SPARQL aims at investigat-
ing the potential usefulness of Facts.

Our study revealed two issues that current RSP languages bear: first, our proof
and experiments support our hypothesis that the overhead created by simulating stream
Facts can have a severe impact on input throughput. Although it does not scale with the
number of stream Facts, there exists a trade-off for storing state on the stream stateful
systems storing Facts in an in-memory store. The smaller the matching context (i.e.,
the window size), the more favorable are languages allowing for stateful processing.

Considering that stateless systems perform in-memory event processing, they bear
the overhead of repeatedly producing the state information at each matching cycle.
Even if they currently cannot handle more than a single Fact (see below), we believe
that the necessary changes to both the language and the implementation are rather
small. Regarding our claim of query simplicity, we found that the Fact simulation re-
quires to express state in multiple queries, whereas a stateful system can present Facts
in a single query. Second, as a side-effect we found that more than one stateful entities
(i.e., a Fact) cannot be handled in parallel by current RSP systems. Pure stream rea-
soning systems cannot react to state changes within the matching context (e.g., time
window) and the stateless complex event processing system EP-SPARQL would have
to replicate the input streams for storing the stream Facts.

We deliberately chose to limit our study to intermediate events and throughput, in
order to investigate the effects of overhead. For future work we will investigate how the
use-cases behave for other key-performance indicators. We also limit our study to EP-
SPARQL and C-SPARQL for complex event processing and stream reasoning. When
focusing on handling Facts, C-SPARQL is similar to CQELS and SPARQL stream. As
of yet, none provides the ability of Facts as a language inherent feature but each of
them has to maintain Facts on the stream. The implementation in Esper would hence
be unchanged. Even the ability to store data via SPARQL Update would not sufficiently
implement the concept of stream Facts. Facts must be available to the execution engine
in the same way as events to avoid the overhead of external data access. Otherwise,
we lose the ability of holding invalid Facts in the execution engine. We want to point
out that such a change would not require dire changes to the existing systems. For
C-SPARQL, for example, we could add a REGISTER FACT statement in order to be
able to distinguish between background knowledge and events (which C-SPARQL can
already do) as well as Facts.

6 Related Work
This section will give an overview of RSP systems. RSP is an indispensable part of
Linked Data. For example, a large amount of semantic annotated data is generated
from the widely deployed sensor networks. To model such data, the RDF temporal no-
tation [4] has been proposed to extend the RDF data representation. Various similar
data representation has been proposed along with different Semantic stream processing
systems. Research data set of Linked Stream Data has also been proposed by [9]. The
authors introduced the SRBench as a general-purpose benchmark designed for stream-
ing RDF/SPARQL (strRS) engines. It also copes with a broad range of use-cases typi-
cally encountered in real-world scenarios. Our work complements the current use-cases
by introducing the Fact data type.

To cope with the need of processing linked stream data, various semantic stream
processing engines have been proposed. As discussed, EP-SPARQL, as a CEP sys-
tem, extends the ETALIS system with a flow-ready extension of SPARQL [1] [8].
C-SPARQL [2] performs query matching on subsets of the information flow, which
are defined by windows. CQELS [6] “implements the required query operators na-
tively to avoid the overhead and limitations of closed system regimes”. It optimizes
the execution by dynamically re-ordering operators. SPARQLStream [3] is a streaming
extension to SPARQL that allows users to query relational data streams over a set of
stream-to-ontology mappings. The language supports powerful windowing constructs
and SRBench [9] uses it as the default engine for evaluation. Besides CEP systems
and stream reasoning systems, INSTANS [7] is an incremental SPARQL query engine
based on the Rete algorithm. In INSTANS, instead of using windows, it has timed
events, which is scheduled to wake-up periodically.

None of the above systems consider the real-word use-cases of dynamic state pro-
cessing. Our model uses facts to model states, which simplifies the query complexity
and saves a large amount of variable bindings to improve system’s efficiency.
7 Conclusion
Our paper revealed that Facts are a useful feature of RSP, even for non-complex use-
cases. Not only it can reduce the running time complexity, but also simplifies modeling
queries. Even the simple use-case with a single Fact, simulating Facts with events can
cause a significant overhead. Situations that call for just two Facts that may influence
each other cannot be handled easily by pure stream reasoning systems and/or severely
hamper the processing capabilities of complex event processing systems. In future, we
will extend existing systems with the capability of handling Facts and systematically
investigate the performance of using Fact with use-cases of different complexity
References

1. D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic. EP-SPARQL: a unified language for
event processing and stream reasoning. In WWW, pages 635–644, 2011.

2. D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus. C-SPARQL: A Contin-
uous Query Language for RDF Data Streams. International Journal of Semantic Computing,
pages 3–25, 2010.

3. J.-P. Calbimonte, O. Corcho, and A. J. G. Gray. Enabling ontology-based access to streaming
data sources. In ISWC, pages 96–111, 2010.

4. C. Gutierrez, C. A. Hurtado, and A. Vaisman. Introducing time into rdf. IEEE Trans. on
Knowl. and Data Eng., 19(2):207–218, 2007.

5. J.-U. Kietz, T. Scharrenbach, L. Fischer, A. Bernstein, and K. Nguyen. TEF-SPARQL: The
DDIS query-language for time annotated event and fact Triple-Streams. Technical report,
University of Zurich, Department of Informatics, 2013.

6. D. Le-Phuoc, M. Dao-tran, J. X. Parreira, and M. Hauswirth. A Native and Adaptive Ap-
proach for Unified Processing of Linked Streams and Linked Data. In ISWC, 2011.

7. M. Rinne, E. Nuutila, and S. Törmä. Instans: High-performance event processing with stan-
dard rdf and sparql. In ISWC, 2012.

8. R. Stühmer, Y. Verginadis, I. Alshabani, T. Morsellino, and A. Aversa. PLAY: Semantics-
based Event Marketplace. In PRO-VE, Dresden, Germany, 2013.

9. Y. Zhang, P. M. Duc, O. Corcho, and J.-P. Calbimonte. SRBench : A Streaming RDF /

SPARQL Benchmark. In ISWC, pages 641–657, 2012.

