
ubiPCMM 2005 17

 
Abstract— It is a very important to develop context-aware 

systems that can handle, at the same time, multiple heterogeneous 
applications that require different contexts with different levels of 
abstraction. This paper proposes a framework for such systems. 
To handle the heterogeneity of the context required by the 
applications, we introduce a user activity context detection 
method based on the combination of a multi spatio-temporal 
description of measured sensor data, a description of detected 
context with multiple levels of abstraction, and an order-sensitive 
description of the context model required by an application. We 
also introduce an algorithm that implements the context detection 
method by reflecting the context detection capabilities of any 
given environment. We build a prototype system by embedding 
sensors into an experimental house; evaluations show it promise. 
 

Index Terms— context recognition, decision tree, 
spatio-temporal representation, ubiquitous  
 

I. INTRODUCTION 
ontext-aware computing systems are being studied, and 
many prototypes have been implemented over the years [1]. 

The popularity of context-aware computing research indicates 
that systems that can identify the user's context and that of the 
surrounding environment have the profound potential to 
provide services that are much more user-specific. Context 
awareness is especially relevant to mobile and ubiquitous 
applications because some of those applications are suitable 
only at a particular time and/or location for users in a specific 
situation. The ability to detect context in different environments 
is essential for a system that provides context-aware mobile 
ubiquitous applications over a wide area.  Time, location, 
identity and activity have been proposed as the primary 
elements of context [2]. Because it is relatively easy to detect 
time and location, a lot of location-aware systems such as 
guides for city tours [3], [4] and guides for museums [5] have 
been designed. Activity is much more difficult to identify, but 
some aspects of activity can be detected by placing sensors in 
the environment. Advanced context-aware applications using 
activity context information have been realized for a specific 
smart environment [6]. Prior researches tend to focus on 
specific applications in specific environments. The goal is, 
however, to support different context-aware applications 
simultaneously in the same environment and across different 
environments. We believe that context-aware systems must 
become capable of handling multiple heterogeneous 
applications and environments if such systems are to be brought 
to market. We will use the following scenario to further 

illustrate the motivation of our work.  

A. Motivation Scenario 
   User A is at home in the morning. He launches a home 

monitoring application, which records his physical activity 
context at home throughout the day and also alerts him if 
pre-registered events are detected within the house. While 
preparing breakfast for himself and his dog, he starts a cooking 
assist application. He carries an RFID tag. Motion detection 
sensors, touch detection sensors and other sensors are attached 
to the dishes, pans and other kitchenware. Cameras are sited 
around the kitchen. Once he selects a recipe for breakfast, the 
cooking assist application shows him cooking instructions 
step-by-step according to the selected recipe on a near-by 
screen. He can interact with the application by touching or 
moving the appropriate kitchenware. While general soup 
making instructions are displayed on the screen, he can request 
more detailed instructions by shaking a soup pan. He can skip 
to the next instruction by tapping the pan. If his body is too 
close to a pan of boiling water, the home monitoring application 
flashes an alert light in the kitchen. When he goes to the family 
room to feed his dog, the cooking assist application is 
automatically suspended. If the movement of some dish is 
detected while he is in the family room, the home monitoring 
application sends an alert message and visual information 
captured by the cameras in the kitchen to the screen closest to 
him in the family room. When he goes back to the kitchen, the 
cooking assist application is resumed. His dog wears an RFID 
tag. RFID tag readers are mounted on walls, and motion 
detection sensors are mounted on doors and some furniture. 
The home monitoring application can track the location of the 
dog and detect if the dog touches doors or furniture. The 
application passes messages to the screen nearest to him when 
his dog moves from one room to another. When the application 
notifies him that his dog is trying to get into the study room, he 
stops cooking, rushes to the study, stops the dog, and carries it 
back to the family room. In addition, a daily chores reminder 
application is always running. It reminds him of tasks to be 
done. Just after he wakes up, the application tells him to take his 
medicine. When he is about to leave home, the application 
indicates which windows are still open and confirms that he 
wants them to remain open. It also suggests that he take an 
umbrella since the weather forecast is for rain. While cooking, 
he found that the rice would run out within a week. He enters 
this into the daily chores application. He has registered with 
several context detection services at shopping malls that he 
often visits. This means that his daily chores application knows 
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where to buy rice; it will keep reminding him every time he is 
physically close to a shop with rice until he buys it. When he is 
out of his home, the home monitoring application automatically 
changes its behavior and notifies him, via his cellular phone, 
only when the dog leaves the house or unauthorized people try 
to enter it.  
   We make three observations from this scenario. 
 
1) Different contexts will have significantly different spatial 

and temporal resolutions. The time period of the touching 
kitchenware context is a couple of seconds, and that 
context happens within the kitchen. The context of leaving 
home may occupy a couple of minutes. The context of 
looking for rice may extend over a week and the context 
should be detected by using sensors spread city-wide. 

2) The same sensor data can be used to detect the different 
contexts required by different applications. For example, 
the data from the motion detection sensor attached to a dish 
is basically used by the cooking assist application. The 
same data, however, can be used by the home monitoring 
application to detect suspicious events. Note that even the 
same application may require different levels of context to 
be abstracted from the same sensor data. 

3) Some of the context-aware applications that are triggered 
by the detection of the same pre-registered multiple 
contexts require an ordered sequence of context detection, 
other do not. The cooking assist application, for example, 
requires the appropriate contexts to be detected in a 
pre-defined order. The daily chores application does not 
care which open window was closed first. 

 

B. Our Approach 
To address the issues identified in the scenario above, we 

developed a user activity context detection method that can, at 
the same time, cope with multiple context-aware applications 
that may require different kinds of context with various levels 
of abstraction. Our method decouples the description of 
measured sensor data from the description of detected context, 
and the description of required context model associated with 
an application. Note that the terms “detected context 
description” and “required context model” refer to different 
concepts. User activity context descriptions have multiple 
abstraction levels for describing detected user context. The 
model of required context is instantiated by available 
abstraction levels of context depending on the detection 
capability of each environment and the level of context required 
by the applications. Our sensor data description is flexible in 
terms of temporal and spatial resolution. The duration of sensor 
activation is the most important feature to detect user context, 
and the sensor data description can adapt the time scale 
according to the duration of sensor activation of interest. We 
describe the required contexts to control an application based 
on regular expressions. This enables the description of ordered 
and semi-ordered contexts as condition elements for satisfying 
application requirements.  

We also introduce an algorithm that can implement the 

context detection method in a given environment. The 
algorithm learns the context detection capabilities of the 
sensors at each site. This enables the heterogeneity in 
environment with respect to sensing capability to be well 
handled. We have also developed a framework that allows a 
context-aware application to adapt to the different context 
detection capabilities. We assume that an ID is assigned to each 
class of context and that the IDs are shared among the 
applications and context detection environments. Thus the 
required context designated by an application is mapped to 
context detected by a local context detection system by using 
context ID.  

We have built an experimental environment house into 
which we placed sensors such as floor-mounted weight sensors 
and RFID tags with touch sensor. Tests were conducted in this 
house and show that our methods and framework are 
promising. 

The remainder of the paper is organized as follows: Section 2 
presents the design of overall system, Section 3 describes a user 
activity context detection method, Section 4 presents an 
algorithm for implementing the context detection method, 
Section 5 describes the experimental house, the sensors, and the 
system. Section 6 describes the experiment and analysis of the 
results, and Section 7 draws our conclusions. 

 

II. DESIGN OF THE SYSTEM 
The design of the proposed system is based on decoupling 

the description of measured sensor data from the description of 
detected context, and the description of required context model 
associated with an application. The benefit of this approach is 
that users can employ context-aware applications in various 
ubiquitous environments (UE). 

The framework of the system is shown in Fig. 1. The global 
network stores and manages application templates. When a user 
wants to use a specific application, the user downloads the 
corresponding application template to the user’s terminal (Fig. 
1, (1)). Each application template consists of a pointer to the 
application and a description of the required context, which 
explains the necessary conditions in terms of the contexts that 
will trigger, suspend, and resume the application. We call the 
description of the required context model because context itself 
is referred to as the abstract context concept.  

In each UE, sensor data is mapped to context by using a 
decision tree. At the each abstraction level of the decision tree, 
each leaf is assigned to a user state, and each node has a 
description of decision making conditions with respect to the 
value of sensor data to further split the user state of a node into 
more specific user states. Thus, the decision tree describes 
detectable user states with multiple abstraction levels by using 
sensors in the environment. Some of the user states in the 
decision tree are associated with context. In practice, some 
leaves in the decision tree are treated as context leaves. The 
decision tree is stored in a context server. The context server 
receives sensor data and maps it to the detected context 
descriptions. If a user wants to use a specific application and 
has already downloaded its application template to his mobile 
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terminal, the user compares the required context model and the 
decision tree stored in the context server at the site that he will 
visit. By using the shared context class ID, the user can 
determine which abstract level of context needs to be detected 
at the site for each context described in the required context 
model. The user can carry out this process over the net or at the 
site. When the user is in some UE, the user receives the detected 
context description from the context server (Fig. 1, (2)). 
Thereafter, the user allocates the detected context to the 
elements of the required context model in the application 
template (Fig. 1, (3)). For example, when the application needs 
to know only whether the user is indoors or not, the user selects 
a user state with high abstraction level in the decision tree. On 
the other hand, when the application requires some specific 
behavior in some specific place (e.g. cooking in the kitchen) as 
context, the user must select a state from a lower abstraction 
level. As a result of this procedure, the appropriate user states at 
appropriate abstraction levels are instantiated in all required 
context model elements. The application is then controlled 
according to the description in the application templates in the 
mobile terminal. 
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Fig. 1.  Framework of the proposed system 
  
 

III. USER ACTIVITY CONTEXT DETECTION METHOD 

A. Context Model 
As we mentioned above, each context model is used to 

trigger a specific application and each model consists of context 
elements that describe specific user states. In the real world, 
users perform a wide variety of tasks. In this study, a task refers 
to work performed by a user; work here consists of performing 
specific state transitions, such as checking that doors are locked 
in multiple locations, or preparing a meal by following a series 
of procedures. When the user performs the tasks, the time 
ranges of user states included in the task change accordingly. 
Therefore, the context model deals with only transitions in user 

state. Context models take the form of regular expressions. 
Each state consists of context models partitioned by commas. 
For example, the ordered sequential state transition sequence 
[S1→S2 →S3] is represented as “^S3, S2, S1”. However, when a 
user performs a specific task, it is not always necessary for the 
states associated with the task to occur consecutively. For 
example, user states S1, S2 are elements of one context model. 
The relationship between S1, S2 is ordered, but they don’t 
always occur consecutively. In this case, the context model is 
represented as “^S2, ([^,]*,) S1”. Moreover, sometimes a user 
performs different tasks in parallel.  Therefore, the context 
models in the user activity model are managed separately, and 
checks are performed for multiple applications to determine 
which ones should be executed. 
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Fig. 2.  Changes in RFID tags output associated with movement of the user. 
RFID tags are attached to objects and the user. 

 

B. Description of User States 
Each UE offers a different combination of sensors (type and 

number). The sensor data descriptions should support the use of 
many types of sensors. In this paper, sensor information is 
transformed into spatio-temporal attributes. Each attribute 
consists of temporally continuous sensor data, and the attributes 
are arranged to support each spatial resolution needed. 
Complex sensors, such as cameras have already been used for 
recognizing user state. Computer visions tracking [7], [8] and 
behavior recognition [9], [10], [11] often work in the laboratory 
but sometimes fail in real environments due to the lighting 
variations and occlusions that are frequent in natural 
environments. Given their relative immaturity, we restrict 
ourselves to simple sensors such as RFID tags and weight 
sensors to achieve robust user state detection. 

As an example, we explain the description of user states 
when RFID tags and floor sensors are employed as sensors. 
RFID tags have recently attracted interest as a means of 
detecting objects in the vicinity of the user. In this case, the 
attributes describing the user’s state are derived from 
information obtained from the RFID tags carried by the user 
and attached to objects. As shown in Fig. 2, the RFID tag 
information detected by each RFID tag reader is collected. This 
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yields attributes that relate the state of each user to the objects 
in the user’s vicinity. In addition to information on the presence 
or absence of objects in each user’s vicinity, the temporal 
continuity of the presence of these objects is also used as 
attributes of the user’s state. In other words, the user’s state is 
described by attributes that include information on how long 
each object has been present in the user’s vicinity due to the 
user’s movements and whether or not the objects in question 
are being carried around by the user. The overall set of 
attributes describing the state of user u in relation to these 
objects at time t is as follows: 
 

])(,...),(,...),(),([),( 21 ttagttagttagttagtuTag ni=                   (1) 
 

Here, tagi(t) is a positive integer value indicating how long 
object i has been remained  (continuously) in the vicinity of 
user u at time t. If object i does not exist in the user’s vicinity, 
the value of tagi(t) is zero. Here, the user’s vicinity corresponds 
to the detection range of the tag reader that detects the tag 
carried by the user, so all objects detected by the same tag 
reader are regarded as being in the user’s vicinity. When plural 
users occupy the same detection range of a tag reader, it is 
difficult to distinguish which objects are in each user’s vicinity. 
Therefore, the detection range of the tag reader is restricted 
from several tens centimeters to one meter by using an 
attenuator. In this way, the user’s state is identified, in part, 
from the attributes expressing which objects are in the user’s 
vicinity, and if so, for how long. For example, Fig. 3 shows the 
attributes of objects around the user at times t1 and t2 in Fig. 2. 
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Fig. 3.  Representation of attributes relating to objects. 
 

RFID tags provide information on the spatial relationships 
between the user and objects. In some UE, sensors that detect 
information on the absolute position of the user will be 
employed. In this case, the multiple absolute user positions, 
needed to satisfy the multiple spatial resolutions, are used as 
attributes representing user state. As Fig. 4 shows, one floor can 
be partitioned into several cells. Several cells are grouped into 
larger cells. Additional attributes are used to express whether or 
not the user is present in each cell, and if so, for how long. The 
attributes related to the position of user u at time t are as 
follows. 
 

cell1
L

cell2
M

cell7
S

cell1
M

cell8
S

cell1
L

d1
L0 d2

M

cell1M cell2
M

0 0 0 0

cell2
S cell3S cell4

Scell1
S

0 0 d2
S 0

cell6
S cell7

S cell8
Scell5S

Loc (u, t ) : User u has been in cells with multi space resolutions Loc (u, t ) : User u has been in cells with multi space resolutions 

Space resolution: S Space resolution: M Space resolution: L

Space resolution: S

Space resolution: M

Space resolution: L cell1
L

cell2
M

cell7
S

cell1
M

cell8
S

cell1
L

d1
L0 d2

M

cell1M cell2
M

0 0 0 0

cell2
S cell3S cell4

Scell1
S

0 0 d2
S 0

cell6
S cell7

S cell8
Scell5S

Loc (u, t ) : User u has been in cells with multi space resolutions Loc (u, t ) : User u has been in cells with multi space resolutions 

Space resolution: S Space resolution: M Space resolution: L

Space resolution: S

Space resolution: M

Space resolution: L

 
 

Fig. 4.  Attribute representation of user position with multi spatial resolution. 
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Here, cellj

R(t) is also a positive integer value indicating 
whether or not the user has been continuously detected in cell j 
with space resolution R at time t. 

When the above two kinds of sensors are employed in a UE, 
the entire set of attributes A(u,t) representing the state of user u 
at time t is as follows: 

 
]),(),,([),( tuLoctuTagtuA =                                              (3) 

 

C. User State Decision 
Several methods to discriminate user state have been 

proposed. Combinations of neural networks and lookup tables 
were used to predict the temporal mobility patterns of a user in 
the Neural Network House [12], [13]. However, since neural 
nets do not provide information about the underlying model of 
the prediction process, it is difficult to extend them to 
incorporate prior knowledge. Specific types of Dynamic 
Bayesian networks [14] have been used to track the daily 
activities of users from sensor information such as active 
badges [15] and cricket-devices [16] embedded in a house [17]. 
The algorithm can differentiate the activities according to 
duration and user location. Dynamic Bayesian networks have 
proven to be one of the most powerful and efficient ways of 
representing temporal events and fusing information from 
multiple sensors [18]. However, the complexity of networks 
and learning algorithms for Hidden Markov models make it 
difficult to apply them to cases involving many sensors. 

Each application requires a different level of user state 
abstraction as context. Some applications simply need user 
position with coarse resolution; others may need more detailed 
user states such as user behavior. Therefore, user states should 
be detected with various levels of abstraction. With the goal of 
detecting user state hierarchically, we use a decision tree that 
discriminates user states with multiple levels of abstraction. 
The benefit of using a decision tree is that it generates 
understandable rules. Therefore, if high-level knowledge about 
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discriminating user states exists, the decision tree can be 
modified manually. In each UE, the detected context 
description from sensor data is described as a decision tree that 
detects user states hierarchically with different abstraction 
levels. If more than one person is in a UE, the decision tree is 
managed to detect each user context separately. 

 

IV. CONTEXT DETECTION METHOD 
It is difficult to create the rules that form a decision tree 

manually because each UE will have different sensors and the 
user would have to consider the meaning and significance of 
sensor information and the relationships between sensors. 
Moreover, given the large number of sensors in one UE, some 
sensors will be prone to error. This means that the user would 
have also considered the robustness of sensor data. Our solution 
is to employ the learning-based approach to construct the 
decision tree semi-automatically.  

All sensor data is recorded while a user performs actions 
such as using the toilet, bathing, grooming and so on. These 
actions typically consist of specific user states. For example, 
the action of bathing consists of states such as standing in front 
of a bathroom, standing inside the bathroom, using the bath, 
and so on. However, identifying these states depends on the 
sensors in the UE. Our context detection method extracts 
hierarchical states of each action as leaves of the decision tree.  

Sensor data recorded in each time interval is transformed to 
spatio-temporal attributes according to (1)-(3) and the data for 
each time interval is used as one training data set for 
constructing a decision tree. At first, the user allocates action 
labels to the specific time regions of the training data by hand. 
These time regions correspond to specific actions such as 
bathing. Next, our system finds user states identified by the 
actions by using the C4.5 algorithm [19]. The C4.5 algorithm 
constructs a decision tree by calculating the information gain 
ratio of each attribute from a set of training data, and 
successively employing the attributes with the highest values 
(e.g., tagi(t)) as the nodes of the decision tree. Moreover, the 
C4.5 algorithm can treat various kinds of sensor information as 
attributes. This makes it easier to integrate different kinds of 
sensors and to use them to discriminate user states. In the real 
world, sensor error can occur at any time. If the training data 
contains instances of sensor error, the C4.5 algorithm selects 
the attributes of sensors that are able to discriminate user state 
robustly.  

Let D denote a set of cases of training data. Each case is 
labeled with its state class cj )1( Nj ≤≤ .  Some attribute A with 
mutually exclusive outcomes A1, A2,..., Ak is used to partition D 
into subsets D1, D2,..., Dk, where Di contains those cases that 
have outcome Ai.  p(D, cj) is the proportion of cases in D that 
belong to the jth class. The residual uncertainty about the class 
to which a case in D belongs can be expressed as 
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and the corresponding information gained by an attribute A 
with k outcomes as 
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The information gained by an attribute is strongly impacted 

by the number of outcomes and is maximal when there is one 
case in each subset Di.. On the other hand, the potential 
information obtained by partitioning a set of cases is based on 
knowing the subset Di into which a case falls; this split 
information 
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tends to increase with the number of outcomes of an attribute. 
The gain ratio is expressed as  
 

),(),(),( ADSplitADGainADGainRatio =                            (7) 
 

The gain ratio criterion assesses the desirability of an 
attribute as the ratio of its information gain to its split 
information. The gain ratio of every possible attribute is 
determined and, among those with at least average gain, the 
split with maximum gain ratio is selected. 

In a decision tree constructed in this way, the attributes that 
are valid for discriminating the user states identified by the 
actions are learned as nodes of a decision tree. Leaves of the 
decision tree are the user states to be discriminated. Applying 
the C4.5 algorithm to each state recursively, our system extracts 
the hierarchical states of each action. In the following, we detail 
the procedure by using an example. As shown in Fig. 5, the user 
allocates label 1A to the specific time regions that correspond to 
the specific action in the training data. Time regions other than 
those labeled 1A are assigned label 1E. This is the first level of 
the decision tree. By using this set of training data, the C4.5 
algorithm constructs a decision tree that decides valid attributes 
of sensor data as nodes and states of the action 1A as leaves. 

In Fig. 6, action 1A is divided into n leaves in the decision 
tree at the second level. These leaves are taken as user states at 
abstraction level 2 of action 1A, and assigned the label of 2Si 

)1( ni ≤≤ . In the training data, each time region of state 2Si is a 
region in which sensor attributes that discriminate 2Si hold (Fig. 
6). At the third level of the decision tree, new decision tree 
branches are created from each state 2Si. In this level, the time 
regions corresponding to 1A in the first level are used as new 
training data (Fig. 7). Sensor attributes that were used to 
discriminate 2Si are deleted from the new training data. That is, 
the sensor attributes used in the second level aren’t used in the 
third level. The time regions other than those labeled 2Si are 
re-labeled 2Ei.  The decision tree at the third level is constructed 
from this new training data set. For example, 2Si is divided into 
m leaves. Each new leaf is assigned the label 3Si

j )1( mj ≤≤ , 
and together they are considered as the user states derived from 
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2Si at abstraction level 3. These procedures are executed 
recursively to construct sub-trees. For example, the kth node at 
the fourth level of decision tree is labeled 4Sk

i,j. The result is one 
decision tree that can discriminate user states at multiple levels. 
Fig. 8 shows an example of one such decision tree. 

In the context detection phase, the resulting decision tree and 
the current information from sensors are used to discriminate 
the current user state in each abstraction level. 
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Fig. 5.  User state allocation in specific time intervals; manually performed at 
the first level. 
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Fig. 6.  User states are extracted at second level of decision tree. 
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Fig. 7.  New training data for extracting use states at level 3 for 2Si. 
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Fig. 8.  Example of a decision tree that discriminates user states at multiple 
levels. 
 

V. USER ACTIVITY SENSING AND DETECTION ENVIRONMENT 
IN UBIQUITOUS EXPERIMENTAL HOUSE 

We have developed an experimental house in which multiple 
types of information about human activities can be acquired 
[20]. It contains various embedded sensors and output devices. 
Fig. 9 shows its floor plan. To support a wide variety of 
experiments, this house has workspaces set into the floor, attic, 
and inside walls (striped areas in Fig. 9). These workspaces 
make it easy to set up and wire many sensors and devices. Fig.  
10 shows the configuration of the prototype system constructed 
inside the experimental house. The next subsection details 
system elements.  
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Fig. 9.  Overview of Ubiquitous Experimental House. 
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Fig. 10.  Prototype system configuration. 
 

A. RFID Tags 
As shown in Fig. 11, the house has an active type RFID tag 

system consisting of RFID tag readers and RFID tags attached 
to the users and to various objects. We extended some of the 
RFID tags to suit the object. For instance, we attached a 
magnetic reed switch to an RFID tag to yield a position sensor. 
These RFID tags can detect human behavior when using 
objects such as turning a faucet, opening a door, using a towel 
and so on. Other RFID tags were modified with touch sensors. 
When the user touches electrodes on the object, the touch 
sensor detects the action and the RFID tag is activated. We can 
detect human behavior that involves touching objects such as 
holding a cup, holding a receiver, sitting on the toilet, and 
brushing teeth and so on. Moreover, other RFID tags were 
modified with small weight-sensitive sensors to detect user 
behavior such as sitting on a chair, lying on a sofa and so on. 
This tag system has low directionality in the tag detection 
ranges, and by attaching attenuators we were able to set the tag 
detection radius from a few tens of centimeters to a few meters. 
Each reader communicates with a PC by TCP/IP via a protocol 
converter. The RFID tags transmit at intervals of 0.4 seconds. 

B. Floor Sensor 
To recognize human activity, information of the user’s 

position is useful. Therefore, the entire floor is covered with a 
large number of pressure sensors. Each pressure sensor covers 
18 x 18 cm (a unit cell), and the binary value output by each cell 
is read into a PC via a serial port at 0.4 second intervals. These 
detector cells were grouped into blocks (e.g. 10×10, 5×5, 3
×3), so user position is detected at multiple resolution levels. 

C. Context Server 
The context server operates in one of 2 phases. One is the 

phase of constructing a decision tree that discriminates user 
states with multiple levels of abstraction. Information from 
RFID tags and floor-mounted weight sensors are acquired and 
used as training data.  

In the other phase, it users this decision tree to perform state 
decisions based on the current information provided by the 
RFID tags and floor-mounted weight sensors. When plural 
users are in the house, each user is distinguished by the RFID  

Small weight sensor

(a) Sensors detecting human behavior of operating objects 
Door

(b) Sensors detecting human behavior of touching objects 

RFID tag

Touch sensor
Electrode

Object

Receiver Mug cup Toilet seat

RFID tag

(c) Sensors detecting human behavior of sitting and lying

RFID tag

Magnetic
reed switch

Faucet Towel

SofaChairChairSmall weight sensor

(a) Sensors detecting human behavior of operating objects 
Door

(b) Sensors detecting human behavior of touching objects 

RFID tag

Touch sensor
Electrode

Object

Receiver Mug cup Toilet seat

RFID tag

(c) Sensors detecting human behavior of sitting and lying

RFID tag

Magnetic
reed switch

Faucet Towel

SofaChairChair

 
 
Fig. 11.  Sensors detecting human behavior associated with objects. 
 
 

Bathroom
Toilet seat

Faucet

Door

RFID tag

User

Door

Door

INSIDE

BACK

ENRANCE

ENTRANCE HALL

BATHROOM

PASSAGE

Large size 
resolution name

FRONT

Shoes box
Bathroom

Toilet seat

Faucet

Door

RFID tag

User

Door

Door

INSIDE

BACK

ENRANCE

ENTRANCE HALL

BATHROOM

PASSAGE

Large size 
resolution name

FRONT

Shoes box

 
 
Fig. 12.  Experimental environment. 
 
tags carried by the users, and the decision tree is used for each 
user. The states of each user thus detected are sent to the user’s 
mobile terminal. On the mobile terminal, user states are 
received and applications are executed by matching the user 
states and context elements. 

 

VI. EXPERIMENTAL EVALUATION 
To confirm the automatic construction of a decision tree, we 

performed an experiment that focused on bathroom activities as 
the first step.  

A. Experimental Conditions 
Fig. 12 shows the experimental environment in the bathroom. 

A user performed a series of actions such as entering the 
bathroom, using the bathroom, washing hands, leaving the 
bathroom and walking around the house. We acquired these 
series of actions five times as training data. One RFID tag was 
continuously carried by the user. Other RFID tags were 
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attached to objects. Five RFID tags were extended with a 
magnetic reed switch, and attached to doors and faucet in the 
bathroom.  

The information acquired by the floor-mounted weight 
sensors was represented with multiple levels of spatial 
resolution. At the largest resolution level, the experimental area 
was divided into four spaces: ENTRANCE, ENTRANCE 
HALL, BATHROOM, and PASSAGE. The medium level of 
resolution corresponded to the areas consisting of 5×5 blocks. 
The smallest level of resolution corresponded to areas of 3×3 
blocks.  

B. Experimental Result 
Fig. 13 shows the decision tree that was constructed 

automatically, and Fig. 14 shows the decision results for each 
time interval at each level of the decision tree. 

At the first level of the decision tree, two leaves were 
extracted as user states. Investigating the attributes of decision 
tree, one considers that the user is near the bathroom. The other 
considers that the user is not near the bathroom. They are 
named TOILET and OTHER, respectively. The largest space 
resolution, which corresponds to the area of the bathroom, was 
selected as the attribute to discriminate the two states at this 
level. 

At the second level of the decision tree, four leaves were 
extracted as user states. Investigating the attributes of the 
decision tree, we see that the first considers that the user is in 
front of the bathroom, the second considers that the user is 
inside the bathroom, the third considers that the user is at back 
of the bathroom, and the fourth considers that the user is in 
some other state. They are named FRONT, INSIDE, BACK, 
and OTHER respectively.  At this level, three areas in the 
bathroom with medium level of resolution were selected as 
attributes. 

At the third level of the decision tree, no new leaves were 
extracted from the user states of FRONT and BACK. However, 
six leaves were extracted from the user state of INSIDE. The 
first leaf from INSIDE considers that the user is standing on 
both the cell of BACK and that of INSIDE simultaneously. This 
leaf is named INSIDE&BACK. The second leaf considers that 
the user is washing hands. This leaf is named WASH HANDS. 
The third leaf is detected from the attributes of the floor sensor 
at the area in front of the bathroom and the area inside the 
bathroom. This leaf is detected only when the user is just 
entering the bathroom (Fig. 14). Investigating the training data, 
the floor sensors corresponding to FRONT and INSIDE were 
not active simultaneously when the user left the bathroom. It is 
considered that the position relationship between the door, the 
faucet, and toilet seat influence human behavior. It can be said 
that this extracted leaf well matches real human behavior in the 
environment. Therefore, this leaf is named JUST ENTER. The 
fourth leaf from INSIDE considers that the user is just leaving 
the bathroom. When the user is entering the bathroom, the same 
attributes can be used. However in the case of entering the 
bathroom, the decision tree detects it as JUST ENTER. So, this 
leaf is named OPEN DOOR.  

From these results, reasonable user states at different 
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Fig. 13.  Decision tree constructed in the experiment. 
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Fig. 14.  User state decision for each time interval. 
 
 
abstraction levels are extracted by using the C4.5 algorithm. 
These user states, extracted as leaves of decision tree, are 
detectable by using sensors in the experimental environment. 
According to the decision tree and application requirements, 
the user instantiates the appropriate user states at the 
appropriate abstraction levels in all required context model 
elements. However, this preliminary experiment considers only 
simple activity. As the next step, we will confirm the validity of 
decision trees constructed from more complex activities. 
 

VII. CONCLUSION 
In this paper, we proposed a framework for context-aware 

systems that allows context-aware applications adapt to the 
difference in context detection capability present in each 
environment. A user activity context description, which has 
multiple abstraction levels in terms of user context, is used. It is 
instantiated according to the level of context detection 
capability in each environment and application requirements. 
We also presented a user activity context detection method that 
can detect user context by using a multi spatio-temporal 
description of measured sensor data, a description of detected 
context with multiple levels of abstraction, and an order 
sensitive description of required context model associated with 
an application. The description of detected context takes the 
form of a decision tree. It is constructed automatically by the 
C4.5 algorithm. 
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We introduced a ubiquitous experimental house in which 
various human activities can be acquired from the data of 
embedded sensors. We performed a preliminary experiment in 
this house in which a decision tree that detects context with 
multiple abstraction levels was automatically constructed from 
actual human activity data; the results were shown to be 
reasonable. 

Issues for further study include evaluating the performance 
of automatic decision tree construction with respect to more 
complex situations, and modeling the required context 
descriptions of more complex tasks including unordered state 
series. It would also be worthwhile to evaluate the feasibility of 
our prototype system by adapting it to support real applications. 
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