
ubiPCMM 2005 17

Abstract— It is a very important to develop context-aware

systems that can handle, at the same time, multiple heterogeneous
applications that require different contexts with different levels of
abstraction. This paper proposes a framework for such systems.
To handle the heterogeneity of the context required by the
applications, we introduce a user activity context detection
method based on the combination of a multi spatio-temporal
description of measured sensor data, a description of detected
context with multiple levels of abstraction, and an order-sensitive
description of the context model required by an application. We
also introduce an algorithm that implements the context detection
method by reflecting the context detection capabilities of any
given environment. We build a prototype system by embedding
sensors into an experimental house; evaluations show it promise.

Index Terms— context recognition, decision tree,
spatio-temporal representation, ubiquitous

I. INTRODUCTION
ontext-aware computing systems are being studied, and
many prototypes have been implemented over the years [1].

The popularity of context-aware computing research indicates
that systems that can identify the user's context and that of the
surrounding environment have the profound potential to
provide services that are much more user-specific. Context
awareness is especially relevant to mobile and ubiquitous
applications because some of those applications are suitable
only at a particular time and/or location for users in a specific
situation. The ability to detect context in different environments
is essential for a system that provides context-aware mobile
ubiquitous applications over a wide area. Time, location,
identity and activity have been proposed as the primary
elements of context [2]. Because it is relatively easy to detect
time and location, a lot of location-aware systems such as
guides for city tours [3], [4] and guides for museums [5] have
been designed. Activity is much more difficult to identify, but
some aspects of activity can be detected by placing sensors in
the environment. Advanced context-aware applications using
activity context information have been realized for a specific
smart environment [6]. Prior researches tend to focus on
specific applications in specific environments. The goal is,
however, to support different context-aware applications
simultaneously in the same environment and across different
environments. We believe that context-aware systems must
become capable of handling multiple heterogeneous
applications and environments if such systems are to be brought
to market. We will use the following scenario to further

illustrate the motivation of our work.

A. Motivation Scenario
 User A is at home in the morning. He launches a home

monitoring application, which records his physical activity
context at home throughout the day and also alerts him if
pre-registered events are detected within the house. While
preparing breakfast for himself and his dog, he starts a cooking
assist application. He carries an RFID tag. Motion detection
sensors, touch detection sensors and other sensors are attached
to the dishes, pans and other kitchenware. Cameras are sited
around the kitchen. Once he selects a recipe for breakfast, the
cooking assist application shows him cooking instructions
step-by-step according to the selected recipe on a near-by
screen. He can interact with the application by touching or
moving the appropriate kitchenware. While general soup
making instructions are displayed on the screen, he can request
more detailed instructions by shaking a soup pan. He can skip
to the next instruction by tapping the pan. If his body is too
close to a pan of boiling water, the home monitoring application
flashes an alert light in the kitchen. When he goes to the family
room to feed his dog, the cooking assist application is
automatically suspended. If the movement of some dish is
detected while he is in the family room, the home monitoring
application sends an alert message and visual information
captured by the cameras in the kitchen to the screen closest to
him in the family room. When he goes back to the kitchen, the
cooking assist application is resumed. His dog wears an RFID
tag. RFID tag readers are mounted on walls, and motion
detection sensors are mounted on doors and some furniture.
The home monitoring application can track the location of the
dog and detect if the dog touches doors or furniture. The
application passes messages to the screen nearest to him when
his dog moves from one room to another. When the application
notifies him that his dog is trying to get into the study room, he
stops cooking, rushes to the study, stops the dog, and carries it
back to the family room. In addition, a daily chores reminder
application is always running. It reminds him of tasks to be
done. Just after he wakes up, the application tells him to take his
medicine. When he is about to leave home, the application
indicates which windows are still open and confirms that he
wants them to remain open. It also suggests that he take an
umbrella since the weather forecast is for rain. While cooking,
he found that the rice would run out within a week. He enters
this into the daily chores application. He has registered with
several context detection services at shopping malls that he
often visits. This means that his daily chores application knows

Context-Aware Computing System for
Heterogeneous Applications

Yoshinori Isoda, Shoji Kurakake, and Kazuo Imai

C

Yoshinori Isoda, Shoji Kurakake, and Kazuo Imai 18

where to buy rice; it will keep reminding him every time he is
physically close to a shop with rice until he buys it. When he is
out of his home, the home monitoring application automatically
changes its behavior and notifies him, via his cellular phone,
only when the dog leaves the house or unauthorized people try
to enter it.
 We make three observations from this scenario.

1) Different contexts will have significantly different spatial

and temporal resolutions. The time period of the touching
kitchenware context is a couple of seconds, and that
context happens within the kitchen. The context of leaving
home may occupy a couple of minutes. The context of
looking for rice may extend over a week and the context
should be detected by using sensors spread city-wide.

2) The same sensor data can be used to detect the different
contexts required by different applications. For example,
the data from the motion detection sensor attached to a dish
is basically used by the cooking assist application. The
same data, however, can be used by the home monitoring
application to detect suspicious events. Note that even the
same application may require different levels of context to
be abstracted from the same sensor data.

3) Some of the context-aware applications that are triggered
by the detection of the same pre-registered multiple
contexts require an ordered sequence of context detection,
other do not. The cooking assist application, for example,
requires the appropriate contexts to be detected in a
pre-defined order. The daily chores application does not
care which open window was closed first.

B. Our Approach
To address the issues identified in the scenario above, we

developed a user activity context detection method that can, at
the same time, cope with multiple context-aware applications
that may require different kinds of context with various levels
of abstraction. Our method decouples the description of
measured sensor data from the description of detected context,
and the description of required context model associated with
an application. Note that the terms “detected context
description” and “required context model” refer to different
concepts. User activity context descriptions have multiple
abstraction levels for describing detected user context. The
model of required context is instantiated by available
abstraction levels of context depending on the detection
capability of each environment and the level of context required
by the applications. Our sensor data description is flexible in
terms of temporal and spatial resolution. The duration of sensor
activation is the most important feature to detect user context,
and the sensor data description can adapt the time scale
according to the duration of sensor activation of interest. We
describe the required contexts to control an application based
on regular expressions. This enables the description of ordered
and semi-ordered contexts as condition elements for satisfying
application requirements.

We also introduce an algorithm that can implement the

context detection method in a given environment. The
algorithm learns the context detection capabilities of the
sensors at each site. This enables the heterogeneity in
environment with respect to sensing capability to be well
handled. We have also developed a framework that allows a
context-aware application to adapt to the different context
detection capabilities. We assume that an ID is assigned to each
class of context and that the IDs are shared among the
applications and context detection environments. Thus the
required context designated by an application is mapped to
context detected by a local context detection system by using
context ID.

We have built an experimental environment house into
which we placed sensors such as floor-mounted weight sensors
and RFID tags with touch sensor. Tests were conducted in this
house and show that our methods and framework are
promising.

The remainder of the paper is organized as follows: Section 2
presents the design of overall system, Section 3 describes a user
activity context detection method, Section 4 presents an
algorithm for implementing the context detection method,
Section 5 describes the experimental house, the sensors, and the
system. Section 6 describes the experiment and analysis of the
results, and Section 7 draws our conclusions.

II. DESIGN OF THE SYSTEM
The design of the proposed system is based on decoupling

the description of measured sensor data from the description of
detected context, and the description of required context model
associated with an application. The benefit of this approach is
that users can employ context-aware applications in various
ubiquitous environments (UE).

The framework of the system is shown in Fig. 1. The global
network stores and manages application templates. When a user
wants to use a specific application, the user downloads the
corresponding application template to the user’s terminal (Fig.
1, (1)). Each application template consists of a pointer to the
application and a description of the required context, which
explains the necessary conditions in terms of the contexts that
will trigger, suspend, and resume the application. We call the
description of the required context model because context itself
is referred to as the abstract context concept.

In each UE, sensor data is mapped to context by using a
decision tree. At the each abstraction level of the decision tree,
each leaf is assigned to a user state, and each node has a
description of decision making conditions with respect to the
value of sensor data to further split the user state of a node into
more specific user states. Thus, the decision tree describes
detectable user states with multiple abstraction levels by using
sensors in the environment. Some of the user states in the
decision tree are associated with context. In practice, some
leaves in the decision tree are treated as context leaves. The
decision tree is stored in a context server. The context server
receives sensor data and maps it to the detected context
descriptions. If a user wants to use a specific application and
has already downloaded its application template to his mobile

ubiPCMM 2005 19

terminal, the user compares the required context model and the
decision tree stored in the context server at the site that he will
visit. By using the shared context class ID, the user can
determine which abstract level of context needs to be detected
at the site for each context described in the required context
model. The user can carry out this process over the net or at the
site. When the user is in some UE, the user receives the detected
context description from the context server (Fig. 1, (2)).
Thereafter, the user allocates the detected context to the
elements of the required context model in the application
template (Fig. 1, (3)). For example, when the application needs
to know only whether the user is indoors or not, the user selects
a user state with high abstraction level in the decision tree. On
the other hand, when the application requires some specific
behavior in some specific place (e.g. cooking in the kitchen) as
context, the user must select a state from a lower abstraction
level. As a result of this procedure, the appropriate user states at
appropriate abstraction levels are instantiated in all required
context model elements. The application is then controlled
according to the description in the application templates in the
mobile terminal.

Context
ServerSensors

Global Network

Ubiquitous Environment

Detected context
description

User activity
context description

Application

Application templates

UE-ID, Abstraction Level

Application

(1) Download application
templates

(2) Download detected
context description

(3) Instantiate context model

Mobile
terminal

Application templates

Application

Required context Model
(Context required by Application)Application

Required context Model

Required Context Model

Context decision tree

Abstraction Level

N

1

2

(Downloaded)

Context
ServerSensors

Global Network

Ubiquitous Environment

Detected context
description

User activity
context description

Application

Application templates

UE-ID, Abstraction Level

Application

(1) Download application
templates

(2) Download detected
context description

(3) Instantiate context model

Mobile
terminal

Application templates

Application

Required context Model
(Context required by Application)Application

Required context Model

Required Context Model

Context decision tree

Abstraction Level

N

1

2

N

1

2

(Downloaded)

Fig. 1. Framework of the proposed system

III. USER ACTIVITY CONTEXT DETECTION METHOD

A. Context Model
As we mentioned above, each context model is used to

trigger a specific application and each model consists of context
elements that describe specific user states. In the real world,
users perform a wide variety of tasks. In this study, a task refers
to work performed by a user; work here consists of performing
specific state transitions, such as checking that doors are locked
in multiple locations, or preparing a meal by following a series
of procedures. When the user performs the tasks, the time
ranges of user states included in the task change accordingly.
Therefore, the context model deals with only transitions in user

state. Context models take the form of regular expressions.
Each state consists of context models partitioned by commas.
For example, the ordered sequential state transition sequence
[S1→S2 →S3] is represented as “^S3, S2, S1”. However, when a
user performs a specific task, it is not always necessary for the
states associated with the task to occur consecutively. For
example, user states S1, S2 are elements of one context model.
The relationship between S1, S2 is ordered, but they don’t
always occur consecutively. In this case, the context model is
represented as “^S2, ([^,]*,) S1”. Moreover, sometimes a user
performs different tasks in parallel. Therefore, the context
models in the user activity model are managed separately, and
checks are performed for multiple applications to determine
which ones should be executed.

time = t1

tag1
user

tag2

Tag reader(1)
detection area

tag2, tag3, tag4
tag2, tag3, tag4

Area(1) Area(2)

tag3

tag4

Area(1) Area(2)

time = t2

tag1, tag2
tag1, tag2

taguser

tag1 tag2
taguser

Objects in the
user’s vicinity

Tag reader(2)
detection area

tag3

tag4

time = t1

tag1
user

tag2

Tag reader(1)
detection area

tag2, tag3, tag4
tag2, tag3, tag4

Area(1) Area(2)

tag3

tag4

Area(1) Area(2)

time = t2

tag1, tag2
tag1, tag2

taguser

tag1 tag2
taguser

Objects in the
user’s vicinity

Tag reader(2)
detection area

tag3

tag4

Fig. 2. Changes in RFID tags output associated with movement of the user.
RFID tags are attached to objects and the user.

B. Description of User States
Each UE offers a different combination of sensors (type and

number). The sensor data descriptions should support the use of
many types of sensors. In this paper, sensor information is
transformed into spatio-temporal attributes. Each attribute
consists of temporally continuous sensor data, and the attributes
are arranged to support each spatial resolution needed.
Complex sensors, such as cameras have already been used for
recognizing user state. Computer visions tracking [7], [8] and
behavior recognition [9], [10], [11] often work in the laboratory
but sometimes fail in real environments due to the lighting
variations and occlusions that are frequent in natural
environments. Given their relative immaturity, we restrict
ourselves to simple sensors such as RFID tags and weight
sensors to achieve robust user state detection.

As an example, we explain the description of user states
when RFID tags and floor sensors are employed as sensors.
RFID tags have recently attracted interest as a means of
detecting objects in the vicinity of the user. In this case, the
attributes describing the user’s state are derived from
information obtained from the RFID tags carried by the user
and attached to objects. As shown in Fig. 2, the RFID tag
information detected by each RFID tag reader is collected. This

Yoshinori Isoda, Shoji Kurakake, and Kazuo Imai 20

yields attributes that relate the state of each user to the objects
in the user’s vicinity. In addition to information on the presence
or absence of objects in each user’s vicinity, the temporal
continuity of the presence of these objects is also used as
attributes of the user’s state. In other words, the user’s state is
described by attributes that include information on how long
each object has been present in the user’s vicinity due to the
user’s movements and whether or not the objects in question
are being carried around by the user. The overall set of
attributes describing the state of user u in relation to these
objects at time t is as follows:

])(,...),(,...),(),([),(21 ttagttagttagttagtuTag ni= (1)

Here, tagi(t) is a positive integer value indicating how long
object i has been remained (continuously) in the vicinity of
user u at time t. If object i does not exist in the user’s vicinity,
the value of tagi(t) is zero. Here, the user’s vicinity corresponds
to the detection range of the tag reader that detects the tag
carried by the user, so all objects detected by the same tag
reader are regarded as being in the user’s vicinity. When plural
users occupy the same detection range of a tag reader, it is
difficult to distinguish which objects are in each user’s vicinity.
Therefore, the detection range of the tag reader is restricted
from several tens centimeters to one meter by using an
attenuator. In this way, the user’s state is identified, in part,
from the attributes expressing which objects are in the user’s
vicinity, and if so, for how long. For example, Fig. 3 shows the
attributes of objects around the user at times t1 and t2 in Fig. 2.

Tag (u, t1) : When the user u stays for a while in area (1)Tag (u, t1) : When the user u stays for a while in area (1)

d1 d2 0 0

tag1 tag2 tag3 tagntagp

0

0 d’2 d3 dp

tag1 tag2 tag3 tagntagp

0

Tag (u, t2) : Directly after moving into area (2)Tag (u, t2) : Directly after moving into area (2)

d’2 > d2

dk : positive integer value indicating how long tagk has
existed continuously in the vicinity of user u

Tag (u, t1) : When the user u stays for a while in area (1)Tag (u, t1) : When the user u stays for a while in area (1)

d1 d2 0d1 d2 0 0

tag1 tag2 tag3 tagntagp

0

0 d’2 d30 d’2 d3 dp

tag1 tag2 tag3 tagntagp

0

Tag (u, t2) : Directly after moving into area (2)Tag (u, t2) : Directly after moving into area (2)

d’2 > d2

dk : positive integer value indicating how long tagk has
existed continuously in the vicinity of user u

Fig. 3. Representation of attributes relating to objects.

RFID tags provide information on the spatial relationships
between the user and objects. In some UE, sensors that detect
information on the absolute position of the user will be
employed. In this case, the multiple absolute user positions,
needed to satisfy the multiple spatial resolutions, are used as
attributes representing user state. As Fig. 4 shows, one floor can
be partitioned into several cells. Several cells are grouped into
larger cells. Additional attributes are used to express whether or
not the user is present in each cell, and if so, for how long. The
attributes related to the position of user u at time t are as
follows.

cell1
L

cell2
M

cell7
S

cell1
M

cell8
S

cell1
L

d1
L0 d2

M

cell1M cell2
M

0 0 0 0

cell2
S cell3S cell4

Scell1
S

0 0 d2
S 0

cell6
S cell7

S cell8
Scell5S

Loc (u, t) : User u has been in cells with multi space resolutions Loc (u, t) : User u has been in cells with multi space resolutions

Space resolution: S Space resolution: M Space resolution: L

Space resolution: S

Space resolution: M

Space resolution: L cell1
L

cell2
M

cell7
S

cell1
M

cell8
S

cell1
L

d1
L0 d2

M

cell1M cell2
M

0 0 0 0

cell2
S cell3S cell4

Scell1
S

0 0 d2
S 0

cell6
S cell7

S cell8
Scell5S

Loc (u, t) : User u has been in cells with multi space resolutions Loc (u, t) : User u has been in cells with multi space resolutions

Space resolution: S Space resolution: M Space resolution: L

Space resolution: S

Space resolution: M

Space resolution: L

Fig. 4. Attribute representation of user position with multi spatial resolution.

)](,...),(),...,(

)...,(),(),([),(

1

1
3

1
2

1
1

tcelltcelltcell

tcelltcelltcelltuLoc
Q
m

R
j

R

= (2)

Here, cellj

R(t) is also a positive integer value indicating
whether or not the user has been continuously detected in cell j
with space resolution R at time t.

When the above two kinds of sensors are employed in a UE,
the entire set of attributes A(u,t) representing the state of user u
at time t is as follows:

]),(),,([),(tuLoctuTagtuA = (3)

C. User State Decision
Several methods to discriminate user state have been

proposed. Combinations of neural networks and lookup tables
were used to predict the temporal mobility patterns of a user in
the Neural Network House [12], [13]. However, since neural
nets do not provide information about the underlying model of
the prediction process, it is difficult to extend them to
incorporate prior knowledge. Specific types of Dynamic
Bayesian networks [14] have been used to track the daily
activities of users from sensor information such as active
badges [15] and cricket-devices [16] embedded in a house [17].
The algorithm can differentiate the activities according to
duration and user location. Dynamic Bayesian networks have
proven to be one of the most powerful and efficient ways of
representing temporal events and fusing information from
multiple sensors [18]. However, the complexity of networks
and learning algorithms for Hidden Markov models make it
difficult to apply them to cases involving many sensors.

Each application requires a different level of user state
abstraction as context. Some applications simply need user
position with coarse resolution; others may need more detailed
user states such as user behavior. Therefore, user states should
be detected with various levels of abstraction. With the goal of
detecting user state hierarchically, we use a decision tree that
discriminates user states with multiple levels of abstraction.
The benefit of using a decision tree is that it generates
understandable rules. Therefore, if high-level knowledge about

ubiPCMM 2005 21

discriminating user states exists, the decision tree can be
modified manually. In each UE, the detected context
description from sensor data is described as a decision tree that
detects user states hierarchically with different abstraction
levels. If more than one person is in a UE, the decision tree is
managed to detect each user context separately.

IV. CONTEXT DETECTION METHOD
It is difficult to create the rules that form a decision tree

manually because each UE will have different sensors and the
user would have to consider the meaning and significance of
sensor information and the relationships between sensors.
Moreover, given the large number of sensors in one UE, some
sensors will be prone to error. This means that the user would
have also considered the robustness of sensor data. Our solution
is to employ the learning-based approach to construct the
decision tree semi-automatically.

All sensor data is recorded while a user performs actions
such as using the toilet, bathing, grooming and so on. These
actions typically consist of specific user states. For example,
the action of bathing consists of states such as standing in front
of a bathroom, standing inside the bathroom, using the bath,
and so on. However, identifying these states depends on the
sensors in the UE. Our context detection method extracts
hierarchical states of each action as leaves of the decision tree.

Sensor data recorded in each time interval is transformed to
spatio-temporal attributes according to (1)-(3) and the data for
each time interval is used as one training data set for
constructing a decision tree. At first, the user allocates action
labels to the specific time regions of the training data by hand.
These time regions correspond to specific actions such as
bathing. Next, our system finds user states identified by the
actions by using the C4.5 algorithm [19]. The C4.5 algorithm
constructs a decision tree by calculating the information gain
ratio of each attribute from a set of training data, and
successively employing the attributes with the highest values
(e.g., tagi(t)) as the nodes of the decision tree. Moreover, the
C4.5 algorithm can treat various kinds of sensor information as
attributes. This makes it easier to integrate different kinds of
sensors and to use them to discriminate user states. In the real
world, sensor error can occur at any time. If the training data
contains instances of sensor error, the C4.5 algorithm selects
the attributes of sensors that are able to discriminate user state
robustly.

Let D denote a set of cases of training data. Each case is
labeled with its state class cj)1(Nj ≤≤ . Some attribute A with
mutually exclusive outcomes A1, A2,..., Ak is used to partition D
into subsets D1, D2,..., Dk, where Di contains those cases that
have outcome Ai. p(D, cj) is the proportion of cases in D that
belong to the jth class. The residual uncertainty about the class
to which a case in D belongs can be expressed as

() ()()∑
=

×−=
N

j
jj cDpcDpDInfo

1
2 ,log,)((4)

and the corresponding information gained by an attribute A
with k outcomes as

)(||)(info),(
1

i

k

i

i DInfo
D
DDADGain ×−= ∑

=

 (5)

The information gained by an attribute is strongly impacted

by the number of outcomes and is maximal when there is one
case in each subset Di.. On the other hand, the potential
information obtained by partitioning a set of cases is based on
knowing the subset Di into which a case falls; this split
information

)||(log||),(2
1 D

D
D
DADSplit i

k

i

i
×−= ∑

=

 (6)

tends to increase with the number of outcomes of an attribute.
The gain ratio is expressed as

),(),(),(ADSplitADGainADGainRatio = (7)

The gain ratio criterion assesses the desirability of an
attribute as the ratio of its information gain to its split
information. The gain ratio of every possible attribute is
determined and, among those with at least average gain, the
split with maximum gain ratio is selected.

In a decision tree constructed in this way, the attributes that
are valid for discriminating the user states identified by the
actions are learned as nodes of a decision tree. Leaves of the
decision tree are the user states to be discriminated. Applying
the C4.5 algorithm to each state recursively, our system extracts
the hierarchical states of each action. In the following, we detail
the procedure by using an example. As shown in Fig. 5, the user
allocates label 1A to the specific time regions that correspond to
the specific action in the training data. Time regions other than
those labeled 1A are assigned label 1E. This is the first level of
the decision tree. By using this set of training data, the C4.5
algorithm constructs a decision tree that decides valid attributes
of sensor data as nodes and states of the action 1A as leaves.

In Fig. 6, action 1A is divided into n leaves in the decision
tree at the second level. These leaves are taken as user states at
abstraction level 2 of action 1A, and assigned the label of 2Si

)1(ni ≤≤ . In the training data, each time region of state 2Si is a
region in which sensor attributes that discriminate 2Si hold (Fig.
6). At the third level of the decision tree, new decision tree
branches are created from each state 2Si. In this level, the time
regions corresponding to 1A in the first level are used as new
training data (Fig. 7). Sensor attributes that were used to
discriminate 2Si are deleted from the new training data. That is,
the sensor attributes used in the second level aren’t used in the
third level. The time regions other than those labeled 2Si are
re-labeled 2Ei. The decision tree at the third level is constructed
from this new training data set. For example, 2Si is divided into
m leaves. Each new leaf is assigned the label 3Si

j)1(mj ≤≤ ,
and together they are considered as the user states derived from

Yoshinori Isoda, Shoji Kurakake, and Kazuo Imai 22

2Si at abstraction level 3. These procedures are executed
recursively to construct sub-trees. For example, the kth node at
the fourth level of decision tree is labeled 4Sk

i,j. The result is one
decision tree that can discriminate user states at multiple levels.
Fig. 8 shows an example of one such decision tree.

In the context detection phase, the resulting decision tree and
the current information from sensors are used to discriminate
the current user state in each abstraction level.

1E 1A 1E 1A 1E

A set of training data

Sensor 1

Sensor X

Level 1

ONOFF

Time interval of acquiring sensor data
(This sensor data is transformed to one training data)

time

Sensor 2

Sensor

1E 1A 1E 1A 1E

A set of training data

Sensor 1

Sensor X

Level 1

ONOFF

Time interval of acquiring sensor data
(This sensor data is transformed to one training data)

time

Sensor 2

Sensor

Fig. 5. User state allocation in specific time intervals; manually performed at
the first level.

1A1E 1E

2S1
2S2

2Sn

time

Level 2
(automatically)

Level 1

extraction

1A

2S1
2Sn

Sensor i

Sensor j

Sensor k

extraction

1A1E 1E

2S1
2S2

2Sn

time

Level 2
(automatically)

Level 1

extraction

1A

2S1
2Sn

Sensor i

Sensor j

Sensor k

extraction

Fig. 6. User states are extracted at second level of decision tree.

1A 1A 1ALevel 1

time
New set of training data

2Si
2Si

2Si
2Ei

2Ei
2Ei

2Ei

Re-labeled training data

Delete sensor attributes that discriminate 2Si

Level 2
(2Si)

1A 1A 1ALevel 1

time
New set of training data

2Si
2Si

2Si
2Ei

2Ei
2Ei

2Ei

Re-labeled training data

Delete sensor attributes that discriminate 2Si

Level 2
(2Si)

Fig. 7. New training data for extracting use states at level 3 for 2Si.

Training data

1E

Attribute

Attribute

3Si
1

3Si
2

2Si

3Si
m

4Si,j
k

3Si
j

Yes No

Yes No

Yes No

Labeling manually

1E2Si

Decision tree
at level 1

Attribute

Attribute
Yes No

Yes No

Extracting
Automatically

Re-labeling automatically

Extracting
Automatically

Decision tree
at level 2

Decision tree
at level 3

Decision tree
at level 4

2S1
2S2

2Sn

1A

Training data

1E

Attribute

Attribute

3Si
1

3Si
2

2Si

3Si
m

4Si,j
k

3Si
j

Yes No

Yes No

Yes No

Labeling manually

1E2Si

Decision tree
at level 1

Attribute

Attribute
Yes No

Yes No

Extracting
Automatically

Re-labeling automatically

Extracting
Automatically

Decision tree
at level 2

Decision tree
at level 3

Decision tree
at level 4

2S1
2S2

2Sn

1A

Fig. 8. Example of a decision tree that discriminates user states at multiple
levels.

V. USER ACTIVITY SENSING AND DETECTION ENVIRONMENT
IN UBIQUITOUS EXPERIMENTAL HOUSE

We have developed an experimental house in which multiple
types of information about human activities can be acquired
[20]. It contains various embedded sensors and output devices.
Fig. 9 shows its floor plan. To support a wide variety of
experiments, this house has workspaces set into the floor, attic,
and inside walls (striped areas in Fig. 9). These workspaces
make it easy to set up and wire many sensors and devices. Fig.
10 shows the configuration of the prototype system constructed
inside the experimental house. The next subsection details
system elements.

Living
Room

Entrance
BathroomWashroom

WC

Staircase

Kitchen

Closet

Dining Room

TV

Sofa

Workspace

Overview

Attic

Inside wall
Living
Room

Entrance
BathroomWashroom

WC

Staircase

Kitchen

Closet

Dining Room

TV

Sofa

Workspace

Overview

Attic

Inside wall

Fig. 9. Overview of Ubiquitous Experimental House.

ubiPCMM 2005 23

Spatio-temporal
description transformer

Spatio-temporal
description

Decision tree

RFID tag Info. User position Info.

Floor sensor

RFID tag reader

RFID tag

Context server

Mobile
terminal

Global network
Application
templates

Decision tree
constructor

(Training phase)

Spatio-temporal
description transformer

Spatio-temporal
description

Decision tree

RFID tag Info. User position Info.

Floor sensor

RFID tag reader

RFID tag

Context server

Mobile
terminal

Global network
Application
templates

Decision tree
constructor

(Training phase)

Fig. 10. Prototype system configuration.

A. RFID Tags
As shown in Fig. 11, the house has an active type RFID tag

system consisting of RFID tag readers and RFID tags attached
to the users and to various objects. We extended some of the
RFID tags to suit the object. For instance, we attached a
magnetic reed switch to an RFID tag to yield a position sensor.
These RFID tags can detect human behavior when using
objects such as turning a faucet, opening a door, using a towel
and so on. Other RFID tags were modified with touch sensors.
When the user touches electrodes on the object, the touch
sensor detects the action and the RFID tag is activated. We can
detect human behavior that involves touching objects such as
holding a cup, holding a receiver, sitting on the toilet, and
brushing teeth and so on. Moreover, other RFID tags were
modified with small weight-sensitive sensors to detect user
behavior such as sitting on a chair, lying on a sofa and so on.
This tag system has low directionality in the tag detection
ranges, and by attaching attenuators we were able to set the tag
detection radius from a few tens of centimeters to a few meters.
Each reader communicates with a PC by TCP/IP via a protocol
converter. The RFID tags transmit at intervals of 0.4 seconds.

B. Floor Sensor
To recognize human activity, information of the user’s

position is useful. Therefore, the entire floor is covered with a
large number of pressure sensors. Each pressure sensor covers
18 x 18 cm (a unit cell), and the binary value output by each cell
is read into a PC via a serial port at 0.4 second intervals. These
detector cells were grouped into blocks (e.g. 10×10, 5×5, 3
×3), so user position is detected at multiple resolution levels.

C. Context Server
The context server operates in one of 2 phases. One is the

phase of constructing a decision tree that discriminates user
states with multiple levels of abstraction. Information from
RFID tags and floor-mounted weight sensors are acquired and
used as training data.

In the other phase, it users this decision tree to perform state
decisions based on the current information provided by the
RFID tags and floor-mounted weight sensors. When plural
users are in the house, each user is distinguished by the RFID

Small weight sensor

(a) Sensors detecting human behavior of operating objects
Door

(b) Sensors detecting human behavior of touching objects

RFID tag

Touch sensor
Electrode

Object

Receiver Mug cup Toilet seat

RFID tag

(c) Sensors detecting human behavior of sitting and lying

RFID tag

Magnetic
reed switch

Faucet Towel

SofaChairChairSmall weight sensor

(a) Sensors detecting human behavior of operating objects
Door

(b) Sensors detecting human behavior of touching objects

RFID tag

Touch sensor
Electrode

Object

Receiver Mug cup Toilet seat

RFID tag

(c) Sensors detecting human behavior of sitting and lying

RFID tag

Magnetic
reed switch

Faucet Towel

SofaChairChair

Fig. 11. Sensors detecting human behavior associated with objects.

Bathroom
Toilet seat

Faucet

Door

RFID tag

User

Door

Door

INSIDE

BACK

ENRANCE

ENTRANCE HALL

BATHROOM

PASSAGE

Large size
resolution name

FRONT

Shoes box
Bathroom

Toilet seat

Faucet

Door

RFID tag

User

Door

Door

INSIDE

BACK

ENRANCE

ENTRANCE HALL

BATHROOM

PASSAGE

Large size
resolution name

FRONT

Shoes box

Fig. 12. Experimental environment.

tags carried by the users, and the decision tree is used for each
user. The states of each user thus detected are sent to the user’s
mobile terminal. On the mobile terminal, user states are
received and applications are executed by matching the user
states and context elements.

VI. EXPERIMENTAL EVALUATION
To confirm the automatic construction of a decision tree, we

performed an experiment that focused on bathroom activities as
the first step.

A. Experimental Conditions
Fig. 12 shows the experimental environment in the bathroom.

A user performed a series of actions such as entering the
bathroom, using the bathroom, washing hands, leaving the
bathroom and walking around the house. We acquired these
series of actions five times as training data. One RFID tag was
continuously carried by the user. Other RFID tags were

Yoshinori Isoda, Shoji Kurakake, and Kazuo Imai 24

attached to objects. Five RFID tags were extended with a
magnetic reed switch, and attached to doors and faucet in the
bathroom.

The information acquired by the floor-mounted weight
sensors was represented with multiple levels of spatial
resolution. At the largest resolution level, the experimental area
was divided into four spaces: ENTRANCE, ENTRANCE
HALL, BATHROOM, and PASSAGE. The medium level of
resolution corresponded to the areas consisting of 5×5 blocks.
The smallest level of resolution corresponded to areas of 3×3
blocks.

B. Experimental Result
Fig. 13 shows the decision tree that was constructed

automatically, and Fig. 14 shows the decision results for each
time interval at each level of the decision tree.

At the first level of the decision tree, two leaves were
extracted as user states. Investigating the attributes of decision
tree, one considers that the user is near the bathroom. The other
considers that the user is not near the bathroom. They are
named TOILET and OTHER, respectively. The largest space
resolution, which corresponds to the area of the bathroom, was
selected as the attribute to discriminate the two states at this
level.

At the second level of the decision tree, four leaves were
extracted as user states. Investigating the attributes of the
decision tree, we see that the first considers that the user is in
front of the bathroom, the second considers that the user is
inside the bathroom, the third considers that the user is at back
of the bathroom, and the fourth considers that the user is in
some other state. They are named FRONT, INSIDE, BACK,
and OTHER respectively. At this level, three areas in the
bathroom with medium level of resolution were selected as
attributes.

At the third level of the decision tree, no new leaves were
extracted from the user states of FRONT and BACK. However,
six leaves were extracted from the user state of INSIDE. The
first leaf from INSIDE considers that the user is standing on
both the cell of BACK and that of INSIDE simultaneously. This
leaf is named INSIDE&BACK. The second leaf considers that
the user is washing hands. This leaf is named WASH HANDS.
The third leaf is detected from the attributes of the floor sensor
at the area in front of the bathroom and the area inside the
bathroom. This leaf is detected only when the user is just
entering the bathroom (Fig. 14). Investigating the training data,
the floor sensors corresponding to FRONT and INSIDE were
not active simultaneously when the user left the bathroom. It is
considered that the position relationship between the door, the
faucet, and toilet seat influence human behavior. It can be said
that this extracted leaf well matches real human behavior in the
environment. Therefore, this leaf is named JUST ENTER. The
fourth leaf from INSIDE considers that the user is just leaving
the bathroom. When the user is entering the bathroom, the same
attributes can be used. However in the case of entering the
bathroom, the decision tree detects it as JUST ENTER. So, this
leaf is named OPEN DOOR.

From these results, reasonable user states at different

Level 1

Level 2

Level 3

TOILET

INSIDE FRONT BACK

OTHER

OTHER

INSIDE&BACK WASH HANDS JUST ENTER OPEN DOOR OTHER2OTHER1

Floor_INSIDE_Duration > 0

Floor_BATHROOM_Duration > 0

Floor_FRONT_Duration > 0

Floor_BACK_Duration > 8

Floor_BACK_Duration > 0

Rftag_Faucet_Duration > 0

Rftag_ToiletDoor_Duration < 12

Floor_FRONT_Duration > 0

Rftag_ToiletDoor_Duration > 0

Yes No

Yes

Yes

Yes

Yes

Yes

No
No

No
Yes

Yes

No

No

NoYes

No

User state

Attribute

No

Level 1

Level 2

Level 3

TOILET

INSIDE FRONT BACK

OTHER

OTHER

INSIDE&BACK WASH HANDS JUST ENTER OPEN DOOR OTHER2OTHER1

Floor_INSIDE_Duration > 0

Floor_BATHROOM_Duration > 0

Floor_FRONT_Duration > 0

Floor_BACK_Duration > 8

Floor_BACK_Duration > 0

Rftag_Faucet_Duration > 0

Rftag_ToiletDoor_Duration < 12

Floor_FRONT_Duration > 0

Rftag_ToiletDoor_Duration > 0

Yes No

Yes

Yes

Yes

Yes

Yes

No
No

No
Yes

Yes

No

No

NoYes

No

User state

Attribute

No

Fig. 13. Decision tree constructed in the experiment.

time

TOILET
Level 1

Level 2

Level 3

OUTSIDE

OTHEROTHER

INSIDE BACK OUTSIDEINSIDE

WASH
HANDS

JUST
ENTER

INSIDE
&BACK

INSIDE
&BACK

OPEN
DOOR

time

TOILET
Level 1

Level 2

Level 3

OUTSIDE

OTHEROTHER

INSIDE BACK OUTSIDEINSIDE

WASH
HANDS

JUST
ENTER

INSIDE
&BACK

INSIDE
&BACK

OPEN
DOOR

Fig. 14. User state decision for each time interval.

abstraction levels are extracted by using the C4.5 algorithm.
These user states, extracted as leaves of decision tree, are
detectable by using sensors in the experimental environment.
According to the decision tree and application requirements,
the user instantiates the appropriate user states at the
appropriate abstraction levels in all required context model
elements. However, this preliminary experiment considers only
simple activity. As the next step, we will confirm the validity of
decision trees constructed from more complex activities.

VII. CONCLUSION
In this paper, we proposed a framework for context-aware

systems that allows context-aware applications adapt to the
difference in context detection capability present in each
environment. A user activity context description, which has
multiple abstraction levels in terms of user context, is used. It is
instantiated according to the level of context detection
capability in each environment and application requirements.
We also presented a user activity context detection method that
can detect user context by using a multi spatio-temporal
description of measured sensor data, a description of detected
context with multiple levels of abstraction, and an order
sensitive description of required context model associated with
an application. The description of detected context takes the
form of a decision tree. It is constructed automatically by the
C4.5 algorithm.

ubiPCMM 2005 25

We introduced a ubiquitous experimental house in which
various human activities can be acquired from the data of
embedded sensors. We performed a preliminary experiment in
this house in which a decision tree that detects context with
multiple abstraction levels was automatically constructed from
actual human activity data; the results were shown to be
reasonable.

Issues for further study include evaluating the performance
of automatic decision tree construction with respect to more
complex situations, and modeling the required context
descriptions of more complex tasks including unordered state
series. It would also be worthwhile to evaluate the feasibility of
our prototype system by adapting it to support real applications.

REFERENCES
[1] D. Saha, A. Mukherjee, “Pervasive Computing: A Paradigm for the 21st

Century,” IEEE Computer, IEEE Computer Society Press, pp. 25-31,
March 2003.

[2] Dey, A. K., Abowd , G. D. , “Towards a Better Understanding of Context
and Context-Awareness,” Proc. of the CHI 2000 Workshop on The What,
Who, Where, and How of Context-Awareness, The Hague, Netherlands,
April 2000.

[3] Abowd, G.D., Atkeson, C.G., Hong, J., Long, S., Kooper, R., Pinkerton,
M.: Cyberguide, “A mobile context-aware tour guide,” Wireless
Networks: special issue on mobile computing and networking: selected
papers from MobiCom .96, Vol. 3, No 5. (1997) 421-433

[4] Cheverst, K., Davies, N., Mitchell, K., Friday, A., Efstratiou, C.,
“Developing a Context-Aware Electronic Tourist Guide: some issues and
experiences, “ Proc. CHI, The Hague, Netherlands, April 2000

[5] Broadbent, J., Marti, P., “Location-Aware Mobile Interactive Guides:
Usability Issues,” Proc. Inter. Cultural Heritage Informatics Meeting,
Paris, France, 1997

[6] Abowd, G. A. Bobick, I. Essa, E. Mynatt, and W. Rogers, “The Aware
Home: Developing Technologies for Successful Aging,” Workshop held
in conjunction with American Association of Artificial Intelligence
(AAAI) Conference 2002, Alberta, Canada, July 2002.

[7] S. Stillman, R. Tanawongsuwan, and I. Essa, “A system for tracking and
recognizing multiple people with multiple cameras,” in Proc. 2nd
International Conference on Audio-Vision-based Person Authentication.
1999.

[8] I. Haritaoglu, D. Harwood, and L. Davis, “W4: Who, When, Where,
What: A real time system for detecting and tracking people,” In Third
International Conference on Automatic Face and Gesture. Nara, 1998.

[9] H. Ishiguro, T. Nishimura, T. Sogo and R. Oka, “VAMBAM: View and
Motion-based Aspect Models for Distributed Omnidirectional Vision
Systems,” Proceedings of the Seventeenth International Joint Conference
on Artificial Intelligence (IJCAI-01), No.651, 2001.

[10] J.W. Davis and A.F. Bobick, “The representation and recognition of
action using temporal templates,” In Proc. the IEEE Conference on
Computer Vision and Pattern Recognition, pages 928–934. IEEE Press,
1997.

[11] X. Sun and C.W. Chen, “Probabilistic motion parameter models for
human activity recognition,” IEEE International Conference on Pattern
Recognition (ICPR02), 1, 2002.

[12] M. Mozer, “The neural network house: an environment that adapts to its
inhabitants,” In Proceedings of the AAAI Spring Symposium on
Intelligent Environments, Technical Report SS-98-02, pp.110–114,
AAAI Press, Menlo Park, CA, 1998.

[13] M. Mozer, “Lessons from an adaptive house,” In D. Cook & R. Das (Eds.),
Smart environments: Technologies, protocols, and applications. J.
Wiley & Sons, 2004.

[14] K. P. Murphy, “Dynamic Bayesian Networks: Representation, Inference
and Learning,” PhD thesis, University of California, Berkeley, 2002.

[15] H. Kautz, O. Etziono, D. Fox, and D. Weld, “Foundations of assisted
cognition systems,” Technical report cse-02-ac-01, University of
Washington, Department of Computer Science and Engineering, 2003.

[16] Nissanka B. Priyantha, Anit Chakraborty, and Hari Balakrishnan, “The
cricket location-support system,” In Proceedings of MOBICOM 2000,
pages 32–43, Boston, MA, August 2000. ACM, ACM Press.

[17] R.Want, A. Hopper, V. Falcao, and J. Gibbons, “The active badge
location system,” ACM Transactions on Information Systems, 10(1),
1992.

[18] A. Garg, V. Pavlovic, and J.M. Rehg, “Audio-visual speaker detection
using dynamic bayesian networks,” IEEE International Conference in
Automatic Face and Gesture Recognition, 2000.

[19] R. Quinlan, “C4.5: PROGRAMS FOR MACHINE LEARNING,”
Morgan Kaufmann Publishers Inc., 1993.

[20] Y. ISODA, S.KURAKAKE, and K. Imai, “Ubiquitous Sensor based
Human Behavior Recognition using a Spatio-temporal Representation of
User States,” International Journal of Wireless and Mobile Computing
(IJWMC), Special Issue on Applications, Services, and Infrastructures for
Wireless and Mobile Computing (accepted in Dec 2004)

Yoshinori ISODA Senior Research Engineer, Network Laboratories, NTT
DoCoMo, Inc. He received the master’s degree from the Department of
Systems Engineering, the University of Osaka in 1993. Since joining NTT in
1993, he has been researching sensor processing systems and ubiquitous
computing systems. He is a member of the Information Processing Society of
Japan (IPSJ) and the Robotics Society of Japan.

Shoji KURAKAKE (M’00) Executive Research Engineer, Network
Laboratories, NTT DoCoMo, Inc. He received the master’s degree from the
Department of Mathematical Engineering and Information Physics, the
University of Tokyo. Since joining NTT in 1985, he has been researching
character recognition, image analysis, video media handling, seamless
applications, and ubiquitous services. He is a member of IEICE，IEEE, and the
Association for Computing Machinery (ACM).

Kazuo IMAI (M’84) Executive Director of Network Laboratories, NTT
DoCoMo, Inc. He received the B.Sc. and M.Sc. degrees from Kyoto University
in 1974 and 1976, respectively. Since he joined NTT Laboratories in 1976, he
has been engaged in various R&D activities including digital data exchange
systems design, ISDN user-network interface definition, and broadband
switching and access systems research. Most recent activities at NTT were to
lead the research into and implementation of a network services platform for
NTT's information sharing services. Since April 2000, he has been with NTT
DoCoMo where he leads the next generation networking research for mobile
communications.

	I. INTRODUCTION
	A. Motivation Scenario
	B. Our Approach
	II. Design of the System
	III. User Activity Context detection Method
	A. Context Model
	B. Description of User States
	C. User State Decision

	IV. Context Detection Method
	V. User Activity Sensing and Detection Environment in Ubiquitous Experimental House
	A. RFID Tags
	B. Floor Sensor
	C. Context Server

	VI. Experimental Evaluation
	A. Experimental Conditions
	B. Experimental Result

	VII. Conclusion

