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Abstract—In this position paper, we present xLink, a system for 

managing context information and marshalling service queries 
and data flow. The repeated re-invention of context management 
systems remains a perennial phenomenon in context aware and 
ubiquitous computing. Often, these systems are integrated into 
applications to accommodate the low level requirements of the 
underlying devices. We hope to address this issue by providing a 
framework that allows a clean, API-based separation of device, 
context, and service management functionalities without 
curtailing the capabilities of any segment. xLink is designed to 
allow commodity ubiquitous computing devices, particularly 
devices with highly constrained computational capabilities, to 
interface directly at a low level to the context management 
framework, while still providing a clean and versatile service 
Application Programming Interface (API) that allows 
applications maximum expressive freedom. We also present a 
usage scenario for technologies based on xLink, and discuss the 
strengths and shortcomings of our approach in relation to other 
context and information flow management strategies. 
 

Index Terms—context management, context modeling, 
ubiquitous computing, interoperability. 

 

I. INTRODUCTION 
biquitous computing (Ubicomp) presents a compelling 
vision of environments, objects, and even people 

augmented with technological and computational resources for 
providing information “just-in-time”, or when and where the 
information is needed and best applied [1, 11]. In introducing 
this area of investigation, Mark Weiser of Xerox Parc also 
suggested some critical areas in need of investigation. One of 
the primary technological challenges noted by Weiser is the 
context management problem, that is, the need for methods of 
managing and coordinating the flow of information between 
the nodes and services available in the augmented environment 
[11]. The omnipresent interface envisioned by Ubicomp 
requires that devices act concertedly to support the user’s 
current actions [3], and context management forms the basis of 

this capability. Weiser also noted that the acceptance of the 
vision of Ubicomp depended, perhaps more than other areas, on 
reaching a critical mass, or in other words, on the technology 
becoming commodity. By “commodity technology” we mean 
that the technologies are commonly available at the consumer 
level, much as cellular phones or televisions are today. 
Additionally, we imply high accessibility by the general public, 
and low initial and recurring cost, such that individuals may use 
them not as luxuries, but as part of their daily lives. This implies 
that devices must be low cost, interchangeable, and easily 
duplicated, manufactured, and used. These constraints in turn 
bound what can be expected of these devices in terms of 
processing power, memory, reliability, and adherence to 
protocols. 

 
Manuscript received June 14, 2005. 
S. Sadi is a graduate student at the MIT Media Lab, Cambridge, MA 02142 
USA (phone: 617.253.9706; e-mail: sajid@ media.mit.edu).  
P. Maes is an associate professor with the Media Arts and Sciences Program, 
MIT Media Lab, MIT, Cambridge, MA 02142 USA (e-mail: 
pattie@media.mit.edu). 

 

In looking at the history of ubiquitous computing, it is clear that 
researchers have often been forced to develop special purpose 
context management systems to address their needs [1, 2, 6, 11]. 
In many instances, the low level integration of the application 
to the physical devices has essentially led to applications which 
have context management embedded, thus limiting the 
applicability as a commodity technology. We believe that this 
situation is a side effect of the fact that no uniform and 
expressive API exists to provide a clean separation between 
device, service, and information flow management. 

In this paper, we present an implementation of this claim: 
xLink, a system of context management that offers a general 
purpose environment which is capable of handling the needs of 
special purpose, low-capability devices without sacrificing a 
uniform service model. xLink is designed to support both 
continuously-running and on-demand applications in a 
seamless way, thus allowing application development 
independent of the context and device management models. 
The system helps bridge the gap between general purpose data 
flow management systems and low level “drivers” that allow 
simple devices to interact with such systems. xLink is designed 
to be “close to the hardware,” and provides APIs for low level 
interfaces to be built directly above the flexible information 
routing core. This feature allows us to integrate commodity 
hardware directly into the context management backend 
without intermediary layers, while allowing services to interact 
uniformly with devices without sacrificing low-level access. 
Finally, the xLink system incorporates implicit and explicit 
invocation of services, which allows for autonomous behavior 
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while still allowing the user control over the interaction and 
information flow. We have designed xLink to be a “room 
operating system” — a context management solution which can 
be configured to support the specific purposes of an area, 
allowing shared infrastructure between disparate services, 
while retaining the freedom of design and expressivity required 
by particular applications. 

 

II. RELATED WORK 

As mentioned previously, there is a great deal of 
fragmentation in the area of context management, with many 
systems existing only as parts of applications. This section 
provides a non-comprehensive sampling of stand-alone context 
and device management systems in order to present and 
contrast some other approaches to context management. 

A. Universal Plug and Play 
Universal Plug and Play (UPnP) is a discovery-based 

protocol for connecting devices originally developed by an 
industrial consortium led by Microsoft Corporation. It is meant 
for spontaneous discovery and configuration of 
network-connected devices [10]. The communication protocol 
uses IP as a transport layer, which is generally a complex and 
resource-intensive protocol to implement with minimal 
hardware. Additionally, message passing and discovery is done 
with XML messages [10], which provides high generality but 
also high latency and resource cost. As such, it is more 
appropriately considered for sharing pieces of context, as 
opposed to a system for actual management of context, since 
devices retain their own context information. While meant for 
the commodity market, it is too resource intensive for the 
lowest level devices that the xLink project is designed for. 
Additionally, the peer-to-peer structure, in contrast to the star 
topology of xLink, makes implementation of flow policies 
highly client-dependent. However, it remains well suited for 
interfacing devices with greater computational capacity. 

B. JINI Extensible Remote Invocation System 
JINI, an analogue to UPnP created by Sun Microsystems for 

the Java platform, is also a discovery-based service [10]. 
Unlike UPnP, JINI does use a lookup service to mediate the 
discovery process, and the actual discovery involves finding 
the service in the first place. All subsequent calls are made via 
Remote Method Invocation (RMI) and serialized Java objects, 
which is understandable given the tight platform bindings. Due 
to the requirements of the Java Virtual Machine, JINI is by 
definition a relatively demanding protocol-oriented method of 
managing context. The design is tightly bound to a client-server 
model of interaction that considerably limits its expressive 
capability. However, the ability to push code from a server to a 
client is clearly a very powerful capability enabled by the 
homogenous execution environment, which allows JINI to 
support greater low-level interaction between devices than 
UPnP and to achieve some of the low-level interface 
capabilities of xLink. 

C. The InConcert Middleware Layer 
The InConcert middleware layer was produced by the 

Microsoft Research Labs to serve, among other things, as a 
middleware layer for the EasyLiving Project [2]. It is, by design, 
highly specialized for automation and control of living spaces. 
Like UPnP, it is a protocol based system using XML message 
schemas. As with JINI, a directory node within an augmented 
physical location is used to register and track all other nodes [2]. 
As a result, the system is more centralized, with a central unit 
coordinating inter-device communication, though the actual 
communication takes place via asynchronous message passing 
between individual devices [2]. Like xLink, InConcert provides 
high level lateral linkage support, but depends on a relatively 
“heavy-weight” protocol (XML over IP) that hinders use in 
low-capability devices without the use of additional hardware 
and software resources. One interesting feature of InConcert is 
its internal topological model of the environment [2]. This 
highly specialized extension improves upon its intended 
functionality, which is bound to home automation and control, 
but at the cost of generality. Nonetheless, the intrinsic 
understanding of device relationships at the lowest level allows 
for interesting possibilities that are more difficult with the more 
generic device model of xLink. 

D. The Dartmouth “Solar” System 
The “Solar” system is a message simplification scheme 

based on directed acyclic graphs. The graph is used to route 
events to graph operators that incrementally reduced messages 
to a form which can be consumed by applications [3]. 
Applications use a context-sensitive subscription model to 
acquire data [3]. One of the primary problems with ubiquitous 
computing, evident from its earliest [11] days, is the sheer 
volume of data produced [4]. The Solar system efficiently 
compresses this volume by applying aggregating services to 
incrementally refine information. The high data resolution at 
the leaves [3] can also lead to performance issues, since the 
structures are currently geared towards a scenario where 
subscribing application have information pushed to them. Also, 
the collaboration of various devices, and additionally the 
sharing of information between services which operate in 
parallel (lateral linkage within the data flow graph) is 
ill-defined. In contrast, xLink features well-defined lateral 
linkage between devices and services at the same level in the 
overall hierarchy, but does not focus on data aggregation, thus 
allowing easier inter-device and inter-service collaboration 
capabilities at the cost of scalability. 

E. The EventHeap Model 
The EventHeap model is a middleware layer designed for the 

Stanford iRoom, and allows the multiple input and output 
surfaces of the room to function as a ubiquitous computing 
environment [7]. It is based on an API model, though internally 
the implementation does use a protocol to communicate 
between targets. The API model differs from the xLink model 
in that it is meant for programming devices themselves, and not 
links to devices. This suggests a level of capability with is 
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easily available within the iRoom, but cannot be presumed for 
the scope of xLink. The message passing strategies of both 
systems are also similar, though unlike xLink, EventHeap tends 
to treat devices and services essentially as peers, since within 
the EventHeap’s scope devices and services are generally 
intertwined. 

 

III. SCENARIO AND CASE STUDY 

In order to motivate the system design, we would first like to 
present a short scenario. Though this is a fictitious usage 
scenario, the devices and technologies discussed are the 
outcome of research projects completed by our group using 
xLink as the context management system. 

Scenario — “Rodger walks into the local bookstore, hoping 
to find a good book on yoga. The bookstore is enabled for his 
ReachBand — a wireless Radio Frequency Identifier (RFID) 
and gesture sensor worn on the wrist [5] — and headset, and he 
quickly scans the placard at the entrance to enable his devices. 
The store had already detected the wristband, and by reading 
the RFID tag on the placard, Rodger gives explicit permission 
for the store system to interact with his devices. As he walks 
around, a book catches his eyes, and he picks it up. As he is 
flipping though the book, the ReachBand scans the tag on the 
book, and he hears a slight audio notification on his headset that 
information of that book is available. He finds the book 
outwardly interesting, so he makes a slight gesture of his wrist, 
which accesses the list of services. The system has retrieved his 
profile from his phone, and knows he likes the New York 
Times reviews when possible, so when he selects reviews, the 
system checks and tells him that there is a New York Times 
book review available. He chooses to listen to the review. The 
review plays over the headset as he continues to flip through the 
book. He then chooses to listen to the Ambient Semantics [9] 
service, which tells Rodger that several of his friends are 
interested in getting into yoga exercises, opening the possibility 
for working out together. He also notices that a review selected 
by the system recommends a different book for beginners. 
Rodger is in a rush, so after finding the other book, he scans the 
tag on a public access display, which shows the menu he had 
been listening to. He quickly accesses and scans the review, 
and chooses to buy the new book. He simply selects the buy 
option, and authorizes use of the card he has in his profile. He 
signs the store receipt on-screen, but if he had not been at the 
terminal, the clerk would simply have had the receipt ready for 
him at the counter. The security system has been made aware 
that the book now belongs to Rodger, and automatically 
disarms the security tag as he walks out.” 

Within the above scenario, the xLink instance for the store 
has coordinated the experience so that the sensor and output 
devices that Rodger brought with him, and embedded systems 
and services within the store work in coordination to produce a 
seamless experience. The system invokes both local services, 
such as services to buy books, detect gestures, disarm a security 
tag, and read back information as well as remote services, such 
as the New York Times book review search. The system also 

allows a coordinated privacy policy to be implemented, even 
though multiple systems are used, so Rodger only has to 
authorize the system to allow access from a single location. 
Lastly, the output of the system is seamlessly transformed and 
routed to output devices, including the headset, the terminal, 
and the receipt printer at the counter, as needed. Input is also 
gathered from multiple devices to feed services such as the buy 
service, which requires an additional signature input. With this 
scenario in mind, we shall outline the design choices that 
support this interaction. 

 

IV. SYSTEM DESIGN 

A central goal of the xLink system is to provide a local-scale 
generalized framework for connecting commodity devices. As 
such, we chose to create a system which is based on an 
API-based plug-in design instead of protocols, so as to ensure 
overall generality and “instant-on” capability for new device 
types. In exchange, the system gained the ability to have highly 
device-specific behaviors that allow for easy modifications and 
additions at the interface without requiring changes to the 
internal workings of the core software. In a protocol based 
system, for example, the store system would have had to 
communicate with the wristband via some standard protocol, 
which would also then have to accommodate all similar devices, 
or suffer from myriad parallel protocols catering to different 
systems. Instead, by supporting a pluggable interface, we are 
able to support a very minimal communication system between 
the ReachBand and xLink, while retaining flexibility for the 
services. As Cohen points out [4], this is an important goal in 
creating a system which can survive unanticipated 
requirements, and the API-based interface also supports this 
easily. If, in the next year, a different model wristband becomes 
common, it is simple to install another pluggable module and 
necessary transceiver to support the new device without 
requiring modifications to the core xLink system. 

The principal purpose of the system is to mediate interaction 
between input and output devices, which may physically be 
instantiated as objects, rooms, or even conventional computer 
displays, and services. To this end, we designed the internal 
representation of the input of devices and the output of services 
to attain flexibility, and focused on allowing a high level of 
adaptability for interfacing physical devices to the system. This 
can be seen in the seamless transitions between display and 
interaction modes, which reflect the flexibility of the internal 
representation. It is important to note that though it is often 
handled within the realm of context management, the 
management of object identity and metadata is implemented as 
regular services within our system, and is accessed like any 
other service as needed. 
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 Tuple-Set::ReachBand 
name values

device ReachBand
id 17:32:54:af:7b:92
payload 64:8c:d4:56:b3:9f:7a:14 1118990279918
gesturedata 73,44,3,35,23,34,23,5,623,23,42,42,34,23,

23,4,23,54,2,52,35,23,3,42,3,42,34,23,42,
3,5,14,56,82,34,82,0,3,57,2,85,90,31,48,
75,12,37,89,567,34,90,57,34,8,9,0,67  

Figure 1: Typical tuple-set from a scanner device in the shared data 
space after processing by link module. 

 
A. Internal Representation 
Internally, the system operates on “tuple-sets” – unordered 

sets of n-tuples, with each tuple consisting of a name as the first 
entry, and n-1 data values as the remainder. A representative 
tuple-set is shown in Figure 2. The overall schema is very 
similar to the system originally used in the Linda system [6] and 
later explored in the EventHeap system [7]. Each tuple-set has a 
required field, “id,” which identifies the logical device that 
originated that tuple-set uniquely within the context of the 
system instance. This accommodation is made so that devices 
like the wristband in our scenario, with limited communications 
capabilities, may still identify themselves without having to 
expend precious bandwidth transmitting a universally unique 
identifier (UUID). Additionally, the link layer can attach a 
family identifier to the actual identifier received to partition 
device families. Therefore, in Figure 2, it might be that the 
device model itself only received the very last byte from the 
ReachBand, and provided the rest locally. If necessary, the 
device model can also send commands directly to the core 
system using tuple-sets. This allows the device model to 
communicate with the system without incurring additional API 
overhead. 

The communication is generally analogous to the 
“tuplespace” concept introduced by [6], but using tuple-sets in 
the same way as EventHeap [7]. Our implementation allows for 
sets of tuples, without imposing the temporal constraints of 
EventHeap. Instead, depending on the device type, certain 
fields are required in each tuple set to identify the source and 
provide a means of “replying” to a message. The tuplespace 
methodology depends on matching of key sets against the 
requisite key sets of a service [7], which is analogous to the 
service selection system used within xLink. Tuples with no 
consumers, if marked ephemeral, are simply discarded. 
Devices may economize bandwidth and lower overhead by 
storing fragments of data streams into fields. In figure 2, the 
ReachBand has stored accelerometer data for gesture detection 
in this way, sending several records in one tuple. The entire 
tuple [<id, device id>, <gesture-data, data point1, data point 2, 
…, data point n>] can then be consumed by a gesture 
translation service which converts the data into a single 
tuple-set [<id, device id>, <gesture, gesture-type>], retaining 
the same identifier as the original. 

The output of services that is meant for display devices is 
internally represented as structured trees, which are 
contractually constrained to provide information in increasing 

detail ordered by depth. This is a “soft” requirement, which 
may be ignored if necessary. For example, if there is some 
minute detail of high interest, it may be placed at a higher level. 
Additionally, resource-expensive or highly specialized services 
can opt to send a request link indicating their availability 
instead of the actual output. This, for example, allows the New 
York Times search service to reply with links to several articles, 
without having to send all of them. Links to content rendered in 
different formats can also be embedded in the tree, which can 
then be retrieved by devices capable of rendering the link. As a 
result, images of the book suggested by Ambient Semantics can 
be displayed by the terminal, but easily ignored by the headset. 
Within the design constraints of the system, this allows for a 
reasonable range of output modalities without requiring a 
highly annotated output structure. 

B. Device Model 
All devices within the scope of the system are classified as 

logical output or input devices. For example, the headset or the 
terminal screen are logical output devices in our scenario, while 
the RFID sensor and the security tag sensor are input devices. 
Accommodations are made for complex (multi-modal) devices 
such as the terminal, which are internally represented as a 
collection of logical input and output devices. Since we expect 
to have commodity devices from a variety of sources and with 
varying levels of complexity and capability interact with the 
system, very few assumptions are made about devices. Each 
family of devices is allowed its own plug-in “link module,” 
which is responsible for translating data to or from a format the 
device can accept. Link modules communicate to the devices 
through shared “connector modules,” allowing for sharing of 
resources among devices using the same communication 
medium, but differing protocols or information transformation 
needs. For example, several different phone clients can be 
supported, all over the same Bluetooth connector module, but 
via different link modules for different manufacturers. The 
interaction between various parts of the device model and the 
xLink core context management system is shown in figure 1. As 
shown in the figure, all connections between logical 
subsystems are by default bidirectional, allowing modules to be 
both data producers and consumers. As such, link and 
connector modules may act as local services, consuming input 
or carrying out other operations independently as required by 
the device. For example, the wrist gestures can be consumed 
directly by a display link module lacking a keyboard, without 
posting it to the event pool. In addition, this allows for the 
creation of low-latency links between input and output devices, 
thus bypassing the internal tuple-set pool for time-critical 
information.  
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Figure 2. Overview of the xLink linkage model, showing interconnections between different module families and object encapsulation. The core xLink 
functionality is indicated by segment marked “xLink Core” and is responsible for the message routing and service querying functionality at the heart of xLink.  

As stated previously, for input devices, the link module 
simply translates to the tuple-set format. In addition, the link 
module can perform any transformation on the incoming data, 
thus providing the ability to augment the actual data sent by the 
device. In our scenario, this allows the wristband to use a very 
short ID’s and reserve the majority of the packet space for 
RFID or gesture data. In the case of the display link modules, 
the wide range of possible presentation resolutions and output 
modalities require that the module make adaptive decisions 
based on the context of the interaction to exclude some part of 
the result tree from the actual output if necessary. This becomes 
especially necessary when device constraints such as memory 
or bandwidth make the make of sending the entire dataset 
literally impossible. The link module may also carry out 
semantic transformations on the data, ie, linearizing text for a 
brail display, or converting text to speech for an audio device, 
and cache the information for the duration of an interaction. 
These properties are exploited in providing speech output to the 
headset in our scenario, while stripping out hyperlinks and 
images in the result set. 

As Kindberg [8] points out, it is generally good practice 
within fault-tolerant systems to presume that devices will fail 
on a regular basis, and that is the approach taken by our design. 
Input and output devices are held in separate pools, allowing 
for both overlaps and multiple entries for the same physical 
device. Input devices are added to the pool when they make 
contact, and are removed after a timeout period. This prevents 
the pool from becoming stagnant (ie, containing logical devices 
that are no longer communicating). Output devices are likewise 
added to their own pool on first contact. However, output 
devices are only discarded if the link or connector module 
notifies the pool of a failure, or if an associated composite 
physical device is discarded from either pool due to failure in 
communication. The connector or link module may 
additionally force the device to reconnect with some fixed 
period in order to “clean” the pool. In all cases, output devices 
are contractually bound to reconnect on loss of connection, 

should they wish to remain within the network of devices. In 
our implementation, a garbage collection system discards stale 
displays after a considerable delay. These devices, if active, 
then automatically reconnect to the system. This method of 
connection management is optimized for the expected 
communication modes of the input and output devices, with 
inputs “pushing” data to the system, and data being “pushed” to 
the outputs from the system. As such, no action is required by 
Rodger to disconnect as he leaves. The loss of Bluetooth 
connection automatically causes the system to purge his 
records from the pools. 

C. Service Model 
The system supports the concept of local versus remote, and 

simple versus complex services. We define local services as 
services that act on information, objects, and entities within the 
general locality of the object itself (possibly even on the same 
object), while remote services act upon objects outside that 
domain. For example, in our scenario local services provide 
identifying information about the book, and capabilities such as 
purchasing, while remote services such as the review search are 
accessed from the appropriate sites as needed. Likewise, 
complex services act upon the output of simple services, while 
simple services act upon local information. For example, 
transforming acceleration data to gesture identifiers is a simple 
service, while retrieving the reviews is a complex service that 
must inspect profile information (possibly a remote complex 
service itself) to make a decision, and then fetch the appropriate 
information from a remote service to output. The primary 
reason for the existence of this distinction is speed of access. 
Local and simple services help to make an environment “smart” 
by allowing the various parts of the environment to act in 
concert. At the same time, most of the decisions made expected 
to be fast, resource-frugal, and fairly simplistic. As such, the 
system can call of these services constantly and push their 
results to output devices without user intervention. The remote 
or complex services, on the other hand, are “heavyweight” by 
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comparison, and thus their use is limited to on-request accesses. 
Since the remote services are only accessed on request, the 

discovery procedure is reduced to the services notifying a 
centrally accessible directory service of their existence. Such 
announcements must of course be accompanied by a list of 
service and tuple-set dependencies, so that the system can filter 
out non-relevant services. All local services operate under the 
prevue of the context management system, thus obviating 
discovery. As stated previously, the scope of this project allows 
us to assume that the system has been specialized to the 
environment it is embedded in. As such, the local service set 
can be chosen to match the supported devices, and any remote 
services requiring constant invocation can be proxied by a local 
forwarding service. 

D. System Operation 
Being geared towards use in ubiquitous interfaces and smart 

objects, the system in general “pushes” data to target devices. 
Incoming tuple-sets are automatically processed by the local 
simple services and made available to link modules for output. 
For example, incoming RFID data is automatically 
disambiguated but the identification service, and the output is 
routed to all local services by the xLink core for processing. 
Any output is made available to output link modules for display. 
The link modules have control over whether the data is actually 
sent, while the services retain control of whether it is 
appropriate to produce output given a certain scenario. This 
allows the output devices to exhibit per-device and per-family 
“do-not-disturb” behavior, such as disabling notification to the 
headset, while allowing services to operate in a context 
sensitive way. It is generally understood [2, 8, 7, 11] that 
ubiquitous interfaces must be proactive in anticipating needs, 
while at the same time working as a spatial and contextual filter 
for information so that the user is not inundated by requests for 
attention. At the same time, ubiquitous interfaces must allow 
the user control over the interface [1]. The chosen distribution 
of responsibility for inhibiting input is therefore balanced so 
that object and devices continue to act like objects (ie, remain 
under the user’s control), but the overall environment can still 
retain proactive agency. 

While we have not discussed user sessions explicitly to this 
point, ownership of devices and sessions is a natural extension 
of the system. We define a session simply as the set of all 
information available about a user through all available devices 
and services. When a device is aware of its ownership, it can 
inform the system of the ownership via a command tuple, 
which in turn propagates this information to other devices 
connected to the session. For example, the cellular phone can 
identify the other devices that a person is carrying that are 
available for input or output in our scenario. However, 
ownership is a fluid property within the system, and can change 
easily. This fluidity is in some sense contrary to the privacy that 
context management systems must support [1]. Within xLink, 
this factor is mitigated by having devices with known 
ownership, such as the cellular phone in our example. Services 
have the option to check for such devices before sending 

information, or requiring additional authentication if the 
information is especially sensitive. Due to the low resolution 
nature of the most common devices, this is expected to be the 
exceptional case, and therefore security policies are themselves 
implemented as a service which other services may query. 

Like the cell phone or the public terminal, certain devices 
may have the ability to request additional services by virtue of 
being composite input-output devices. As a natural side effect 
of the architecture, a device may easily direct the results of its 
request (via a command to the system) to a different device. 
Therefore, the wristband can easily have its output sent to the 
headset or even to a stationary display designated for that 
purpose. As long as the device can find out about the target 
device in some way, or the target device can be selected by the 
user to be the output device of choice, the output, being 
naturally device-agnostic, can be routed to it. This allows the 
system to fulfill the goal of Ubicomp of providing a seamless 
end-to-end experience to the user without device lock-in during 
an interaction [11]. 

 

V. DISCUSSION AND FUTURE WORK 

The design intentions that guided the xLink project were 
geared towards providing a highly adaptive, seamlessly 
expressive data flow management system that is general 
purpose in its architecture, but intended to be customized to 
support the specific requirements of the applications it serves. 
As a result, we envision xLink as an embedded device, perhaps 
embedded into a wall of a room enabled for ubiquitous 
computing. As a part of the room, it can then be tuned to the 
purpose and interactions that the room is meant to support. As 
with any design tradeoff, this decision has both its strengths and 
weaknesses. It is highly adaptive, and capable of hosting a 
variety of connector and link modules that allow fine grained, 
low level control of the communication and data translation 
capabilities offered by an instance of xLink. As a result, it is 
also less capable of self-configuration and management. The 
highly fault-tolerant design of the system allows for minimal 
maintenance, but the initial setup cost is not essentially 
mitigated by this. Additionally, the tuple-set and device pool 
based internal architecture become limiting factors as the data 
that must be represented becomes more complex and dependent 
on factors outside the direct prevue of xLink. 

Nonetheless, we believe that xLink serves to fill an important 
niche between medium-scale context management solutions 
such as EventHeap [7] and the devices themselves. By 
providing a common architecture for the housing and 
maintenance of driver-like structures that connect devices to 
each other and to services, xLink abstracts away the low level 
complexity of such information management without impeding 
the capabilities of the system, much as an operating system 
hides the complexity of the devices that make up a computer 
system while presenting software with the ability to access and 
manipulate those devices. At the same time, xLink provides an 
alternative and parallel for heavier protocol-based systems such 
as InConcert [2], in that it allows commodity sensors with 
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minimal capabilities to connect to each other and to relevant 
services, without requiring the overhead of a protocol stack. 
Finally, the remote service invocation infrastructure of xLink 
allows the system to easily yield to other, more general, context 
management frameworks such as EventHeap [7] for 
moderate-scale service invocation and information sharing, and 
also to use simplifying models such as Solar [3] to filter data 
down to forms that high-level complex services can use, 
without having to explicitly support such activities internally. 

In continuing our work on xLink, we hope to tackle some of 
the outstanding questions that remain for both this project and 
for Ubicomp in general. In particular, it appears necessary to 
support security and privacy primitives within xLink itself in 
order to optimize adherence to privacy and personalization 
policies. While the current service-based implementation 
allows for simple adherence to policy, the adherence is only 
contractually enforced, when it is best enforced directly in the 
core environment. However, the best way to do so without 
impacting performance or free flow of data has not yet been 
fully investigated, and is distinctly in need of further 
consideration as ubiquitous computing solutions gain in both 
popularity and resolving power, leading in turn to increased 
risks to privacy. Additionally, the idea of sessions is currently 
very loosely implemented within xLink, which circumvents 
several crucial issues with sessions. In particular, the issues of 
data duplication and disambiguation remain open to further 
investigation, especially in a highly localized system such as 
xLink. As this work progresses, we hope to engage some of 
these issues in the design space that is addressed by xLink. 
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