
ubiPCMM 2005 35

xLink: Context Management Solution for
Commodity Ubiquitous Computing

Environments
Sajid H. Sadi and Pattie Maes

Abstract—In this position paper, we present xLink, a system for

managing context information and marshalling service queries
and data flow. The repeated re-invention of context management
systems remains a perennial phenomenon in context aware and
ubiquitous computing. Often, these systems are integrated into
applications to accommodate the low level requirements of the
underlying devices. We hope to address this issue by providing a
framework that allows a clean, API-based separation of device,
context, and service management functionalities without
curtailing the capabilities of any segment. xLink is designed to
allow commodity ubiquitous computing devices, particularly
devices with highly constrained computational capabilities, to
interface directly at a low level to the context management
framework, while still providing a clean and versatile service
Application Programming Interface (API) that allows
applications maximum expressive freedom. We also present a
usage scenario for technologies based on xLink, and discuss the
strengths and shortcomings of our approach in relation to other
context and information flow management strategies.

Index Terms—context management, context modeling,
ubiquitous computing, interoperability.

I. INTRODUCTION
biquitous computing (Ubicomp) presents a compelling
vision of environments, objects, and even people

augmented with technological and computational resources for
providing information “just-in-time”, or when and where the
information is needed and best applied [1, 11]. In introducing
this area of investigation, Mark Weiser of Xerox Parc also
suggested some critical areas in need of investigation. One of
the primary technological challenges noted by Weiser is the
context management problem, that is, the need for methods of
managing and coordinating the flow of information between
the nodes and services available in the augmented environment
[11]. The omnipresent interface envisioned by Ubicomp
requires that devices act concertedly to support the user’s
current actions [3], and context management forms the basis of

this capability. Weiser also noted that the acceptance of the
vision of Ubicomp depended, perhaps more than other areas, on
reaching a critical mass, or in other words, on the technology
becoming commodity. By “commodity technology” we mean
that the technologies are commonly available at the consumer
level, much as cellular phones or televisions are today.
Additionally, we imply high accessibility by the general public,
and low initial and recurring cost, such that individuals may use
them not as luxuries, but as part of their daily lives. This implies
that devices must be low cost, interchangeable, and easily
duplicated, manufactured, and used. These constraints in turn
bound what can be expected of these devices in terms of
processing power, memory, reliability, and adherence to
protocols.

Manuscript received June 14, 2005.
S. Sadi is a graduate student at the MIT Media Lab, Cambridge, MA 02142
USA (phone: 617.253.9706; e-mail: sajid@ media.mit.edu).
P. Maes is an associate professor with the Media Arts and Sciences Program,
MIT Media Lab, MIT, Cambridge, MA 02142 USA (e-mail:
pattie@media.mit.edu).

In looking at the history of ubiquitous computing, it is clear that
researchers have often been forced to develop special purpose
context management systems to address their needs [1, 2, 6, 11].
In many instances, the low level integration of the application
to the physical devices has essentially led to applications which
have context management embedded, thus limiting the
applicability as a commodity technology. We believe that this
situation is a side effect of the fact that no uniform and
expressive API exists to provide a clean separation between
device, service, and information flow management.

In this paper, we present an implementation of this claim:
xLink, a system of context management that offers a general
purpose environment which is capable of handling the needs of
special purpose, low-capability devices without sacrificing a
uniform service model. xLink is designed to support both
continuously-running and on-demand applications in a
seamless way, thus allowing application development
independent of the context and device management models.
The system helps bridge the gap between general purpose data
flow management systems and low level “drivers” that allow
simple devices to interact with such systems. xLink is designed
to be “close to the hardware,” and provides APIs for low level
interfaces to be built directly above the flexible information
routing core. This feature allows us to integrate commodity
hardware directly into the context management backend
without intermediary layers, while allowing services to interact
uniformly with devices without sacrificing low-level access.
Finally, the xLink system incorporates implicit and explicit
invocation of services, which allows for autonomous behavior

U

Sajid H. Sadi and Pattie Maes 36

while still allowing the user control over the interaction and
information flow. We have designed xLink to be a “room
operating system” — a context management solution which can
be configured to support the specific purposes of an area,
allowing shared infrastructure between disparate services,
while retaining the freedom of design and expressivity required
by particular applications.

II. RELATED WORK

As mentioned previously, there is a great deal of
fragmentation in the area of context management, with many
systems existing only as parts of applications. This section
provides a non-comprehensive sampling of stand-alone context
and device management systems in order to present and
contrast some other approaches to context management.

A. Universal Plug and Play
Universal Plug and Play (UPnP) is a discovery-based

protocol for connecting devices originally developed by an
industrial consortium led by Microsoft Corporation. It is meant
for spontaneous discovery and configuration of
network-connected devices [10]. The communication protocol
uses IP as a transport layer, which is generally a complex and
resource-intensive protocol to implement with minimal
hardware. Additionally, message passing and discovery is done
with XML messages [10], which provides high generality but
also high latency and resource cost. As such, it is more
appropriately considered for sharing pieces of context, as
opposed to a system for actual management of context, since
devices retain their own context information. While meant for
the commodity market, it is too resource intensive for the
lowest level devices that the xLink project is designed for.
Additionally, the peer-to-peer structure, in contrast to the star
topology of xLink, makes implementation of flow policies
highly client-dependent. However, it remains well suited for
interfacing devices with greater computational capacity.

B. JINI Extensible Remote Invocation System
JINI, an analogue to UPnP created by Sun Microsystems for

the Java platform, is also a discovery-based service [10].
Unlike UPnP, JINI does use a lookup service to mediate the
discovery process, and the actual discovery involves finding
the service in the first place. All subsequent calls are made via
Remote Method Invocation (RMI) and serialized Java objects,
which is understandable given the tight platform bindings. Due
to the requirements of the Java Virtual Machine, JINI is by
definition a relatively demanding protocol-oriented method of
managing context. The design is tightly bound to a client-server
model of interaction that considerably limits its expressive
capability. However, the ability to push code from a server to a
client is clearly a very powerful capability enabled by the
homogenous execution environment, which allows JINI to
support greater low-level interaction between devices than
UPnP and to achieve some of the low-level interface
capabilities of xLink.

C. The InConcert Middleware Layer
The InConcert middleware layer was produced by the

Microsoft Research Labs to serve, among other things, as a
middleware layer for the EasyLiving Project [2]. It is, by design,
highly specialized for automation and control of living spaces.
Like UPnP, it is a protocol based system using XML message
schemas. As with JINI, a directory node within an augmented
physical location is used to register and track all other nodes [2].
As a result, the system is more centralized, with a central unit
coordinating inter-device communication, though the actual
communication takes place via asynchronous message passing
between individual devices [2]. Like xLink, InConcert provides
high level lateral linkage support, but depends on a relatively
“heavy-weight” protocol (XML over IP) that hinders use in
low-capability devices without the use of additional hardware
and software resources. One interesting feature of InConcert is
its internal topological model of the environment [2]. This
highly specialized extension improves upon its intended
functionality, which is bound to home automation and control,
but at the cost of generality. Nonetheless, the intrinsic
understanding of device relationships at the lowest level allows
for interesting possibilities that are more difficult with the more
generic device model of xLink.

D. The Dartmouth “Solar” System
The “Solar” system is a message simplification scheme

based on directed acyclic graphs. The graph is used to route
events to graph operators that incrementally reduced messages
to a form which can be consumed by applications [3].
Applications use a context-sensitive subscription model to
acquire data [3]. One of the primary problems with ubiquitous
computing, evident from its earliest [11] days, is the sheer
volume of data produced [4]. The Solar system efficiently
compresses this volume by applying aggregating services to
incrementally refine information. The high data resolution at
the leaves [3] can also lead to performance issues, since the
structures are currently geared towards a scenario where
subscribing application have information pushed to them. Also,
the collaboration of various devices, and additionally the
sharing of information between services which operate in
parallel (lateral linkage within the data flow graph) is
ill-defined. In contrast, xLink features well-defined lateral
linkage between devices and services at the same level in the
overall hierarchy, but does not focus on data aggregation, thus
allowing easier inter-device and inter-service collaboration
capabilities at the cost of scalability.

E. The EventHeap Model
The EventHeap model is a middleware layer designed for the

Stanford iRoom, and allows the multiple input and output
surfaces of the room to function as a ubiquitous computing
environment [7]. It is based on an API model, though internally
the implementation does use a protocol to communicate
between targets. The API model differs from the xLink model
in that it is meant for programming devices themselves, and not
links to devices. This suggests a level of capability with is

ubiPCMM 2005 37

easily available within the iRoom, but cannot be presumed for
the scope of xLink. The message passing strategies of both
systems are also similar, though unlike xLink, EventHeap tends
to treat devices and services essentially as peers, since within
the EventHeap’s scope devices and services are generally
intertwined.

III. SCENARIO AND CASE STUDY

In order to motivate the system design, we would first like to
present a short scenario. Though this is a fictitious usage
scenario, the devices and technologies discussed are the
outcome of research projects completed by our group using
xLink as the context management system.

Scenario — “Rodger walks into the local bookstore, hoping
to find a good book on yoga. The bookstore is enabled for his
ReachBand — a wireless Radio Frequency Identifier (RFID)
and gesture sensor worn on the wrist [5] — and headset, and he
quickly scans the placard at the entrance to enable his devices.
The store had already detected the wristband, and by reading
the RFID tag on the placard, Rodger gives explicit permission
for the store system to interact with his devices. As he walks
around, a book catches his eyes, and he picks it up. As he is
flipping though the book, the ReachBand scans the tag on the
book, and he hears a slight audio notification on his headset that
information of that book is available. He finds the book
outwardly interesting, so he makes a slight gesture of his wrist,
which accesses the list of services. The system has retrieved his
profile from his phone, and knows he likes the New York
Times reviews when possible, so when he selects reviews, the
system checks and tells him that there is a New York Times
book review available. He chooses to listen to the review. The
review plays over the headset as he continues to flip through the
book. He then chooses to listen to the Ambient Semantics [9]
service, which tells Rodger that several of his friends are
interested in getting into yoga exercises, opening the possibility
for working out together. He also notices that a review selected
by the system recommends a different book for beginners.
Rodger is in a rush, so after finding the other book, he scans the
tag on a public access display, which shows the menu he had
been listening to. He quickly accesses and scans the review,
and chooses to buy the new book. He simply selects the buy
option, and authorizes use of the card he has in his profile. He
signs the store receipt on-screen, but if he had not been at the
terminal, the clerk would simply have had the receipt ready for
him at the counter. The security system has been made aware
that the book now belongs to Rodger, and automatically
disarms the security tag as he walks out.”

Within the above scenario, the xLink instance for the store
has coordinated the experience so that the sensor and output
devices that Rodger brought with him, and embedded systems
and services within the store work in coordination to produce a
seamless experience. The system invokes both local services,
such as services to buy books, detect gestures, disarm a security
tag, and read back information as well as remote services, such
as the New York Times book review search. The system also

allows a coordinated privacy policy to be implemented, even
though multiple systems are used, so Rodger only has to
authorize the system to allow access from a single location.
Lastly, the output of the system is seamlessly transformed and
routed to output devices, including the headset, the terminal,
and the receipt printer at the counter, as needed. Input is also
gathered from multiple devices to feed services such as the buy
service, which requires an additional signature input. With this
scenario in mind, we shall outline the design choices that
support this interaction.

IV. SYSTEM DESIGN

A central goal of the xLink system is to provide a local-scale
generalized framework for connecting commodity devices. As
such, we chose to create a system which is based on an
API-based plug-in design instead of protocols, so as to ensure
overall generality and “instant-on” capability for new device
types. In exchange, the system gained the ability to have highly
device-specific behaviors that allow for easy modifications and
additions at the interface without requiring changes to the
internal workings of the core software. In a protocol based
system, for example, the store system would have had to
communicate with the wristband via some standard protocol,
which would also then have to accommodate all similar devices,
or suffer from myriad parallel protocols catering to different
systems. Instead, by supporting a pluggable interface, we are
able to support a very minimal communication system between
the ReachBand and xLink, while retaining flexibility for the
services. As Cohen points out [4], this is an important goal in
creating a system which can survive unanticipated
requirements, and the API-based interface also supports this
easily. If, in the next year, a different model wristband becomes
common, it is simple to install another pluggable module and
necessary transceiver to support the new device without
requiring modifications to the core xLink system.

The principal purpose of the system is to mediate interaction
between input and output devices, which may physically be
instantiated as objects, rooms, or even conventional computer
displays, and services. To this end, we designed the internal
representation of the input of devices and the output of services
to attain flexibility, and focused on allowing a high level of
adaptability for interfacing physical devices to the system. This
can be seen in the seamless transitions between display and
interaction modes, which reflect the flexibility of the internal
representation. It is important to note that though it is often
handled within the realm of context management, the
management of object identity and metadata is implemented as
regular services within our system, and is accessed like any
other service as needed.

Sajid H. Sadi and Pattie Maes 38

 Tuple-Set::ReachBand
name values

device ReachBand
id 17:32:54:af:7b:92
payload 64:8c:d4:56:b3:9f:7a:14 1118990279918
gesturedata 73,44,3,35,23,34,23,5,623,23,42,42,34,23,

23,4,23,54,2,52,35,23,3,42,3,42,34,23,42,
3,5,14,56,82,34,82,0,3,57,2,85,90,31,48,
75,12,37,89,567,34,90,57,34,8,9,0,67

Figure 1: Typical tuple-set from a scanner device in the shared data
space after processing by link module.

A. Internal Representation
Internally, the system operates on “tuple-sets” – unordered

sets of n-tuples, with each tuple consisting of a name as the first
entry, and n-1 data values as the remainder. A representative
tuple-set is shown in Figure 2. The overall schema is very
similar to the system originally used in the Linda system [6] and
later explored in the EventHeap system [7]. Each tuple-set has a
required field, “id,” which identifies the logical device that
originated that tuple-set uniquely within the context of the
system instance. This accommodation is made so that devices
like the wristband in our scenario, with limited communications
capabilities, may still identify themselves without having to
expend precious bandwidth transmitting a universally unique
identifier (UUID). Additionally, the link layer can attach a
family identifier to the actual identifier received to partition
device families. Therefore, in Figure 2, it might be that the
device model itself only received the very last byte from the
ReachBand, and provided the rest locally. If necessary, the
device model can also send commands directly to the core
system using tuple-sets. This allows the device model to
communicate with the system without incurring additional API
overhead.

The communication is generally analogous to the
“tuplespace” concept introduced by [6], but using tuple-sets in
the same way as EventHeap [7]. Our implementation allows for
sets of tuples, without imposing the temporal constraints of
EventHeap. Instead, depending on the device type, certain
fields are required in each tuple set to identify the source and
provide a means of “replying” to a message. The tuplespace
methodology depends on matching of key sets against the
requisite key sets of a service [7], which is analogous to the
service selection system used within xLink. Tuples with no
consumers, if marked ephemeral, are simply discarded.
Devices may economize bandwidth and lower overhead by
storing fragments of data streams into fields. In figure 2, the
ReachBand has stored accelerometer data for gesture detection
in this way, sending several records in one tuple. The entire
tuple [<id, device id>, <gesture-data, data point1, data point 2,
…, data point n>] can then be consumed by a gesture
translation service which converts the data into a single
tuple-set [<id, device id>, <gesture, gesture-type>], retaining
the same identifier as the original.

The output of services that is meant for display devices is
internally represented as structured trees, which are
contractually constrained to provide information in increasing

detail ordered by depth. This is a “soft” requirement, which
may be ignored if necessary. For example, if there is some
minute detail of high interest, it may be placed at a higher level.
Additionally, resource-expensive or highly specialized services
can opt to send a request link indicating their availability
instead of the actual output. This, for example, allows the New
York Times search service to reply with links to several articles,
without having to send all of them. Links to content rendered in
different formats can also be embedded in the tree, which can
then be retrieved by devices capable of rendering the link. As a
result, images of the book suggested by Ambient Semantics can
be displayed by the terminal, but easily ignored by the headset.
Within the design constraints of the system, this allows for a
reasonable range of output modalities without requiring a
highly annotated output structure.

B. Device Model
All devices within the scope of the system are classified as

logical output or input devices. For example, the headset or the
terminal screen are logical output devices in our scenario, while
the RFID sensor and the security tag sensor are input devices.
Accommodations are made for complex (multi-modal) devices
such as the terminal, which are internally represented as a
collection of logical input and output devices. Since we expect
to have commodity devices from a variety of sources and with
varying levels of complexity and capability interact with the
system, very few assumptions are made about devices. Each
family of devices is allowed its own plug-in “link module,”
which is responsible for translating data to or from a format the
device can accept. Link modules communicate to the devices
through shared “connector modules,” allowing for sharing of
resources among devices using the same communication
medium, but differing protocols or information transformation
needs. For example, several different phone clients can be
supported, all over the same Bluetooth connector module, but
via different link modules for different manufacturers. The
interaction between various parts of the device model and the
xLink core context management system is shown in figure 1. As
shown in the figure, all connections between logical
subsystems are by default bidirectional, allowing modules to be
both data producers and consumers. As such, link and
connector modules may act as local services, consuming input
or carrying out other operations independently as required by
the device. For example, the wrist gestures can be consumed
directly by a display link module lacking a keyboard, without
posting it to the event pool. In addition, this allows for the
creation of low-latency links between input and output devices,
thus bypassing the internal tuple-set pool for time-critical
information.

ubiPCMM 2005 39

Figure 2. Overview of the xLink linkage model, showing interconnections between different module families and object encapsulation. The core xLink
functionality is indicated by segment marked “xLink Core” and is responsible for the message routing and service querying functionality at the heart of xLink.

As stated previously, for input devices, the link module
simply translates to the tuple-set format. In addition, the link
module can perform any transformation on the incoming data,
thus providing the ability to augment the actual data sent by the
device. In our scenario, this allows the wristband to use a very
short ID’s and reserve the majority of the packet space for
RFID or gesture data. In the case of the display link modules,
the wide range of possible presentation resolutions and output
modalities require that the module make adaptive decisions
based on the context of the interaction to exclude some part of
the result tree from the actual output if necessary. This becomes
especially necessary when device constraints such as memory
or bandwidth make the make of sending the entire dataset
literally impossible. The link module may also carry out
semantic transformations on the data, ie, linearizing text for a
brail display, or converting text to speech for an audio device,
and cache the information for the duration of an interaction.
These properties are exploited in providing speech output to the
headset in our scenario, while stripping out hyperlinks and
images in the result set.

As Kindberg [8] points out, it is generally good practice
within fault-tolerant systems to presume that devices will fail
on a regular basis, and that is the approach taken by our design.
Input and output devices are held in separate pools, allowing
for both overlaps and multiple entries for the same physical
device. Input devices are added to the pool when they make
contact, and are removed after a timeout period. This prevents
the pool from becoming stagnant (ie, containing logical devices
that are no longer communicating). Output devices are likewise
added to their own pool on first contact. However, output
devices are only discarded if the link or connector module
notifies the pool of a failure, or if an associated composite
physical device is discarded from either pool due to failure in
communication. The connector or link module may
additionally force the device to reconnect with some fixed
period in order to “clean” the pool. In all cases, output devices
are contractually bound to reconnect on loss of connection,

should they wish to remain within the network of devices. In
our implementation, a garbage collection system discards stale
displays after a considerable delay. These devices, if active,
then automatically reconnect to the system. This method of
connection management is optimized for the expected
communication modes of the input and output devices, with
inputs “pushing” data to the system, and data being “pushed” to
the outputs from the system. As such, no action is required by
Rodger to disconnect as he leaves. The loss of Bluetooth
connection automatically causes the system to purge his
records from the pools.

C. Service Model
The system supports the concept of local versus remote, and

simple versus complex services. We define local services as
services that act on information, objects, and entities within the
general locality of the object itself (possibly even on the same
object), while remote services act upon objects outside that
domain. For example, in our scenario local services provide
identifying information about the book, and capabilities such as
purchasing, while remote services such as the review search are
accessed from the appropriate sites as needed. Likewise,
complex services act upon the output of simple services, while
simple services act upon local information. For example,
transforming acceleration data to gesture identifiers is a simple
service, while retrieving the reviews is a complex service that
must inspect profile information (possibly a remote complex
service itself) to make a decision, and then fetch the appropriate
information from a remote service to output. The primary
reason for the existence of this distinction is speed of access.
Local and simple services help to make an environment “smart”
by allowing the various parts of the environment to act in
concert. At the same time, most of the decisions made expected
to be fast, resource-frugal, and fairly simplistic. As such, the
system can call of these services constantly and push their
results to output devices without user intervention. The remote
or complex services, on the other hand, are “heavyweight” by

Sajid H. Sadi and Pattie Maes 40

comparison, and thus their use is limited to on-request accesses.
Since the remote services are only accessed on request, the

discovery procedure is reduced to the services notifying a
centrally accessible directory service of their existence. Such
announcements must of course be accompanied by a list of
service and tuple-set dependencies, so that the system can filter
out non-relevant services. All local services operate under the
prevue of the context management system, thus obviating
discovery. As stated previously, the scope of this project allows
us to assume that the system has been specialized to the
environment it is embedded in. As such, the local service set
can be chosen to match the supported devices, and any remote
services requiring constant invocation can be proxied by a local
forwarding service.

D. System Operation
Being geared towards use in ubiquitous interfaces and smart

objects, the system in general “pushes” data to target devices.
Incoming tuple-sets are automatically processed by the local
simple services and made available to link modules for output.
For example, incoming RFID data is automatically
disambiguated but the identification service, and the output is
routed to all local services by the xLink core for processing.
Any output is made available to output link modules for display.
The link modules have control over whether the data is actually
sent, while the services retain control of whether it is
appropriate to produce output given a certain scenario. This
allows the output devices to exhibit per-device and per-family
“do-not-disturb” behavior, such as disabling notification to the
headset, while allowing services to operate in a context
sensitive way. It is generally understood [2, 8, 7, 11] that
ubiquitous interfaces must be proactive in anticipating needs,
while at the same time working as a spatial and contextual filter
for information so that the user is not inundated by requests for
attention. At the same time, ubiquitous interfaces must allow
the user control over the interface [1]. The chosen distribution
of responsibility for inhibiting input is therefore balanced so
that object and devices continue to act like objects (ie, remain
under the user’s control), but the overall environment can still
retain proactive agency.

While we have not discussed user sessions explicitly to this
point, ownership of devices and sessions is a natural extension
of the system. We define a session simply as the set of all
information available about a user through all available devices
and services. When a device is aware of its ownership, it can
inform the system of the ownership via a command tuple,
which in turn propagates this information to other devices
connected to the session. For example, the cellular phone can
identify the other devices that a person is carrying that are
available for input or output in our scenario. However,
ownership is a fluid property within the system, and can change
easily. This fluidity is in some sense contrary to the privacy that
context management systems must support [1]. Within xLink,
this factor is mitigated by having devices with known
ownership, such as the cellular phone in our example. Services
have the option to check for such devices before sending

information, or requiring additional authentication if the
information is especially sensitive. Due to the low resolution
nature of the most common devices, this is expected to be the
exceptional case, and therefore security policies are themselves
implemented as a service which other services may query.

Like the cell phone or the public terminal, certain devices
may have the ability to request additional services by virtue of
being composite input-output devices. As a natural side effect
of the architecture, a device may easily direct the results of its
request (via a command to the system) to a different device.
Therefore, the wristband can easily have its output sent to the
headset or even to a stationary display designated for that
purpose. As long as the device can find out about the target
device in some way, or the target device can be selected by the
user to be the output device of choice, the output, being
naturally device-agnostic, can be routed to it. This allows the
system to fulfill the goal of Ubicomp of providing a seamless
end-to-end experience to the user without device lock-in during
an interaction [11].

V. DISCUSSION AND FUTURE WORK

The design intentions that guided the xLink project were
geared towards providing a highly adaptive, seamlessly
expressive data flow management system that is general
purpose in its architecture, but intended to be customized to
support the specific requirements of the applications it serves.
As a result, we envision xLink as an embedded device, perhaps
embedded into a wall of a room enabled for ubiquitous
computing. As a part of the room, it can then be tuned to the
purpose and interactions that the room is meant to support. As
with any design tradeoff, this decision has both its strengths and
weaknesses. It is highly adaptive, and capable of hosting a
variety of connector and link modules that allow fine grained,
low level control of the communication and data translation
capabilities offered by an instance of xLink. As a result, it is
also less capable of self-configuration and management. The
highly fault-tolerant design of the system allows for minimal
maintenance, but the initial setup cost is not essentially
mitigated by this. Additionally, the tuple-set and device pool
based internal architecture become limiting factors as the data
that must be represented becomes more complex and dependent
on factors outside the direct prevue of xLink.

Nonetheless, we believe that xLink serves to fill an important
niche between medium-scale context management solutions
such as EventHeap [7] and the devices themselves. By
providing a common architecture for the housing and
maintenance of driver-like structures that connect devices to
each other and to services, xLink abstracts away the low level
complexity of such information management without impeding
the capabilities of the system, much as an operating system
hides the complexity of the devices that make up a computer
system while presenting software with the ability to access and
manipulate those devices. At the same time, xLink provides an
alternative and parallel for heavier protocol-based systems such
as InConcert [2], in that it allows commodity sensors with

ubiPCMM 2005 41

minimal capabilities to connect to each other and to relevant
services, without requiring the overhead of a protocol stack.
Finally, the remote service invocation infrastructure of xLink
allows the system to easily yield to other, more general, context
management frameworks such as EventHeap [7] for
moderate-scale service invocation and information sharing, and
also to use simplifying models such as Solar [3] to filter data
down to forms that high-level complex services can use,
without having to explicitly support such activities internally.

In continuing our work on xLink, we hope to tackle some of
the outstanding questions that remain for both this project and
for Ubicomp in general. In particular, it appears necessary to
support security and privacy primitives within xLink itself in
order to optimize adherence to privacy and personalization
policies. While the current service-based implementation
allows for simple adherence to policy, the adherence is only
contractually enforced, when it is best enforced directly in the
core environment. However, the best way to do so without
impacting performance or free flow of data has not yet been
fully investigated, and is distinctly in need of further
consideration as ubiquitous computing solutions gain in both
popularity and resolving power, leading in turn to increased
risks to privacy. Additionally, the idea of sessions is currently
very loosely implemented within xLink, which circumvents
several crucial issues with sessions. In particular, the issues of
data duplication and disambiguation remain open to further
investigation, especially in a highly localized system such as
xLink. As this work progresses, we hope to engage some of
these issues in the design space that is addressed by xLink.

ACKNOWLEDGMENT
We would like to acknowledge the tireless help, critique, and

encouragement of Assaf Feldman and the Ambient Intelligence
Group, as well as the industrial liaisons of the MIT Media Lab
for fostering the growth of this project. We also extend our
appreciation to Aaron Zinman for the critique, review, and
inspiration he provided for this paper.

REFERENCES
[1] G. D. Abowd and E. D. Mynatt. “Charting Past, Present, and Future

Research in Ubiquitous Computing,” in ACM Transactions on
Computer-Human Interaction, Vol. 7, No. 1, March 2000, Pages 29-58.

[2] B. Brumitt, B. Meyers, J. Krumm, A. Kern and S. A. Shafer. “EasyLiving:
Technologies for Intelligent Environments,” in Handheld and Ubiquitous
Computing, Bristol, UK, September 2000, Pages 12-29.

[3] G. Chen and D. Kotz. “Context Aggregation and Dissemination in
Ubiquitous Computing Systems,” in Proceedings of the Fourth IEEE
Workshop on Mobile Computing Systems and Applications, 2002.

[4] N. Cohen, A. Purakayastha, J. Turek, L.Wong, and D. Yeh. Challenges in
flexible aggregation of pervasive data. IBM Research Division, Thomas J.
Watson Research Center. Technical Report RC21942.

[5] A. Feldman, E. M. Tapia, S. Sadi, P. Maes. “ReachMedia: On-the-move
interaction with everyday objects,” in review for the International
Symposium on Wearable Computing, 2005 (ISWC05). **

[6] D. Gelernter. “Generative Communication in Linda,” ACM Transactions
on Programming Languages and Systems, 1985. Vol. 7, Pages 80-112.

[7] B. Johanson. “Application Coordination Infrastructure for Ubiquitous
Computing Rooms.” Desertation submitted for Doctor of Philosophy in
Electrical Engineering from Stanford University. Available:
http://graphics.stanford.edu/~bjohanso/dissertation/johanson-thesis.pdf

[8] T. Kindberg and A. Fox. “System Software for Ubiquitous Computing,”
in IEEE Pervasive Computing, Vol1, No. 1, 2002, Pages 70-81.

[9] H. Liu and P. Maes. “InterestMap: Harvesting Social Network Profiles for
Recommendations,” to appear in the proceedings of the Beyond
Personalization 2005 Workshop, January 9, 2005. ACM Press 2005.

[10] R. E. McGrath. “Discovery and Its Discontents: Discovery Protocols for
Ubiquitous Computing,” Department of Computer Science University of
Illinois Urbana-Champaign, UIUCDCS-R-99-2132, March 25 2000.

[11] M. Weiser. “Ubiquitous Computing,” in IEEE Computer “Hot Topics,”
October, 1993. Available: http://www.ubiq.com/hypertext/weiser/
UbicompHotTopics.html

** This paper is currently not available publicly. We would be glad to share a
copy if there is interest.

Sajid H. Sadi is currently a first year graduate student at the MIT Media Lab in
Cambridge, MA, USA. Prior to joining the Media Lab, he received his BS in
computer science from Columbia University in New York, NY, USA in 2003.
He is interested in systems design, visualization, interactive design, and
techniques for integrating the physical reality with digital metadata.
Pattie Maes is an associate professor in MIT's Program in Media Arts and
Sciences. She founded and directs the Media Lab's Ambient Intelligence
research group. Previously, she founded and ran the Software Agents group.
Prior to joining the Media Lab, Maes was a visiting professor and a research
scientist at the MIT Artificial Intelligence Lab. She holds bachelor's and PhD
degrees in computer science from the Vrije Universiteit Brussel in Belgium.
Her areas of expertise are human-computer interaction, artificial life, artificial
intelligence, collective intelligence, and intelligence augmentation. Maes is the
editor of three books, and is an editorial board member and reviewer for
numerous professional journals and conferences. She has received several
awards: Newsweek magazine named her one of the “100 Americans to watch
for” in the year 2000; TIME Digital selected her as a member of the Cyber-Elite,
the top 50 technological pioneers of the high-tech world; the World Economic
Forum honored her with the title “Global Leader for Tomorrow”; Ars
Electronica awarded her the 1995 World Wide Web category prize; and in 2000
she was recognized with the “Lifetime Achievement Award” by the
Massachusetts Interactive Media Council.

	I. INTRODUCTION
	II. Related Work
	A. Universal Plug and Play
	B. JINI Extensible Remote Invocation System
	C. The InConcert Middleware Layer
	D. The Dartmouth “Solar” System
	E. The EventHeap Model
	III. Scenario and Case Study
	IV. System Design
	A. Internal Representation
	B. Device Model
	C. Service Model
	D. System Operation

	V. Discussion and Future Work

