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Abstract. Considered the task of reducing the thickness of the contact lines of 

the pattern masks used in the formation of the microrelief of diffractive optical 

elements (DOE) and produced by laser ablation of thin films of refractory 

metals. For contact mask of DOEs on molybdenum films with thickness of 40 nm 

using a laser ablation patterns recorded with elements of the picture width 0.25–

0.3 µm. This is approximately 3 times smaller than the characteristic dimensions, 

obtained by thermochemical recording chromium films of the same thickness in 

the standard process. Reactive ion etching in an inductively coupled plasma 

through a mask was formed micro-relief height up to 300 nm in a quartz substrate. 

We have shown promising applications of thin films of molybdenum as a metallic 

mask in the formation of microrelief of DOEs. 
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Introduction 

Thermochemical laser writing [1, 2], the contact masks plays a decisive role for a 

wide range of [3-9] The methods of forming the microrelief diffractive optical 

elements. Currently, the widely used form metalized microrelief mask thin films of 

metals [1-2, 5], in which during exposure to laser radiation is focused thermochemical 

conversion of the surface layer of the working material. The starting material is 

widely used chromium [1-2, 5]. The sequence of formation of micro-relief in a quartz 

substrate, in this case, following [5, 7]: 

─ Chromium plating film of a given thickness on a substrate; 

─ The formation of topological pattern of the future impact of the laser element in the 

film; 
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─ The creation of metallic liquid etching mask film of chromium areas not exposed 

to laser radiation; 

─ Plasma etching the substrate through the resulting metallic mask (the formation of 

microrelief in the substrate). 

The disadvantage of this technology is pretty low resolution. Standard achievable 

feature size structures in this case - the order of the wavelength, i.e. about 0.8 μm  

[10]. In this regard, the actual task is the development of technological methods for 

creating elements with high spatial resolution. 

On the basis of the above-described process sequence, for example, in [11], there 

has been an element size of 0.5 μm on the structure of the chromium films 50 nm 

thick inflicted thermal vacuum process substrates of optical glass. 

Patent [12] describes how to increase the resolution of the method of laser 

thermochemical oxidation film of titanium thickness of 3 - 60 nm, deposited on the 

glass substrate. 

A characteristic feature of the studies described in [1-11], is that the resistance to 

the subsequent chemical resistance increases for portions of film exposed to the laser 

radiation. In contrast to [1-11], we propose an approach based on evaporation 

(ablation) portions of the film exposed to laser radiation.  

The purpose of this paper is the experimental investigation of the possibility of 

further increasing the spatial resolution diffraction microrelief formed by using the 

contact masks using laser recording. It is proposed to achieve this total rejection of 

liquid chemical processes of lithography through the use of new materials and other 

physical effects of producing binary microstructures. 

1. Problem statement and proposed approach 

In [13] have demonstrated the possibility of ablation of molybdenum films 

picosecond laser beam with a wavelength of 1064 nm, deposited on a sublayer of 

silicon nitride thickness of about 140 nm. The grounds were glass substrate of a 

thickness of 3 mm. Ablation of the films of molybdenum with a thickness of about 0.5 

μm was carried out by laser beam with a maximum energy flux density of 260         

W/cm
2
, and it was suggested that the molybdenum is removed from the substrate 

surface without chemical transformations. In our case, a contact mask on the basis of 

thin films of molybdenum was used for forming a diffraction microrelief in the 

following sequence of operations: 

─ sputtering thin films of molybdenum on a substrate; 

─  the formation of metal mask element, the influence of laser radiation on the film of 

molybdenum; 

─ reactive-ion etching in inductively coupled plasma substrate through a metallic 

mask (formation of microrelief in the substrate). 

The microrelief formed on substrates of fused quartz brand KV of size 50×50 mm, 

thickness 3 mm and 14 class of surface cleanliness. Film of molybdenum was 

deposited by magnetron sputtering method on the "Caroline D-12A" [14] a thickness 
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of 40 nm. The formation of topological drawing of patterns in the molybdenum film 

(metal mask) was performed on the laser writing station CLWS200 [5, 13] with the 

following parameters: operating wavelength of the laser radiation is 488 nm; the 

power supplied to the recording head, is about 100 mW; record structure – concentric 

rings with a pitch of 3 μm and the outer radius of 2 mm; the magnitude of the power 

for each ring was reduced from 100% to 0 from the maximum power in 0.5% 

increments. On the outer rings with the capacity of about 80 to 40 mW, the laser 

radiation would result in a localized evaporation of thin films of molybdenum for all 

thickness down to the quartz substrate. 

2. Analysis of the results 

The results of the research profile of microstructur-ture formed in the molybdenum 

film when exposed to a laser beam of various capacities, represented in Fig. 1. 

Measurement of the profile of the microstructure was carried out on a scanning probe 

microscope (SPM) “Solver-Pro”. On the profile visible area of complete removal of 

molybdenum (complete ablation). The boundary of the critical power at which 

ablation stops, well marked (the power decreases from left to right, Fig. 1a). On the 

edges of the formed structures have shown that the characteristic outbursts, which can 

be explained by the release of material during exposure to the beam. 

In Fig. 2 shows the same image of microstructures, but obtained by scanning 

electron microscope (SEM) “Supra 25”. The picture shows a clear band width 253-

256 nm (Fig. 2a, b). On these pictures it can be seen that the edges of the grooves are 

damage to the film or the formation of the projecting profile, which is confirmed by 

the data obtained with SPM. 

The width of the line of the laser beam (the portions of the substrate, free from 

films of molybdenum) is 220...300 nm (Fig. 1b) and depends on the magnitude of 

power greater than that required for ablation, which is confirmed by Fig. 2b. 

For the formation of diffractive microrelief was used for reactive-ion etching of 

quartz substrates at the "Caroline PE-15" induction plasma excitation from the 

generator of radio-frequency voltage of 13.56 MHz. Working chamber cylindrical 

shape of the planar type. The etching was conducted in an environment hexafluoride 

SF6 [15]. To stabilize the discharge in the plasma mixture was added in argon [16 – 

18]. Power from the RF source is supplied to the inductor that is installed at the top 

inside the chamber. Etching of the sample 1 was carried out in the following mode: 

power inductor – 400 W; power stage – 200 W; the flow rate hexafluoride SF6 – 60 

cm
3
/min; flow rate of argon Ar – 50 cm

3
/min; the pressure of a gas is 5.0∙10

-1 
Pa; the 

etching time of 10 min. 

The mode of etching of the sample 2 from the mode of etching of the sample 1 

differs only in the time of etching, is accounted to him for 15 min. 

After reactive-ion etching of the substrate remnants of the mask was removed. 
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a)    

b)  

 

Fig. 1. – SPM results profile molybdenum film after laser writing: the border at the beginning 

of the burn process when the critical power (a), the recorded patterns with a line width of 220 

nm (b) 

The resulting SPM profile of the samples is shown in Fig. 3a, b. The images show 

that the quality of the surface microrelief of the sample 1 is higher than sample 2, 

which is probably due to the long time of etching, resulting in the masking film of the 

sample 2 is completely degraded in the plasma, which led to the destruction of the 

surface microrelief. In addition to increasing the rate of etching in these areas can be 

explained by changes in the chemical composition of the masking layer during laser 

recording, the more the height of the mask at the edges of the grooves is higher than 

in other areas. On the submitted drawings the width of the lines for samples 1 and 2 – 

294 and 353 nm, respectively. 
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a)    

b)  

Fig. 2. – SEM image of the sample after laser writing: the border at the beginning of the burn 

process when reaching the critical power (a), the enlarged part of image (b) 

Conclusion 

In our experiments, the possibility of creating optical structures of submicron 

resolution, including with elements smaller than the diffraction limit (0.25 μm), based 

on the dry etching of quartz using a contact mask obtained by the method of laser 

ablation of molybdenum film. Reduction of the characteristic dimensions of the 

diffractive microrelief [19–22] to create a DOE with a smaller focal lengths, with a 

larger aperture, or DOE, is designed to lower the working wavelength. Of course, the 

proposed improvements are not suitable for everyone [23–25] technological 

approaches, but can be effectively used for a wide range [3–11] methods for forming 

diffractive microrelief. Further research is planned and on the way of formation and 
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use of thinner films (25 nm or less), which should lead to a further increase in the 

resolution of laser writing. 

a)  

b)   

Fig. 3. – SPM microrelief formed by etching in inductively coupled plasmas: profile of sample 

1 (a) profile of sample 2 (b); the line width of 294 nm and 353 nm, respectively 
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