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Introduction 
The subject of the study gradient optics is phenomena associated with optical 

effects in media with a gradual change of the refractive index [1]. Medium consisting 

of materials which are of the type GRIN (GRadient INdex), have distributed on the 

gradient refractive index material [2]. Thus, light rays are bent in a curve passing 

through them, which allows using them for the best focus [3-6]. In [3] used 

hyperbolic planar lens, which allowed to focus the light in the focal spot with a 

diameter of the half-width at half intensity (FWHM) equal 0,131λ, in [4] dealt with a 

2-D gradient microlenses Mikaelian, in [5-6] - two-dimensional photonic crystals. 

Photonic crystals due to their properties are used for several applications [7], among 

which their application to optical waveguides [8-9]. 

Currently in the integrated and fiber optics there is a large variety of optical 

waveguides with different properties. Planar waveguides and fibers along the profile 

of the spatial distribution of the refractive index can be divided into two groups: with 

step refractive index profile and with gradient profile [10-11]. In the case of a gradient 

profile refractive index varies smoothly from the center of the waveguide to the 

boundary defined by the law [11]. 

One of the major advantages of the lenses belonging to the gradient optics is that 

the optical surfaces of gradient lenses may be flat, which is important for the input-

output of radiation of the fiber.  

It is known that high-order mode exhibit greater divergence, however, the use of 

multimode method is one of the possible ways to increase the capacity of modern 
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communication systems [12]. And the most promising is the multiplexing of modes 

with different orders of the vortex phase singularity [13-14].   

Distribution and generation of free-space laser vortices studied quite well [15-18], 

in [19-21] shows how to use them to focus the simple micro-elements of square and 

cylindrical shape. However, obtaining an optical fiber separate vortex modes and their 

superpositions is a big problem [14, 22-26]. In contrast to the classic LP-mode (mode 

optical fibers), angular harmonics are invariant to the scale at the input and output of 

fiber with the help of diffraction microstructures. This gives greater freedom in 

choosing the parameters of the optical circuit. In [27] have been identified application 

features sharp focusing of laser modes for introduction into a fiber of smaller diameter 

with using the binary micro-relief applied at the output end of the optical fiber. 

Overlaying certain conditions can generate laser light having a property of 

reproducible  [28], while the phase shift between the modes at certain distances to 

approximate the desired cross-sectional intensity distribution of the laser beam [29]. 

In this paper, numerically investigate the diffraction of Gaussian beams on a linear 

gradient lens with different length. For the numerical simulation of diffraction of the 

considered laser beams using finite-difference time-domain method (FDTD), 

implemented in the software package Meep [30]. Numerical simulations were 

performed using the computing power of a cluster 775 GFlops. Features a cluster: the 

number of cores – 116, computes nodes: 7 twin servers HP ProLiant 2xBL220c, the 

amount of RAM 112 GB. 

а)   

b)  

Fig. 1. – The transverse structure of the considered optical element: а) converging lens, b) 

diverging lens 
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Investigation of diffraction of Gaussian beams 
In the paper considers two types of laser beams, which retain their structure during 

propagation in the free space in the circular polarization: a fundamental Gaussian 

mode, mode Gauss-Laguerre (0,1). 

Figure 1 shows the transverse structure of the considered optical trace element 

(diverging lens and the converging lens). Later in the linear gradient lenses, in which 

the refractive index decreases from the central part to the edges of the lens will be 

called converging lens. The refractive index gradient lenses varies linearly as: all 

considered 10 rings (width ), each of which had a their refractive index (from n = 

3.47 on the center, until n = 1.5 on the edge of the lens). 

а)  b) c)

d)  

Fig. 2. – Diffraction mode Gauss - Laguerre (0,1) on the converging linear gradient lens, the 

overall intensity of the: a) 40 tacts, b) 60 tacts, c) 80 tacts, d) the schedule of general axial 

intensity, thick black lines - 40 tacts black fine line - 60 tacts, gray line - 80 tacts 

Simulation parameters: the wavelength  = 1.55 microns, the size of the 

computational domain x, y,z[–4.5; 4.5]. The thickness of the absorbing layer 

PML ~ 0.65 (1 micron), the sampling step of space – /31, the sampling step of time 

– /(62c), where c is the velocity of light. Simulation time - 40 tacts (one for that 

meant the propagation time over a single wavelength), and was chosen so that the 

kind of laser radiation did not change with increasing simulation time (Figure 2). 

The size of the focal spot on the FWHM considered a global maximum (maximum 

intensity). Table 1 shows the diffraction of a fundamental Gaussian mode and mode 
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Gauss-Laguerre (0,1) on the converging lens when you change the length L. 

Considered the overall intensity. 

The table shows both the diffraction pattern and the size of the focal spot, that 

with increasing length of the focusing lens has been increasing. If L = 0.25λ presence 

lens has almost no effect, then L = 2λ diffraction pattern has changed significantly: 

the size of the focal spot on the half-width at half intensity decreased by 2.67 times 

(from FWHMmax = 1.95λ for L = 0.25λ, to FWHMmax = 0.73λ for L = 2λ). 

Comparing 4 and 5 columns of Table 1, it can be seen that the depth of focus, 

decreased significantly with a slight reduction of the transverse dimension of the focal 

spot in both these cases. Increasing the length of the lens results in better focus, it is 

clearly seen when comparing the first and last column of Table 1 for the case of 

fashion Gauss - Laguerre (0.1). Note that FWHMmax also decreases with increasing 

length of the lens. Also the global maximum (max) also considered at the edge section 

of the optical element (out). 

Table 1. Diffraction of Gaussian beams on the converging linear gradient lens, the overall 

intensity 
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Table 2 shows research of changes in the length L of the converging linear 

gradient lenses separately dedicated to the longitudinal component of the electric 

field. In addition to the global maximum (max) is considered the first maximum of the 

optical element (fmx). 
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Table 2. Diffraction of Gaussian beams on the converging linear gradient lens, the intensity of 

longitudinal component 
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The longitudinal electric field component (component z) in the case of the 

fundamental Gaussian mode also becomes smaller with increasing length of the lens. 

Comparing Tables 1 and 2 for the case of mode Laguerre - (0,1), it should be noted 

that increasing the length of the lens, there is a significant enhancement z components, 

and the size of the focal spot begins to form mainly due to the longitudinal component 

of the electric field. This is particularly noticeable when analyzing the last column of 

table 1 and 2: for mode Gauss - Laguerre (0,1) size of the focal spot next to the central 

part of which contains the longitudinal component of the electric field is FWHMout = 

0.4λ, while the total intensity of the light Spot contains a cross-polarized side lobes 

that broadens the spot size to FWHM = 0.48λ. In the plane of maximum intensity, the 

effect of cross-polarized components of the electric field is more significant 

(broadened to 0.76λ). Of special note is the case of L = 0.5λ, when the longitudinal 

component of the electric field near the plane of the first element in the maximum was 

obtained by the minimum size of the focal spot: FWHMfm = 0.33λ, but as you can see 

on the the graphs - by increasing the intensity of the side lobes. 

Table 3 shows the result of diffraction of Gaussian beams at the diverging linear 

gradient lens when changing the length L, that is, on the lens, whose refractive index 

increases from the center to the edges. Such a lens can be used for the introduction of 

laser radiation into a hollow (annular) optical waveguide. The refractive index in this 

case, i have a similar case considered earlier: also examined 10 rings (width ), each 
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of which had a their refractive index. But they are changed in the reverse order of n = 

1.5 in the middle, to n = 3.47 at the edge of the lens (Figure 1b). 

Table 3 shows that the longitudinal component of the electric field using Gauss-

Laguerre modes (0.1) in the plane of maximum intensity able to obtain a focal spot 

size smaller than the collecting lens, and in the case of L = 1.55λ size of the focal spot 

is the focal spot in the case of L = 2λ in Table 2. However, the intensity of the spots 

materially ~ 5 times less. 

Table 3. Diffraction of Gaussian beams on the diverging linear gradient lens 
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Fig. 3. – Graphics cross-section of the intensity of the longitudinal component for modes Gauss 

- Laguerre (0,1) on the diverging linear gradient lens, black thick line - h = 1.55λ, black thin 

line - h = λ 
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Figure 3 is a graph showing the cross section of the components of z to Laguerre-

Gaussian modes (0,1) (bottom row of Table 3). As seen from the graph, a reduction 

intensity of the focal spot accompanied by decrease intensity of side lobes. 

Conclusion 
In this paper using the FDTD method, was numerically research of circularly 

polarized Gaussian beams passing through a linear gradient lens, considered two 

options of lenses - converging and diverging.  

It has been shown that increasing the length lens provides a more compact size of 

the focal region in all directions, both for total intensity and the longitudinal electric 

field component.  

The minimum size of the focal spot was not obtained at the maximum intensity, 

but at the first maximum out of optical element. For modes Gauss-Laguerre (0,1) the 

minimum size of the focal spot on the FWHM for the longitudinal electric field 

component was 0.33 wavelength for L = 0.5λ; in the plane of maximum intensity 

using a diverging lens for z components able to obtain a focal spot size less than when 

using a converging lens (at falling intensity ~ 5 times). 
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