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Introduction 
Fractional Fourier transform (FrFT) is a set of linear transformations that 

generalize Fourier transform. Fourier transform is generally interpreted as a 

convention of the time domain of the signal to its frequency domain. 

The canonical FrFT was considered [1] as the Fourier transform of -order, where 

 is the real value. We can likewise define the FrFT as the operation of the frequency-

time distribution (Wigner distribution function) rotation at a certain angle [2]. 

Originally, FrFT was used in quantum mechanics; however, recently it has 

increasingly become a focus of opticists. As a result, extensive research involving its 

properties, optical realization and potentiality opportunities in optic applications has 

been performed. Thus, currently FrFT is actively used in optical image processing [3]. 

Moreover, the fractioning of some transformation provides a new degree of freedom 

(fraction order) that can be used for a more complete description of the object (signal) 

or as an additional encoding parameter. 

FrFT is used in differential equation solving, in quantum mechanics and quantum 

optics, in optical theory of diffraction, in optical system and optical signal processing 
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descriptions including the application of frequency filters, time filtration and 

multiplexing, as well as in pattern recognition, in wavelet-transformations, in 

operations with chirp-functions, in encryption, for neural network creation and other 

applications. A more detailed review of FrFT can be found in the paper [3] produced 

by T. Alieva et al. 

The modular lens system and the system of several spherical and/or cylindrical 

lenses are among the methods of FrFT optical realization [4-8]. Some of these 

systems (especially cylindrical lenses) are used for astigmatic transformation in order 

to form vortex beams [5, 8-10]. 

One of application of FrFT is the description of laser beam propagation in gradient 

index media [11, 12]. 

In this work, we use one-dimensional FrFT to model optical signal propagation in 

optical waveguides with parabolic dependence of the refractive index. The 

eigenfunctions of  the transforms are Hermite-Gaussian modes [1]. 

During the modelling process special attention is given to Airy-Gaussian beams, 

which carry finite power and keep the properties of non-diffracted propagation in a 

partial area. They can be experimentally realized with a particularly good 

approximation [13-16].  

1. General theory 
The light beam propagation through the ABCD-system in one-dimensional cases 

is described by the Huygens integral: 
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where 2 /  k , 
1 1( )U x  is input field, 

2 2( )U x  is output field. 

In gradient index media with the refraction index  2 2

0 1 / 2 n n x a , the matrix 

of ABCD-system is (beam propagation from 1 0z  to 2 z z ) [13, 14, 17, 18]: 
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With this type of matrix the integral (1) turns into FrFT. 

The complete set of FrFT eigenfunctions is the following set of Hermite-Gaussian 

functions: 
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where ( )nH x  – a Hermite polynomial of order n: 
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If the FrFT has finite integration limits (in other words the input beam is limited), 

its eigenfunctions are somewhat different from the Hermite-Gaussian modes [19]. 
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The propagation of a light beam through the gradient index media was modeled. 

The Airy-Gaussian beams are: 
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Furthermore, the cosine distribution function is: 

( ) cos( ),

, , .
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In addition, the rectangular function, triangle function and eigenfunctions have 

been simulated. 

2. Simulation 
Method 1: direct numerical calculation of FrFT by definition. 

The integral (1) is rarely solved analytically, so we use numerical computations. If 

typical methods are use, the numerical calculations of quadratic exponents require a 

very large number of sampling points because of rapid oscillations in the kernel. The 

problem is especially pronounced if  is close to 0 or ±2. We assume that functions 

and their Fourier transformations are limited (they are not equal to zero in finite 

intervals) and this difficulty can be avoided. If 0.5 ≤  ≤ 1.5 or 2.5 ≤  ≤ 3.5, we can 

directly calculate the integral. If -0.5 <  < 0.5 or 1.5 <  < 2.5, we can use the 

property of additivity: 
1 1    , where in the transformation of -1 order may be 

found immediately. 

For the integration we use Simpson's rule (n is even): 
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Although this method of FrFT calculation can produce accurate results, it operates 

slowly and has a computational complexity O(N
2
) [20]. 

Method 2: Fast FrFT. 

FrFT is a special case of the more general transform class sometimes known as 

linear canonical transformations or quadratic-phase transformations. The elements of 

this class can be decomposed to a sequence of simple operations such as chirp-

multiplication, chirp-convolution, scaling and typical Fourier transform. There are 

two different decompositions demonstrated here, leading to different algorithms. 

Method 3: the decomposition into chirp-multiplication, chirp-convolution and 

another single chirp-multiplication sequence. 

In this approach, we assume that -1 ≤  ≤ 1. The transformation (1) can be written 

as: 
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Method 4: another decomposition involving the Whittaker-Shannon interpolation 

formula (sinc-interpolation). The defining expression of FrFT can be written as: 
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The function  
2exp ' ( ')
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 can be represented by the Shannon 

interpolation formula: 
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We substitute (12) in (11), change sequence of integration and summation and use 

certain algebraic manipulations to obtain the following expression: 
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There are other methods, for example those described in [21], however they are 

not well suited for plotting images on a plane. The modeling results are demonstrated 

in Figures 1-6. 

 

Fig. 1. – The propagation of Airy-Gaussian beams (version 1) 
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Fig. 2. – The propagation of Airy-Gaussian beams (version 2) 

 

Fig. 3. – The propagation of cosine function signals 

 

Fig. 4. – The propagation of rectangular pulses 

 

Fig. 5. – The propagation of triangular pulses 
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Fig. 6. – The propagation of eigenfunctions 
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