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Introduction 

Asymptotic methods have always been in the focus of scientists-opticians [1-3]. 

These methods have evident interest in recent years [4-11]. Scientists working in the 

field of diffractive computer optics, also actively used the opportunities provided by 

asymptotic methods [12-17]. Asymptotic methods are especially good in the study of 

such class of diffractive optical elements (DOEs), as focusators of laser radiation [14-

17]. In the paper I give an overview of the methods and possibilities of the asymptotic 

studies for solving the computer optics. In particular, I analyze the relevance of the 

use of the results in the design of diffractive optical elements for laser material 

processing. 

1. Focusators research  

For creating a new focusator we have several important steps: obtaining a phase 

function; study of the phase function; choice of sampling parameters and method for 

manufacturing diffractive microrelief; calculation and production of focusator; 

experimental study of the microrelief and output parameters of focusator. To study the 

phase function of focusator scientists use analytical calculation of the diffraction 

patterns of the focused radiation. This calculation must take into account the finite 

size and specific physical parameters of created focusator [12-17]. Typically, the 
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geometric optics approximation is used to calculate the phase function of focusator. 

Diffractive analysis allows us to explore the limits of this approach. It allowed us to 

identify the initial values of the physical parameters under which the distortion of the 

focus area began. This analysis allows us to identify possible errors in the analytical 

solution of the inverse problem of the diffraction theory.  

However, we can carry out diffractive analyzes only for simple phase functions, 

axially symmetric illuminating beams and focus areas - such as the ring [12], a set of 

points [18-20], longitudinal [21-24] or cross [15-17, 25-26] segments. In some cases, 

the analytical study can provide diffractive corrections to the phase function of 

focusator [14]. Unfortunately, in the framework of the analytical study, we cannot 

take into account the effect of sampling and quantization of the phase function 

focusator arising during the manufacture of the DOE. However asymptotic analysis is 

an important stage of research and complements the capabilities of the computational 

experiment [21-28]. 

Unfortunately, asymptotic methods do not allow us to analyze different methods 

for manufacturing micro-relief of diffractive optical elements [29-36]. Such a study is 

necessary to select the most appropriate technology for manufacturing DOEs intended 

for solving a particular problem. 

As an example, I cite the results of the asymptotic study of the geometric-optical 

focusator, concentrated laser beam into the ring [12, 21]. Fig. 1 shows the results of 

the asymptotic calculation of the intensity distribution in the focal plane of the 

geometric-optical focusator into the ring with the following parameters: focal length f 

= 750 mm; focusator diameter 2R = 25.6 mm; the wavelength of focused beam λ = 

0.6328 µm; focal ring diameter r0 = 0.1 mm. 

 
Fig. 1.  – The intensity distribution I(x,y) in the focal plane of the focusator into the ring 

Asymptotic calculation shows that the diffraction width of the focus ring is 

comparable to the radius of the ring for focusator with these parameters. As a result, 

the ring begins to merge with the central spot. The asymptotic calculation shows that 

such a draining does not occur when the radius of the focal ring in several (and 

furthermore many) times larger than 0.1 mm. So we clearly see the limitations of the 
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methods of geometrical optics in calculating the phase function of focusator. The 

results can also be used in the study of other types of DOEs [37-45] and to focus the 

surface electromagnetic waves [46-48]. 

2. Temperature calculation 

Asymptotic analysis allows us to optimize the phase function of focusator for use 

in a specific laser processing technology of a given type of material [49-55]. 

Focusators have broad prospects for application in a variety of laser materials 

processing technologies [49-55]: hardening, cutting, welding, drilling, branding, etc. 

Therefore, the problem of investigating the temperature characteristics of the laser 

effects produced by focusators is very important. Known focusators form a 

predetermined intensity distribution in some areas. Laser technology requires forming 

a desired temperature distribution on the object surface intended for processing. In 

[26], we conducted an analysis of the temperature distribution formed by focusator 

into segment (focusator focuses laser light into a line segment located in the focal 

plane). Asymptotic approach allowed us to obtain a phase function of focusator 

focusing laser beam into the line segment with a predetermined temperature profile. 

For example, in [26] we calculated optical element for focusing the circular (and ring) 

beam into the line segment with a constant temperature distribution. Fig. 2 shows the 

simulation results for these focusators. Fig. 2a shows a normalized graph of the 

calculation of temperature distribution along the focal segment for thermal focusator 

focusing uniform beam of circular cross section of radius R = 5 mm with the 

following parameters: the wavelength of the focused radiation λ = 1.06 µm; focal 

length f = 100 mm; length of focal segment 2d = 2 mm; (4at0)
½
 = 20 µm (here a is 

thermal diffusivity, t0 is the duration of the laser action). 

Fig. 2b shows the calculated normalized graph of the temperature distribution 

along the focal segment for the heat focusator focusing uniform beam of annular cross 

section with radii R1=3 mm and R2=5 mm with the following parameters: the 

wavelength of the focused radiation λ=1.06 µm; focal length f=400 mm; length of 

focal segment 2d=8 mm; (4at0)
½
 = 0.2 mm (here used value for thermal diffusivity of 

the steel a=12 mm/s
2
). We can interpret the data in Fig. 2 as a result of forming by the 

heat focusator a constant temperature profile on the steel surface by the end of the 

laser pulse duration t0 = 0.001s. For investigated focusators standard deviation from 

the constant temperature is 8.8% (for the illuminating beam of circular cross-section, 

Fig. 2a) and 12.2% (for the illuminating beam of the annular cross-section, Fig. 2b). It 

is about two times better than using geometrical optics focusators. 

3. Electromagnetic theory 

In recent years, we are actively developing new asymptotic methods within the 

electromagnetic theory for calculating the field generated by DOE [56-65]. 

For example, in [57] we presented an asymptotic method for solving problems of 

diffraction on the diffractive microrelief. This method combines the geometric-optical 

approach and solution to the problem of diffraction by a periodic structure with a 

period comparable to the wavelength. We solved the problem of diffraction by a 
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standard quasi-periodic structure that combines the functions of a beam splitter and a 

diffraction lens. On the basis of the standard solution of the problem we got a simple 

expression for the field in a plane adjacent to the DOE. The resulting expression 

allows us to estimate the distribution of the field at the output of the DOE without 

resorting to complex computational methods. 

 

a)  

b)  

Fig. 2.  – The temperature distribution T on the focal segment for thermal focusators: a) 

uniform illuminating beam with a circular cross-section; b) uniform illuminating beam with an 

annular cross-section 

We have obtained the results of calculation for the intensity distributions of 

electromagnetic radiation in the focal plane of the focusator into ring for various 

combinations of system parameters. Calculation of the field in the focal region, we 

carried out on the basis of the distribution of the field at the output of the DOE 

calculated within the electromagnetic theory [57]. Further, the field in the focal plane, 

we calculated using the propagator, described in [58], on the base of the field at the 

output of the DOE. 

Fig. 3 shows an example for calculation of fields generated by focusators into the 

ring for the values shown in Table. 1 (all dimensions are in microns). For small 

relationship σ/f (σ is parameter of an illuminating Gaussian beam, f is the focal 

length), the intensity distribution in the focal plane of focusator into the ring is close 

to the intensity distributions obtained [12, 21] in the framework of scalar 

approximation. In this case, the energy distribution has good axial symmetry. The 
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symmetry is improved in the case of increasing the focal length. The asymmetry in 

the energy distribution along the ring appears at the increase in the ratio σ/f. The 

presence of asymmetry is due to the following factors: 

 presence of linear polarization of the incident wave destroys radial symmetry, since 

the electric fields from different points of the focusators come at different angles in 

different points of the focal plane; 

 in the case of linear polarization of the incident wave the diffractive coefficient 

depends on the direction of the local grating, it appears with increasing ratio σ/f. 

Table 1. The parameters of focusators 

Parameter Value (option 

1), µm 

Value (option 

2), µm 

Wavelength λ 1 0.1 

Parameter of 

Gaussian beam σ 

50 50 

The distance from 

the optical element 

to the observation 

plane 

1000 100 

Focal length f 1000 100 

Dimensions of the 

optical element 

500×500 500×500 

Uneven intensity of light in the observation plane of focusator into ring caused 

unevenness coefficient values in transmission (reflection) of the E- and the H-

polarization depending on the current value of the period of the band structure 

(diffraction grating). 

Conclusion 

In recent years, scientists were actively developing asymptotic methods in the 

frame of the electromagnetic theory for calculation of the field formed by the DOEs 

[56-64]. We use this methods not only for the study of diffractive optical elements (in 

particular, of short-focus DOEs), but also for the study of nanophotonics components 

[66-74], for the design of equipment for hyperspectral remote sensing [75-79] and 

solving other urgent tasks of diffractive nanophotonics [80]. 
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Fig. 3.  – The calculated intensity distribution in the focal planes of focusators into the ring 

with the parameters given in the Table 1 (option 1 - the top; option 2 - the bottom) 
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