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Abstract. In the present study we consider the cases of integrability of 

hyperbolic equation with variable coefficients. For this purpose, a Fourier 

transform is used in combination with a special representation of the transform 

in image space. 

Various versions of closed solutions are formulated with the help of 

introduced arbitrary functions. The solutions obtained in the work are absent in 

the known reference manuals on differential equations, and the results obtained 

for continuously-heterogeneous anisotropic media with cylindrical or spherical 

symmetry at certain ratios of elastic constants of the material complement the 

well-known studies of wave processes in similar media [4,5] . 

Keywords: hyperbolic equations with variable coefficients, Fourier transform, 

continuously inhomogeneous anisotropic medium, wave processes. 

Citation: Senitskiy A.Yu., Evdokimova N.N. On some applications of one 

wave equation with variable coefficients. Proceedings of Information 

Technology and Nanotechnology (ITNT-2015), CEUR Workshop Proceedings, 

2015; 1490: 227-233. DOI: 10.18287/1613-0073-2015-1490-227-233 

In this work the procedure of building the general solution of hyperbolic equations 

of general form is presented, which is very effective, along with the methods of 

transformation of equations which use the group analysis [1,2] and methods of 

factorization [3]. 

1. Construction of closed solutions 

Let us consider the following differential equation in the area 

}1,0{: art  : 
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where ],1[)(),( aCrBrA  . 

We assume that function ),( trU  satisfies Dirichlet conditions, therefore it can be 

represented by a Fourier integral, recorded as formulas: 
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We apply transformation (2) to (1), assuming that 0
)0,(

)0,( 





t

rU
rU . Then 

in the space of images we obtain the following equation:  
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The solution of the equation is represented in the form: 

)(),()(),( rpssGrprU   ,           (5) 

where )()(),( sGиrr   are  twice continuously-differentiable functions of their 

arguments. As a result of setting (5) in (4), we obtain the differential relation 
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which can be satisfied in various ways. In works [6, 7] we obtained closed solutions 

of equation (1), containing the wave functions. Let us consider an alternative option 

of building the general solution of equation (1) that does not contain wave functions, 

assuming that 1)(' r , i.e.       

rr )( .                                                                                             (7)                                                                

Case1. 

Suppose we have the following equations: 
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In this case, equation (6) is converted to the following form 
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The general solution of the latter equation can be represented as follows [8]: 
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Performing convertion equations (5), (10), we find 
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From (8) correlation we find 
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Finally, from equation (9) we obtain 
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Theorem I. 

If the coefficients of equation (1) satisfy correlation (13), then expressions (11) and 

(12) are its general solution. 

 

Case 2. 

Suppose that condition (7) is met and following correlations are valid: 
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where R . 

Then (6) is transformed into Bessel equation, i.e. 
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Its solution is written as 
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Here )(),( sYsI   - Bessel function of   " " order of I and II kind. 

Performing conversion of expression (5), taking into account (16), we determine 
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Taking into consideration (7), from (14) we find function 
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Further, from (15) it follows that 
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Theorem II. 

When condition (19) is met, expression (17) is a closed solution of equation (1). 

2. Problem statement 

The differential equation of motion of continuously-heterogeneous anisotropic 

elastic medium in the case of its axis-symmetric deformation, as well as the equations 

of state, connecting components of the stress tensor and the displacement vector, are 

recorded as follows [9]. 
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Here ),(),,(),,( ********* trtrtr yyrr  are the relevant components of the 

normal stresses; 

),( *** trU  are  the radial component of the displacement vector; 

)(),( *

*

** rrcik  are respectively elastic characteristics and density of heterogeneous 

anisotropic medium; 
** , tr are radial coordinate and time; 2,1n is value, corresponding to the 

cylindrical and spherical cavities.  

After substitution of correlations (21) into (20) and introducing the dimensionless 

quantities by formulas 
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Here a  is the cavity radius; 
**

33,a are corresponding stiffness coefficients of 

density of homogeneous anisotropic medium. Equation (20) and correlation (21) in 

area }1,0{: art  are defined by the system of equations 
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If at t=0, the elastic medium is at standstill, then 
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 . This corresponds to a constant speed of 

propagation of elastic waves in anisotropic heterogeneous medium. Consequently, the 

differential equation (22) of hyperbolic type models wave processes propagating at 

finite speed. 

Case 1
*
.  

From comparing the respective equations (24) and (13), it follows: 

Theorem III. 

Expression (11) defines dynamic displacements, and by formulas (23) and 

heterogeneous anisotropic medium stress, if its elastic characteristics )(rсik    satisfy 

the functional equation 

   

.))(1(
4

24
)ln()ln(2

12

2223122

11

2

2

11112

2






















dr

dс
rсссn

rс

n

r
rс

dr

d
rс

dr

d nn

                                                 (26) 

Let us consider as an example a heterogeneous anisotropic medium, the elastic 

characteristics of which are periodic functions of the radial coordinate, i.e., 
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After substitution of equations (27) in the criterion formula (26) and simple 

algebraic transformations, we obtain relations connecting the elastic constants of the 

material 
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Thus, in the case of a sinusoidal law of heterogeneity of elastic and inertial 

characteristics of the anisotropic material (27), solution (11) is valid only for a 

spherical cavity (n=2). At that the elastic constant is chosen arbitrarily.  

Case *2 . 

Comparing the respective equations (24) and (19), it follows: 

Theorem IV. 

In order for expression (17) to represent a closed solution of the considered 

dynamic problem for an anisotropic heterogeneous medium, it is enough to meet the 

functional relation, connecting characteristics )(rсik  
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Suppose that characteristics of material )(rсik  are changed by the power law 
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Here m is an index of anisotropic medium heterogeneity; 

3,2,1,; jiaij are dimensionless constants of anisotropic material. 

Then relation (29) takes the form  
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From (31) it follows that three of the four parameters ika  can be selected 

arbitrarily. If the elastic characteristics of the material change by the cosine law, 
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the elastic constants ika  of the material satisfy relations 
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Thus, in this case, only one elastic constant of the anisotropic material is arbitrary. 
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