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Abstract. In this paper we describe the method of adaptive mesh refinement, 

based on the estimation  of eigenvalues of discretization matrix. This estimation 

based on Gershgorin Circle Theorem. This method can be used for unstructured 

meshes in two-dimensional problems as well as and in three-dimensional. The 

implementation of the grid adaptation algorithm was made within OpenFOAM 

open source library of continuum mechanics. This library consists of a set of 

modules for computational needs, modules written in C++. We give two 

numerical examples, which show the effectiveness of the proposed method of 

mesh adaptation. 

Keywords: adaptive mesh refinement, Gershgorin Circle Theorem, 

OpenFOAM 

Citation: Avdeev E.V., Fursov V.A Ovchinnikov V.A. An adaptive mesh 

refinement in the finite volume method. Proceedings of Information 

Technology and Nanotechnology (ITNT-2015), CEUR Workshop Proceedings, 

2015; 1490: 234-241. DOI: 10.18287/1613-0073-2015-1490-234-241 

1. Introduction 

Finite volume method (FVM) is a mesh method based on differential equations 

approximation or on integral equations, which correspond to balance relations. An 

important property of finite-volume methods is that the balance principles, which are 

the basis for the mathematical modelling of continuum mechanical problems, per 

definition, also are fulfilled for the discrete equations conservativity [1]. 

In the FVM the computational domain is divided into a number of control volumes. 

The values are calculated at cell centers. The values of fluxes on the cell interfaces 

are determined through interpolation of values at the cell centers. As a result we 

obtain the system of algebraic equations [2]. 

As in the finite element method, in finite volume method a mesh is constructed, 

which consists in a partition of the domain where the space variable lives. The 

elements of the mesh are called control volumes. The most compelling feature of the 

FVM is that the resulting solution satisfies the conservation of quantities such as 

mass, momentum, energy, and species. This is exactly satisfied for any control 
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volume as well as for the whole computational domain and for any number of control 

volumes. 

One of the advantages of the finite volume method over finite difference methods 

is that it does not require a structured mesh. Finite volume methods are especially 

powerful on coarse nonuniform grids and in calculations where the mesh moves to 

track interfaces or shocks.  

In general case it is impossible to know a priori how to design an optimal mesh, i.e. 

mesh with minimal number of cells still satisfying the defined tolerance of the 

computational error. For transient problems, where the flux is unsteady and the points 

of interest can reposition during the simulation, uniform mesh becomes ineffective 

and would need to be very fine to satisfy the error tolerance throughout the whole 

simulation. To solve this problem a scheme where the mesh self-adapts its structure 

upon some criteria can be used. 

The refinement based commonly on the physical quantity gradient field (see [3] 

and [4]). Our algorithm based on discretization matrix eigenvalues estimation, which 

mark cells to be refined or likewise mark cells to be unrefined. This approach has a 

more effective use of cells and thereby lower computational cost. 

2. Problem Formulation 

Suppose that after equations have been discretized by FVM we obtain the system 

of algebraic equations, which can be written in matrix form as 

Ax = b   (1) 

where A – square 𝑛 × 𝑛 discretization matrix, 𝑥 − 𝑛 × 1 column vector of unknown 

variable, 𝑏 − 𝑛 × 1 right-hand column vector. The problem consists in finding vector 

x whose elements are the values of physical quantity in the cell centers. 

It is known that the accuracy of the solution of the problem is largely connected 

with conditionality of the matrix A. Perform the following transformation with the 

expression (1). 

0 = Ax + b  

x = (I A)x + b ,  (2) 

Where I – is the identity matrix. Then rewrite the expression (2) taking into account 

that we use iterative method for solving, i.e. 

+1x = (I A)x + bk k     (3) 

Note that error of the k-th and (k+1)-th iteration respectively can be written as 

follows: 

x xk ke  
, 1 1x xk ke   

.
  (4) 
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Subtract (3) from (2) 

1x x (I A)(x x )k k=    

or using (4) 

1 (I A)k ke = e   

1 Mk ke = e   (5) 

Expression (5) shows that for the sequence error reduction at each iteration, it is 

necessary that for all eigenvalues of the matrix performs: 

(M) 1   

Thus we see that the eigenvalues of the matrix M = I - A depend on the matrix  A 

elements and play an important role in achieving the required accuracy. In particular, 

they show whether the problem under these conditions converge, converge to the 

correct solution and how fast. 

On other hand, it is known that the elements of matrix A and the right-hand side b 

are functions of the mesh spacing. Consequently, there is a relation between 

conditionality and mesh discretization step. Identification of this relations using 

approximated equations is not easy task. Moreover, in closed source software, this 

details are hidden. Therefore we construct procedures of direct analysis of matrix M 

to identify the relations of conditionality and solution accuracy with mesh and 

adaptive mesh refinement. 

3. Adaptive mesh refinement algorithm 

It is known that the solution of eigenvalues problem is significant and has high 

computational cost. Moreover, if the case is ill-conditioned, then small eigenvalues 

can be calculated with low accuracy. Therefore, we have sufficient interest to use 

simple estimates of eigenvalues, estimates which calculated by the matrix elements 

insensitive to its conditioning. 

Gershgorin circles method [4] is a well-known method for the localization of 

eigenvalues. According to Gershgorin’s Theorem every eigenvalues satisfies: 

M Mii ij
i j




  
,
             (6) 

where  1, 2,...,i n . 

Let Mi ij
j i

d


  . Then the set  

is called the ith Gershgorin disc of the matrix M. This disc 

is the interior plus the boundary of a circle. The circle has a radius id  and is centered 

at (the real part of Mii , the imaginary part of Mii ). 
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Calculating of estimates of the eigenvalues based on equation (6) is the 

computationally simple task. However, sufficiently strong upper and lower 

estimations are possible only for diagonally dominant matrices: 

M Mii ij
i j

 
.
 

If the matrix is not diagonally dominant, then lower and upper estimations of 

eigenvalues are undefined. 

We offer to predict conditionality and mesh quality associated with conditionality 

through the right boundary of the Gershgorin circle: 

Fi ii ij
i j

m m


  
.
             (7) 

This boundary can be easily calculated. The maximum value, which calculated 

among the boundaries for all Gershgorin circles, defines an upper bound for the 

maximum eigenvalue of the matrix. Because of change of mesh all eigenvalues 

“shift” together with appropriate Gershgorin circles. There is reason that changes in 

the mesh, which lead to increase 𝐹𝑖 in (7), may lead to increase small eigenvalues. 

Based on these assumption we have the mesh adaptation algorithm, which based 

on the analysis of scalar field 𝐹𝑖  1, 2,...,i n , which formed by calculating the 

values of (7) for all mesh nodes. Then mesh adaptation was made based on this scalar 

field. The normalization of field F is performed before each iteration: 

F
F

max(F )

i
i

normalised i

              (8) 

Thus the values of the field F are within the semi-interval (0;1] and it let us to set 

in OpenFOAM to refine mesh for cells with 𝐹𝑖 close to 1 and unrefined cells with Fi  

around 0. Values of field F decrease while refining mesh and increase while coursing 

mesh. 

4. Computational examples and analysis 

In order to illustrate feasibility and effectiveness of the algorithm, we use 

following two examples [5]. Both examples use modified laplacianFoam OpenFOAM 

solver called laplacianFoamF. New solver has ability to work with dynamic mesh, 

which allows to adapt mesh. 

We compare AMR based on temperature scalar field T, i.e. based on temperature 

gradient minimization (AMR T) and AMR based on described above scalar field F (8) 

– (AMR F). For every example we tried to get about the same amount of cells. 

Initial geometry of first example, as shown on Fig.1, thin square plate. The length 

along the x-axis and z-axis is 100 meters, along y-axis is 1 meter. 
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Fig. 1. – Geometry of first example case 

Boundary conditions: on the surface xy, z=0: temperature T = 1°C; on other 5 

surfaces: grad(T) = 10. These boundary conditions were chosen for ease of estimation 

error of the final result. In this case, the temperature decreases linearly from the 

heated surface. 

We want to find out temperature distribution. The heat transfer expressed by 

Laplace equation: 

2
0

T
T

t



  


,             (9) 

where for the mathematical treatment is sufficient to consider the case 1  . 

For comparison, residual plots for both AMR are given (see Fig.2). As you can see 

from Fig.2, in case with AMR F adaptation the residual converges little faster than 

that of the AMR T case. 

In second example we show the work of the AMR F on a more complex geometry. 

Geometry and boundary conditions are showed on Fig.3. 

As shown in Fig.3 one surface of flange has temperature 1 573T C   and second 

has temperature 2 273T C  . On all other surfaces the temperature gradient is set to 

0, that walls do not conduct heat (adiabatic walls). 

During testing, we found that AMR based on scalar field F detects too large cells, 

but does not take into account the boundary conditions (see Fig. 4). This occurs due to 

the fact that the boundary conditions are contained in right-hand column vector b of 

Eq.1, but almost no effect on discretization matrix M. 

AMR based on temperature gradient field T vice versa takes into account the 

boundary conditions, but skips “bad” cells. 

Therefore for comparison was made third “hybrid” variant, which include first five 

iterations of AMR F and after that it continues with AMR T. For comparison, residual 

plots of three cases are given (see Fig. 6). 

As can be seen from the figure, AMR FT has the best residual, AMR F and AMR 

T slightly worse. 
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Fig. 2. – First example, AMR F and AMR T residuals 

 

Fig. 3. – Second example, geometry and boundary conditions 

 

Fig. 4. – AMR F detects and refines too large cells 
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Fig. 5. – AMR T takes into account the boundary conditions 

 

Fig. 6. – Comparison of AMR F, AMR T and AMR FT 

5. Conclusion 

In the proposed method mesh refinement based on discretization matrix 

conditioning. As can be seen from above two examples – the method does not provide 

a significant performance increase compared to AMR, based on temperature gradient 

minimization, but use AMR T not always convenient or possible. Such situations are 

possible in complex problems with dynamic geometry, multiphase flows, etc. Our 

proposed method allows to choose more suitable AMR settings than in case of    

AMR Т. 
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