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Abstract. The aim of the paper is to calculate the mode set in weakly guiding 

fibers using a calculation of the eigenmodes of the optical fiber with a step 

index of refraction. The superposition of modes with various properties of self-

reproduction for a given set of physical characteristics was determined. The 

propagation of light signals in the non-ideal optical waveguides has been 

studied by computer simulation using the commercial software BeamProp. 
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Introduction 
The optical fiber is considered now to be the perfect physical environment for 

information transfer as well as the most preferable environment for significant data 

flows over considerable distances. Optical fibers have wider applications in computer 

networking and telecommunications thanks to a number of the features inherent in 

optical waveguides. 

Success achieved in the production of optical fibers allows information to be 

transferred at high speeds over hundreds of kilometres without regeneration of a 

signal. High-noise immunity, safety of the transmitted data and electromagnetic 

compatibility of communication channels are serious arguments in favour of fiber-

optical systems. 

There are two types of optical fibers: single-mode and multi-mode. Fibers with 

various refractive index profiles (step-index profile or gradient-index profile) are 

used, depending on the field of application. For step-index optical fiber, a refractive 

index profile characterized by a uniform refractive index within the core and a sharp 

decrease in the refractive index at the core-cladding interface is used so that the 

cladding is of a lower refractive index. Gradient-index fiber is an fiber whose core has 

a refractive index that decreases with increasing radial distance from the optical 

axis of the fiber. In this investigation, we have looked at fibers with a step profile 

index of refraction because of their wide extension. 

The term "mode division multiplexing" (MDM) is used for multimodal optical 

fibers when describing methods for data transmission channel multiplexing, with each 
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spatial fiber mode being treated as a separate channel that carries its own signal [1,2]. 

The essence of mode division multiplexing is as follows: as a linear superposition of 

fiber modes, laser beams can be used to generate signals that will effectively transmit 

data in a physical carrier - a multimodal fiber; the data transmitted can be contained 

both in the modal composition and in the energy portion associated with each laser 

mode [3-13]. In addition, the division of the vortex basis connected with orbital 

angular momentum is especially perspective [7-14]. 

Recent years have witnessed a number of research activities in the field of singular 

optics [15, 16, 25-27]. In terms of quantum theory vortex modes they are 

characterized as spin-orbital states that the current speed of transfer on one fiber 

allows to increase repeatedly without additional polarizing multiplexing. 

1. Mode set in weakly guiding stepped-index fibers 
Use of the diffraction optical elements is the most popular method for devices of 

generation and selection of vortex modes [8, 10, 17-21]. For most popular commercial 

fibers, the core-cladding index contrast, Δn = n1–n2, is less than 1%. For such fibers, 

termed weakly guiding fibers, assuming n1≅n2, in place of the hybrid modes of the 

propagating electromagnetic field we can consider their linearly polarized 

superpositions. Considering that for the LP-mode the transverse field is essentially 

linearly polarized, a complete set of modes takes place when only one electric and one 

magnetic component are predominant.  

The aim of this study is to simulate an ideal optical fiber with a superposition of 

linearly polarized modes determined by the given physical characteristics of a 

possible set of modes and their superpositions, with various properties of self-

reproduction. 

Moreover, the intention is to study the propagation of light signals in non-ideal 

optical waveguides with a Beam PROP simulation tool (RSoft Design, USA), which 

implements the well-known Beam Propagation Method (BPM). 

To research a set of modes, we considered the weakly guiding cylindrical optical 

fiber with a step profile of index of refraction. The core radius is a, the cladding 

radius is b and the respective refractive indices of the core and cladding are n1 and n2 

(Fig.1). The electromagnetic field extending in such a waveguide is conveniently 

described using the Bessel functions [22-24]. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. – The structure of a typical single-mode fiber 

 

https://en.wikipedia.org/wiki/Single-mode_fiber
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Approximation LP-modes are applicable for weakly guiding fibers: 
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In Eq. (1), the first-kind Bessel functions  pJ x  describe the field in the fiber 

core, whereas the modified Bessel functions  pK x  are used for the cladding. 
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  form the cut-off number and λ 

is the wavelength of laser light in air. The cut-оff number V, which includes the main 

parameters of fibers and laser radiation, is the number of modes propagating in the 

fiber. The numerical simulation parameters are as follows: the core radius is a=5μm, 

the cladding radius is b=62.5 μm, and the respective refractive indices of the core and 

cladding are n1=1.45 and n2=1.44. For example, when λ=0.633 m and V≈8,4398, 

fiber with the above parameters in addition to the fundamental mode LP01 will 

behave as LP02, LP03, LP11, LP12, LP21, LP41. Figure 2 shows cross-section 

distributions for some modes for a stepped-index fiber with the cut-off number 

V=8.4398.  

 

Fig. 2. – Superposition of the (p,q) modes: (1,1)+(–1,1) with different complex coefficients: (a) 

transverse amplitude distribution, (b) transverse intensity distribution, and (c) phase in the 

plane z=0, and (d) phase distribution at distance z=200 μm 

We consider the propagation of a linear superposition of LP-modes in an ideal 

stepped index optical fiber: 
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where pqC  are the complex coefficients and ( , )pq r    are the modes at z=0, whose 

angular component is represented in a different way without a loss of generality: 
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Fig. 3. – The (p,q) modes: (0,3), (1,2), (2,1), (4,1): (a) transverse amplitude distribution 

(negative), (b) transverse intensity distribution (negative) in the plane z=0; transverse phase 

distribution (white: zero phase, black: 2π) in the planes (c) z=0 and (d) z=100 μm 

Models of optical fibers with the different parameters, structures and shapes have 

been established in the software BeamProp in order to research, analyse and compare 

non-ideal optical waveguides (Fig. 4).  

 

 

 

 

 

 

Fig. 4. – Various models of waveguides 

The main characteristic of optical fiber is the set of modes extending within it 

(Fig. 5).  
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Fig. 5. – Some of the modes supported by a simple 3D fiber structure 

Figure 6 shows the distribution of radiation S-shaped optical fiber and power of 

the propagating radiation. 

 

 

Fig. 6. – The completed s-bend circuit in the CAD window; the simulation results found using 

the arc waveguides 

Figure 7 shows the distribution of radiation of X-shaped coupler and the power of 

the propagating radiation zero and first modes. 

By modelling the propagation of radiation in optical fibers, it is possible to 

determine their output values and make sure the elements have the given parameters, 

and to predict their behaviour depending on external influences. 
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Fig. 7. – X-shaped coupler 

Conclusions 
Using the BeamProp program it is possible to investigate various samples of non-

ideal optical fibers with a step profile of index of refraction, according to following 

characteristics: 

─ profile and index of refraction; 

─ difference of indices of refraction; 

─ waveguide length; 

─ a type of function on which the index of refraction changes; 

─ etc.  

Studying the resistance of vortex modes to fiber bends under various 

characteristics of a core and cover of optical fiber is of great interest for the 

researchers. 
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