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GPU-aided implicit finite difference method is capable to work with. The 
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Issues related to general-purpose computing on graphics processing units (GPU) 

and particularly GPU-aided finite-difference method implementations are discussed in 

a number of publications, such as [1, 2].  

A major drawback of the methods discussed is the requirement for the video 

memory capacity to be big enough to contain the entire grid domain. Known open-

source libraries that solve such problems, such as OpenCurrent  

(https://code.google.com/p/opencurrent/), have the same limitation. Note that modern 

GPUs do not provide memory upgrade capability. Besides, the video memory is much 

smaller that RAM. 

Meanwhile, practical large-scale tasks require the grid domains as large as 

thousands of nodes in a single direction. Such problems may arise in many areas 

where partial differential equations (PDE) are applied, such as designing micron-size 

optical elements with nanoscale features [3], simulating light propagation with FDTD, 

seismic wave modelling, etc. There’s clearly a need for PDE solving methods that do 

not require the entire grid to fit into the GPU memory. 

 There are few known approaches for explicit finite difference method that allow to 

apply GPU for such problems, such as: using multiple GPU or GPU-aided computing 

cluster [4]; algorithmic tricks allowing to reduce GPU-memory requirements by 

storing the main data array in RAM and dynamically copying the necessary data to 

https://code.google.com/p/opencurrent/
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GPU memory just before computations. The generalized version of the last algorithm 

was explored by the authors last year [5] and has shown interesting results.  

And even though the explicit finite difference method is suitable for many 

applications, the implicit finite difference method provides unconditional convergence 

in many cases or at least faster convergence. 

The most time-consuming operation in the implicit finite difference method is 

solution of a system of linear equations of a form Ax=b, with the dimension of the 

variables vector x corresponding to the number of nodes in a grid domain. This fact 

leads to the memory requirements for the problem being as high as for explicit finite 

difference method.  

The aim of this work is to show that large-scale problems may be solved 

efficiently by means of explicit finite difference method with the aid of GPU on 

existing hardware by cost of slightly worse performance. 

Though the Jacobi method is considered to be too primitive and criticised for its 

slow convergence in some cases, but being simple and well-studied it is still used and 

investigated by many researchers, especially in a context of general-purpose GPU 

computing [5]. 

Jacobi Method  
In this work the Jacobi method is applied to a finite difference approach for a 

stationary heat equation 
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, where f (x, y) is a heat source 

density function, D is a thermal diffusivity, U (x, y) is a temperature distribution in 

space defined in a square area x ∈  (0, X), y ∈  (0, X), with boundary conditions of a 

form         0,00, =Xx,U=xU=yX,U=yU .  

The implicit finite difference approximation for this equation is as follows: 
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where ui,j is a sampled temperature distribution, fi,j is a sampled heat source density, h 

is a grid interval length, N is a grid size.  

In order to find ui,j it is necessary to solve a system of linear equations 𝐴𝑥 =

𝑏, where x is a vector representation of matrix U, i.e. ,k1,k u=x for 

Nk2,k u=xN,,1,...=k  , for N1,...,2+N=k , etc., b is a vector representation of 

f
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Obviously the diagonal of A matrix contains only non-zero elements. Then the 

Jacobi method iteration for this system takes a form: 
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where k
ixN,,0,1,...=kN,,1,...=i is approximation of the solution at k-th iteration,

0
ix  is an initial approximation of the solution. 

Taking into account that A has only five non-zero diagonals there are only four 

summands under the sum sign in Eq.1. 
Replacing xi back with corresponding ui,j turns the Jacobi iteration into the 

following form:  
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The same idea of Jacobi iteration could be also applied to the stationary 3D heat 

equation 
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. The Jacobi iteration for this equation is 

very similar to the one for 2D heat equation: 
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The Eq. 2 describes the basic iteration of Jacobi method. In order to perform a 

single iteration it is necessary to store matrices u
t
, u

t+1
 and f. The required 

videomemory size limits the dimension of problems that GPU might solve. However 

as the Eq. 3 is almost identical to the iteration of a regular explicit finite-difference 

method for a non-stationary heat equation, the previously used pyramid method may 

also be used for this iteration [5]. 

This method assumes RAM as a main storage for data arrays while the grid is 

tiled into intersected blocks which are processed sequentially, each of them is copied 

to videomemory from RAM, a computing CUDA-kernel is invoked at GPU few times 

to perform a few time-steps of finite-difference method and then the resulting data is 

copied back to RAM. The number of time-steps performed in a row for a single block 

is called ‘the pyramid height’ n. The intersection between neighbouring tiles has 2n  

grid nodes in width. Obviously the values that fall into this intersection will be 

computed independently in both tiles. 

The pyramid height is a parameter of decomposition. If it is too small then the 

algorithm will spend too much time on data transfers. If the pyramid height is too 

large then the intersection between tiles will lead to an excessive amount of 

duplicating computations. It seems reasonable to choose the pyramid height that 

would lead to minimal overall execution time. 

As it has been shown (see Eq. 3, page 752 of [5]), the run time in a case of 1D 

tiling could be estimated as   
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1 , where τ is an overall 

execution time, K is the number of time steps, n is pyramid height, N is grid size in 
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one dimension (the grid is assumed to have equal size in all dimensions), R is a tile-

basement width, τ c is an average data-transfer duration per a single value from RAM 

to GPU memory, τ a is an average duration of computing a single value. The last two 

constants could be measured empirically by performing computations for a small-

dimension problems and measuring results with a tool like NVidia Visual Profiler.  

Taking into account that the Jacobi iteration employs 3 matrices (u
 t
, u 

t+1
 and f ) 

instead of 2 used in explicit finite-difference method, the estimation should be 

modified as follows: 
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Finding an optimal pyramid height n is a non-linear optimisation problem. As the 

number of possible n values doesn’t exceed R/2, this problem could be solved fast 

enough by bruteforcing all the possible R/2 values. However it is possible to find 

minimum with algebraic solution but brute-force is much simpler in practice. The 

computational complexity of this brute-force is O(R), with R in practice being in 

range from 10 to 500. Thus the computation of an optimal pyramid height would not 

exceed few milliseconds which is absolutely minor in comparison with the total 

computation duration (minutes and hours). 

A significant difference between the Jacobi iteration and the explicit finite-

difference iteration should be mentioned: for a non-stationary heat equation there was 

a fixed number of time-steps (iterations) K, while Jacobi method termination 

condition has a form of   ε<
k

u
+k

u 
1

. It means that the number of Jacobi method 

iterations is not predefined. 

Practically the optimal pyramid height is a relatively small number (hundreds) 

while the number of iterations for Jacobi method to reach a reasonable error is an 

order of magnitude higher. The authors propose to limit the value of n to a reasonable 

maximal number (e.g. 100) and to check the termination condition every n iterations 

(see line 2 of the algorithm 1). 

Algorithm 1. Piramid method for Jacobi 

1. 0u=u :  

2.  amidHeightoptimalPyrHeight;maxPyramidmin=n :  

3.  Nn;idsbuildPyram=blocks :  

4. repeat  

5.  NzeroMatrix=un :  

6.  doblockssizе=fori :1  

7.     n;iblocksneaddGhostZoupucopyRamToG=ugpu  

8.     n;iblocksneaddGhostZofpucopyRamToG=f gpu  

9. don=ifor :1  

10.  gpugpugpu f;uelJacobiKern=tmp :  
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11.  gpuu;gputmpswap  

12. endfor  

13.     gpun uamcopyGpuToR=iblocksu :  

14. endfor  

15.  nuu;swap  

16.   ε<uuuntil n 
  

Proposed algorithm 1 uses three temporary GPU arrays of size R × N × N. 

JacobiKernel is a GPU kernel that performs Jacobi iteration at a given data arrays. All 

other operations are performed at CPU and all other variables are stored in RAM. 
The main kernel JacobiKernel is a typical implementation of iterative stencil 

loop (ISL), its algorithm is listed in algorithm 2. Each GPU thread executing this 

kernel processes R − 2 values. This kernel has high theoretical occupancy on the 

hardware authors use and tends to be arithmetic-bound according to NVidia Visual 

Profiler data. 

Results 
Authors have developed a program for above-described algorithm and 

performed few series of experiments with different data sets. The experiments were 

carried out on a node of K100 cluster 1 equipped with 3 × NVidia Tesla C2050 GPU 

(448 CUDA cores, 2.5 GB of memory), 96 GB RAM and 2 × 6-core CPU Xeon 

X5670. The testing stand was running CentOS 5.5, CUDA toolkit 6.5 was used. 

According to the results in Table 1, the pyramid method gives a significant 

performance benefit over pure-CPU performance even though the GPU-dedicated 

memory doesn’t allow to fit u and f matrices at once. 

Table 1.   Results of the Pyramid method for Jacobi 

Grid size N 

 

Data size, GB 

 

# iterations Method duration, sec 

CPU, 12 treads Pyramid method 

800 5.7 8300 9687 1353 

900 8.1 11200 20003 2671 

1000 11.2 12300 33543 4218 

 

The pyramid method allows to apply GPU for explicit finite-difference method 

for stationary PDEs with a grid size exceeding the available GPU-dedicated memory 

size. At the same time its performance is significantly better than that of pure-CPU 

implementation (the speedup is about 7–8 times). 
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