
Data Mining and Big Data

414

Information Technology and Nanotechnology (ITNT-2015)

GPU implementation of Jacobi method for data arrays

that exceed GPU-dedicated memory size

Kochurov A.V., Vorotnikova D.G., Golovashkin D.L.

Image Processing Systems Institute, Russian Academy of Sciences,

Samara State Aerospace University

Abstract. The paper proposes a method to extend the dimension of grids that

GPU-aided implicit finite difference method is capable to work with. The

approach is based on the pyramid method. A predictive mathematical model for

computation duration is proposed. This model allows to find optimal algorithm

parameters. The paper provides computation experiment results that has shown

the model to be accurate enough to predict optimal algorithm parameters

Keywords: pyramid method, finite-difference method, parallel computing,

GPU computing, Jacobi method

Citation: Kochurov A.V., Vorotnikova D.G., Golovashkin D.L. GPU

implementation of Jacobi Method for Data Arrays that Exceed GPU-dedicated

Memory Size. Proceedings of Information Technology and Nanotechnology

(ITNT-2015), CEUR Workshop Proceedings, 2015; 1490: 414-419. DOI:

10.18287/1613-0073-2015-1490-414-419

Issues related to general-purpose computing on graphics processing units (GPU)

and particularly GPU-aided finite-difference method implementations are discussed in

a number of publications, such as [1, 2].

A major drawback of the methods discussed is the requirement for the video

memory capacity to be big enough to contain the entire grid domain. Known open-

source libraries that solve such problems, such as OpenCurrent

(https://code.google.com/p/opencurrent/), have the same limitation. Note that modern

GPUs do not provide memory upgrade capability. Besides, the video memory is much

smaller that RAM.

Meanwhile, practical large-scale tasks require the grid domains as large as

thousands of nodes in a single direction. Such problems may arise in many areas

where partial differential equations (PDE) are applied, such as designing micron-size

optical elements with nanoscale features [3], simulating light propagation with FDTD,

seismic wave modelling, etc. There’s clearly a need for PDE solving methods that do

not require the entire grid to fit into the GPU memory.

 There are few known approaches for explicit finite difference method that allow to

apply GPU for such problems, such as: using multiple GPU or GPU-aided computing

cluster [4]; algorithmic tricks allowing to reduce GPU-memory requirements by

storing the main data array in RAM and dynamically copying the necessary data to

https://code.google.com/p/opencurrent/

Data Mining and Big Data Kochurov A.V., Vorotnikova D.G., Golovashkin D.L.

415

Information Technology and Nanotechnology (ITNT-2015)

GPU memory just before computations. The generalized version of the last algorithm

was explored by the authors last year [5] and has shown interesting results.

And even though the explicit finite difference method is suitable for many

applications, the implicit finite difference method provides unconditional convergence

in many cases or at least faster convergence.

The most time-consuming operation in the implicit finite difference method is

solution of a system of linear equations of a form Ax=b, with the dimension of the

variables vector x corresponding to the number of nodes in a grid domain. This fact

leads to the memory requirements for the problem being as high as for explicit finite

difference method.

The aim of this work is to show that large-scale problems may be solved

efficiently by means of explicit finite difference method with the aid of GPU on

existing hardware by cost of slightly worse performance.

Though the Jacobi method is considered to be too primitive and criticised for its

slow convergence in some cases, but being simple and well-studied it is still used and

investigated by many researchers, especially in a context of general-purpose GPU

computing [5].

Jacobi Method
In this work the Jacobi method is applied to a finite difference approach for a

stationary heat equation
 
D

yx,f
=

y

U
+

x

U 









2

2

2

2

, where f (x, y) is a heat source

density function, D is a thermal diffusivity, U (x, y) is a temperature distribution in

space defined in a square area x ∈ (0, X), y ∈ (0, X), with boundary conditions of a

form         0,00, =Xx,U=xU=yX,U=yU .

The implicit finite difference approximation for this equation is as follows:

,
2

41, ji,f
D

h
=ji,u1ji,u+1+ji,u+j1,iu+j+iu




where ui,j is a sampled temperature distribution, fi,j is a sampled heat source density, h

is a grid interval length, N is a grid size.

In order to find ui,j it is necessary to solve a system of linear equations 𝐴𝑥 =

𝑏, where x is a vector representation of matrix U, i.e. ,k1,k u=x for

Nk2,k u=xN,,1,...=k  , for N1,...,2+N=k , etc., b is a vector representation of

f
D

h2
 matrix and A matrix has the following form:

.

..

...

..

































TI

I

I

IT

A .

41

1..

...

..1

14































T

Data Mining and Big Data Kochurov A.V., Vorotnikova D.G., Golovashkin D.L.

416

Information Technology and Nanotechnology (ITNT-2015)

Obviously the diagonal of A matrix contains only non-zero elements. Then the

Jacobi method iteration for this system takes a form:












 ib+
k
jx

ij ji,a

ii,a
=

+k
ix

11
, (1)

where k
ixN,,0,1,...=kN,,1,...=i is approximation of the solution at k-th iteration,

0
ix is an initial approximation of the solution.

Taking into account that A has only five non-zero diagonals there are only four

summands under the sum sign in Eq.1.
Replacing xi back with corresponding ui,j turns the Jacobi iteration into the

following form:














 ji,f
D

h
+

k
1ji,u+

k
1+ji,u+

k
j1,iu+

k
j+iu=

+k
ji,u

2

1,
4

11
.

The same idea of Jacobi iteration could be also applied to the stationary 3D heat

equation
 
D

zy,x,f
=

z

U
+

y

U
+

x

U 













2

2

2

2

2

2

. The Jacobi iteration for this equation is

very similar to the one for 2D heat equation:















 kj,i,
f

D

h
+

t
1+kj,i,

u+
t

1kj,i,
u+

t
k1,ji,

u+
t

k1,+ji,
u+

t
kj,1,i

u+
t

kj,+i
u=

+k
ji,u

2

1,
6

11 . (2)

The Eq. 2 describes the basic iteration of Jacobi method. In order to perform a

single iteration it is necessary to store matrices u
t
, u

t+1
 and f. The required

videomemory size limits the dimension of problems that GPU might solve. However

as the Eq. 3 is almost identical to the iteration of a regular explicit finite-difference

method for a non-stationary heat equation, the previously used pyramid method may

also be used for this iteration [5].

This method assumes RAM as a main storage for data arrays while the grid is

tiled into intersected blocks which are processed sequentially, each of them is copied

to videomemory from RAM, a computing CUDA-kernel is invoked at GPU few times

to perform a few time-steps of finite-difference method and then the resulting data is

copied back to RAM. The number of time-steps performed in a row for a single block

is called ‘the pyramid height’ n. The intersection between neighbouring tiles has 2n

grid nodes in width. Obviously the values that fall into this intersection will be

computed independently in both tiles.

The pyramid height is a parameter of decomposition. If it is too small then the

algorithm will spend too much time on data transfers. If the pyramid height is too

large then the intersection between tiles will lead to an excessive amount of

duplicating computations. It seems reasonable to choose the pyramid height that

would lead to minimal overall execution time.

As it has been shown (see Eq. 3, page 752 of [5]), the run time in a case of 1D

tiling could be estimated as   











 aτ+cτ

nnR

nR
IKτ

2

2

3
1 , where τ is an overall

execution time, K is the number of time steps, n is pyramid height, N is grid size in

Data Mining and Big Data Kochurov A.V., Vorotnikova D.G., Golovashkin D.L.

417

Information Technology and Nanotechnology (ITNT-2015)

one dimension (the grid is assumed to have equal size in all dimensions), R is a tile-

basement width, τ c is an average data-transfer duration per a single value from RAM

to GPU memory, τ a is an average duration of computing a single value. The last two

constants could be measured empirically by performing computations for a small-

dimension problems and measuring results with a tool like NVidia Visual Profiler.

Taking into account that the Jacobi iteration employs 3 matrices (u
 t
, u

t+1
 and f)

instead of 2 used in explicit finite-difference method, the estimation should be

modified as follows:

  











 aτ+cτ

nnR

nR
IKτ

3

2

3
1 .

Finding an optimal pyramid height n is a non-linear optimisation problem. As the

number of possible n values doesn’t exceed R/2, this problem could be solved fast

enough by bruteforcing all the possible R/2 values. However it is possible to find

minimum with algebraic solution but brute-force is much simpler in practice. The

computational complexity of this brute-force is O(R), with R in practice being in

range from 10 to 500. Thus the computation of an optimal pyramid height would not

exceed few milliseconds which is absolutely minor in comparison with the total

computation duration (minutes and hours).

A significant difference between the Jacobi iteration and the explicit finite-

difference iteration should be mentioned: for a non-stationary heat equation there was

a fixed number of time-steps (iterations) K, while Jacobi method termination

condition has a form of ε<
k

u
+k

u 
1

. It means that the number of Jacobi method

iterations is not predefined.

Practically the optimal pyramid height is a relatively small number (hundreds)

while the number of iterations for Jacobi method to reach a reasonable error is an

order of magnitude higher. The authors propose to limit the value of n to a reasonable

maximal number (e.g. 100) and to check the termination condition every n iterations

(see line 2 of the algorithm 1).

Algorithm 1. Piramid method for Jacobi

1. 0u=u :

2.  amidHeightoptimalPyrHeight;maxPyramidmin=n :

3.  Nn;idsbuildPyram=blocks :

4. repeat

5.  NzeroMatrix=un :

6.  doblockssizе=fori :1

7.     n;iblocksneaddGhostZoupucopyRamToG=ugpu

8.     n;iblocksneaddGhostZofpucopyRamToG=f gpu

9. don=ifor :1

10.  gpugpugpu f;uelJacobiKern=tmp :

Data Mining and Big Data Kochurov A.V., Vorotnikova D.G., Golovashkin D.L.

418

Information Technology and Nanotechnology (ITNT-2015)

11.  gpuu;gputmpswap

12. endfor

13.     gpun uamcopyGpuToR=iblocksu :

14. endfor

15.  nuu;swap

16. ε<uuuntil n 


Proposed algorithm 1 uses three temporary GPU arrays of size R × N × N.

JacobiKernel is a GPU kernel that performs Jacobi iteration at a given data arrays. All

other operations are performed at CPU and all other variables are stored in RAM.
The main kernel JacobiKernel is a typical implementation of iterative stencil

loop (ISL), its algorithm is listed in algorithm 2. Each GPU thread executing this

kernel processes R − 2 values. This kernel has high theoretical occupancy on the

hardware authors use and tends to be arithmetic-bound according to NVidia Visual

Profiler data.

Results
Authors have developed a program for above-described algorithm and

performed few series of experiments with different data sets. The experiments were

carried out on a node of K100 cluster 1 equipped with 3 × NVidia Tesla C2050 GPU

(448 CUDA cores, 2.5 GB of memory), 96 GB RAM and 2 × 6-core CPU Xeon

X5670. The testing stand was running CentOS 5.5, CUDA toolkit 6.5 was used.

According to the results in Table 1, the pyramid method gives a significant

performance benefit over pure-CPU performance even though the GPU-dedicated

memory doesn’t allow to fit u and f matrices at once.

Table 1. Results of the Pyramid method for Jacobi

Grid size N

Data size, GB

iterations Method duration, sec

CPU, 12 treads Pyramid method

800 5.7 8300 9687 1353

900 8.1 11200 20003 2671

1000 11.2 12300 33543 4218

The pyramid method allows to apply GPU for explicit finite-difference method

for stationary PDEs with a grid size exceeding the available GPU-dedicated memory

size. At the same time its performance is significantly better than that of pure-CPU

implementation (the speedup is about 7–8 times).

Data Mining and Big Data Kochurov A.V., Vorotnikova D.G., Golovashkin D.L.

419

Information Technology and Nanotechnology (ITNT-2015)

Acknowledgments

This work has been supported by the grants of Russian Foundation of Basic

Research 14-07-00291, 14-01-31305 and 14-07-31178.

References
1. Golovashkin DL, Vorotnikova DG, Kochurov AV and Malisheva SA. Solving finite-

difference equations for diffractive optics problems using graphics processing units. Opt.

Eng., 2013; 52 (9): 091719. doi: 10.1117/1.OE.52.9.091719.

2. Yakimov PYu. Preprocessing of digital images in systems of location and recognition of

road signs. Computer Optics, 2013; 37(3): 401-405. [in Russian]

3. Pavelyev VS, Karpeev SV, Dyachenko PN, Miklyaev YV. Fabrication of three-

dimensional photonics crystals by interference lithography with low light absorption. J.

Modern Optics, 2009: 9 (56): 1133–1136.

4. Micikevicius P. Multi-GPU Programming for Finite Difference Codes on Regular Grids,

Stanford AHPCRC/iCME Colloquium Series, 2012 http://www.stanford.edu/dept/ICME

/docs/seminars/Micikevicius-2012-01-23.pdf

5. Golovashkin DL, Kochurov AV. Solution of difference equations on GPU. Pyromids

method. Computational Technologies, 2012; 17(3): 39-52. [In Russian]

http://www.stanford.edu/dept/ICME%20/docs/seminars/Micikevicius-2012-01-23.pdf
http://www.stanford.edu/dept/ICME%20/docs/seminars/Micikevicius-2012-01-23.pdf

