
Efficient and Expressive Stream Reasoning with
Object-Oriented Complex Event Processing

Riccardo Tommasini

Politecnico di Milano
riccardo.tommasini@polimi.it

Abstract. RDF Stream Processing (RSP) engines - systems able to con-
tinuously answer queries upon semantically annotated information flows
- empirically proved that Stream Reasoning (SR) is feasible. However, ex-
isting RSP engines do not investigate the trade-off between the reasoning
expressiveness and the performance typical of information flow process-
ing (IFP) systems: either an high throughputs with a low expressiveness
(e.g. ρDF) or an high expressiveness (e.g., EL) with a low throughputs
are provided. Can the systematic exploration of this trade-off lead SR to
continuously execute expressive reasoning without loosing the efficiency
typical of IFP systems? In this paper, we propose a Systematic Compar-
ative Research Approach (SCRA) to investigate the RSP solution space.
Moreover, in contrast with the state-of-the-art trend of adding IFP capa-
bilities to reasoners, we discuss how to realize an Efficient and Expressive
Stream Reasoning by adding reasoning capabilities into IFP systems (in
particular to Object-Oriented Complex Event Processors).

1 Scene Setting

Stream Reasoning (SR) is a novel research trend that aims at enabling rea-
soning on rapidly changing information flows [12]. So far, many RDF Stream
Processing (RSP) engines - systems able to cope with semantically annotated
data flows - were developed as proof-of-concepts [1, 5, 6, 8]. However, due to the
complexity of the reasoning task strongly impacts real-time processing, existing
solutions either focus on keeping either Information Flow Processing (IFP [11])
comparable performances [16] offering low expressive reasoning (i.e., ρDF [18]
with limited extensions) or to optimize expressive reasoning algorithms to the
streaming scenario loosing the typical IFP performances [20].

The most of the state-of-the-art solutions pipeline IFP and Semantic Web
reasoning modules into black box (BB) architectures.

White box (WB) architectural approaches, which redesign all the underlying
modules into an integrated solution, can better investigate the performances and
reasoning expressiveness trade-off [22]. WB attempts like [1, 7, 16] try to add IFP
capabilities to reasoners, while the opposite approach, adding reasoning capabil-
ities to IFP systems, is not attempted yet.

Research Question: Can the systematic exploration of the performances and
reasoning expressiveness trade-off lead SR to continuously execute expressive rea-
soning without loosing the efficiency typical of IFP systems?

Exploring the RSP solutions space requires to analyze the RSP engine while
is processing. But, due to the complexity of the RSP engine, it might be hard.
We need to enable a systematic comparative research approach (SCRA) [9] that
simplifies the analysis through a strategy for cross-case studies. Moreover, re-
alizing an efficient and expressing stream reasoning (E2SR) demands both to
rethink the execution semantic model and to expand the solution space with
new implementations. Our approach aim at adding reasoning capabilities into
IFP systems, in particular Object Orient Complex Event Processor.

Outline - the remainder of this paper is organized as follows: Section 2 sum-
marizes state-of-the-art RSP engines with an IFP background and Section 3
presents a brief overview on RSP Benchmarking. Section 4 presents the pro-
posed research approach. Section 5 describes the approach implementation and
the current stage of development. Section 6 shows the evaluation methodology
and summarizes the obtained results. Section 7 comes to conclusion presenting
the work already done, the lessons learned, and our future directions.

2 RSP Engines State of the Art

Semantic Web (SW) and IFP technologies like Data Stream Management Sys-
tems (DSMS) or Complex Event Processing (CEP) played a crucial role to
demonstrate that SR is possible. Indeed, they foster the definition of SR re-
quirements [17]: (R.1) Real-Time processing (DSMS); (R.2) pattern-matching
on incoming information (CEP); (R.3) Data Integration (SW); (R.4) Rich On-
tology Languages (SW). And finally, (R.5) expressive query languages and (R.6)
systems scalability (IFP & SW).

Table 1 summarizes and extends a recent survey [17]. It highlights some rele-
vant characteristics of the state-of-the-art RSP engines with a IFP background:

– Continuous Query Answering [3] - it is needed to satisfy (R.1);
– Background Data - supporting static data access is needed to satisfy (R.3);
– Time Model - the system temporal model: one or more timestamps (R.1);
– Reasoning - the reasoning expressiveness, when reasoning is available (R.4);
– Time-Aware - time-related operators are crucial to satisfy (R.2);
– Data Transformation - presence of abstraction functions/aggregates (R.5);
– Historical Data - availability of historical data storages (R.3);
– System Design - w.r.t IFP or SW: DSMS/CEP/rule-based (R.6);
– Architectural Approach - the adopted architectural approach: white box

(WB) or a black box (BB) (R.6).

RSP engines like Streaming Knowledge Base [24] and C-SPARQL Engine [5]
are examples of in-memory, window-based, RSP engines that adopt a black box
approach pipelining a DSMS and a näıve reasoner. They allow continuous query
answering on RDF streams or graphs w.r.t background knowledge by the means

System Cfr. Cont. BG Time Reasoning Time. Data Hist. Arch. Design
Queries Data Model Aware Trans Data Appr.

C-SPARQL E. [5] X(p) X TS RIF∗ X*** X BB DSMS
IMaRS [4] X(p) X TS Transitive X BB DSMS
TrOWL [20] X X TS EL+/SHIQ∗∗ WB Rules
CQELS [7] X X TS X WB DSMS
SKB [24] X X TS OWL sub BB DSMS
SparkWave [16] X X TS RDFS subset X WB Rules
ETALIS [1] X X 2xTS RDFS subset X X X BB CEP
Morphstream [7] X X TS ELIO BB DSMS

Table 1. State Of The Art of RSP engines related to IFP - p:(periodic) WB: white box
BB: black box; 2TS:interval; *:supports Jena Rule-Based Reasoning; **TBox/ABox;
*** Subset of Allen Algebra by TS function

of queries expressed with extensions of SPARQL 1.1 (e.g. C-SPARQL) that in-
clude the time semantics.

Morphstream [7] ports some reasoning capabilities into existing DSMS system
and allows to query virtual RDF streams with SPARQLstream. A conjunctive
query is translates into the union of multiple conjunctive queries thanks to a
reasoner that performs query rewriting and an R2RML mappings extension with
time semantics (windows). Queries are executed by an underlying DSMS.

ETALIS [2] engine is a WB solution that processes queries written in ETALIS
languages converting them to Prolog rules and executes them on a Prolog engine
at run-time. EP-SPARQL [1] is a SPARQL extensions for Event Processing that
enables black box Stream Reasoning on ETALIS [2]. EP-SPARQL queries are
translated in logic expressions of the ETALIS Language. [1] is the only solution
that allows to write complex patterns with time constraints on incoming events,
that provides streaming and historical data integration and that is natively time-
aware. However, its performance are not satisfying at all [19].

CQELS [8] implements a WB approach porting DSMS concepts (e.g. physical
operators, data structures and query executor) into an SPARQL engine with no
reasoning capabilities. It can operate queries optimization, because each phase
of the processing is available.

SparkWave [16] is a white box ruled-based RSP engine designed for high
RDFS performance reasoning over RDF Streams by extending RETE, a reason-
ing system algorithm, to process incoming information flows. IMaRS [4] op-
timizes incremental reasoning by relying on a fixed time window to predict
expiration times. TrOWL [20] is an engine for efficient incremental ontology
maintenance when updates are frequent (but not streaming). It does not rely on
fixed time windows to predict the expiration time of streaming information, but
it reduces reasoning complexity exploiting syntactic approximation. Despite big
performance limitations, TrOWL is still relevant for our research. Indeed, it sup-
ports TBox stream reasoning of EL+ and approximate ABox stream reasoning
of SHIQ expressiveness.

Notice that ASP-based solutions are out of the scope of this research be-
cause their reasoning capabilities and performances are non-comparable with
the systems in the solution space we target to investigate.

3 RSP Benchmarking State of the Art

The SR community focuses on RSP engine evaluation. So far, challenges and
requirements were formulated [21] and many attempts to address them were
developed [14, 19, 25]. Preliminary evaluations on the state-of-the-art confirmed
that none of existing RSP engines provides IFP-comparable performances and
expressive reasoning at the same time. However, RSP benchmarking still presents
some limitations and it is not applied systematically yet.

[25, 14, 19] neither face all the challenges nor satisfy all the requirements pro-
posed in [21]. They provide ontologies, datasets and queries for the evaluation.
The metrics set comprises query language coverage, throughput and recently [14]
query results mismatch and correctness, but does not consider memory consump-
tion and query execution latency. A minimal testing facility is provided by [19,
14], but without a method to lead the investigation.

The stage of analysis is also limited. Indeed, it consists into an average result
after a predefined testing period, while the dynamics of the RSP engine during
the entire test is not considered.

RSP benchmarking still misses both an infrastructure to design and test
RSP engines performances and a methodology to investigate systematically the
trade off. In summary, a SCRA that allows to design and execute comparable,
reproducible and repeatable experiments in a controlled environment and, thus,
provide a picture of the solution space.

4 Proposed Approach

In Section 3 we stated that both the black box (BB) and white box (WB) state-
of-the-art RSP engines show performance limitations [25, 14, 19]. The former
cannot perform cross-module optimization, while the latter is realized by adding
IFP-capabilities to reasoning systems and, thus, it is not possible to exploit the
typical order-based optimization that guarantee IFP performances.

Building on these lessons learned, it would be possible to develop an efficient
and expressive SR (E2SR). Indeed, a common step to all the mature research
areas is focusing on improving the systems performances [15]. Two approaches
are possible, eliminating the lacks or reinventing the technology pillars. Both
require to enable a systematic comparative research approach (SCRA) for RSP
engines. Why should the investigation be comparative? SCRA is popular in
those research fields where the complexity of the subject goes beyond the pos-
sible observable models (e.g. social science). Single-case studies help to deeply
understand the subject, but do not foster any generalization. On the other hand,
cross-case studies allow general thinking, but with and high final complexity.

Comparing RSP engine dynamics during the entire test execution will clarify
how the actual execution semantic of the RSP engine influences the perfor-
mances. SR needs a strategy to reduce the analysis complexity without losing
the relevance of each involved system. SCRA consists into comparing RSP engine
dynamics under a given experimental condition.

Enabling SCRA is crucial at this stage of development. A specific investiga-
tion methodology is required to contrast the performance measurements, state
which solution is better, if any, and possibly drill down or raise up the analysis
at different levels. We need to describe normality and stressing conditions for
RSP engines, so it is necessary to understand which variables involve into the
evaluation. Finally, it would be possible to investigate how the system actually
works and to position it in the solution space. To this final extent, we need an
infrastructure to design and systematically execute repeatable and reproducible
experiments on a given RSP engine under comparable conditions.

The E2SR goal are the high entailment regime of [20], (i.e. EL+) and the
IFP-compatible performances performances of [16, 7]. This requires a WB ap-
proach for intra-modules optimization. In Section 2 we presented the limitations
of porting IFP-capabilities into reasoners. Moreover, [1] already covers all the
featured characteristic that Table 1 highlights, but it is not optimized neither
in performance nor for reasoning expressiveness. Thus, we propose to introduce
reasoning capabilities in IFP systems, by extending rule-based Object Orient
Complex Event Processor engines into a WB approach.

[1] - and in general CEP-based RSP engines - presents many technical oppor-
tunities towards E2SR: (i) event processing languages like Tesla [10] or EPL1 can
perform the reasoning tasks that can be encoded as rules; (ii) they are natively
order-aware, more specifically time-aware since data are ordered by recency [13,
22]. (iii) the information flows are usually represented with objects, as in object-
oriented languages or databases. Object-Oriented programming languages na-
tively allow some reasoning task which can improve the final entailment regime.
(iv) last but not least, CEP systems are usually well-engineered, because the IFP
research focused on bandwidth and latency performance optimization as well as
scaling by the means of system distribution.

Finally, how to evaluate the obtained results? E2SR performance evaluation
explicitly needs to enable SCRA; SCRA itself demands instead to prove that:
(i) the testing infrastructure does not influence the systems results; (ii) a base
measurements-set and an investigation method are defined and accepted by the
SR community; (iii) some baselines and analysis guidelines are available.

5 Approach Implementation

The first research phase focused on the following research sub-questions:

– SP.1 Can a test-stand2 enable a SCRA for RSP engines?

1 http://bit.ly/1GdhUFC
2 an aerospace engineering facility to design and execute experiments over engines and

to collect performance measurements

– SP.2 It is possible to implement simple, ruled-based reasoning upon a CEP?

SP.1) My Master Thesis had the goal to develop Heaven [23], an open source3

framework that consists into an RSP engine test stand, four näıve implemen-
tations of black box DSMS-based RSP engines called baselines and a evalua-
tion methodology. Heaven targets window-based, in-memory RSP engines im-
plemented in Java, like C-SPARQL engine [5] or CQELS [8] or the baselines
themselves. The test-stand makes no assumption about the tested RSP engine
internal process, treating it as a black box. Thanks to Heaven, it is finally possi-
ble to design comparable, repeatable and reproducible experiments by providing:
an RSP engine E , an ontology T , a query-set Q and an dataset D to stream.

System EPL BG Data Sound/
Data Model Complete∗

PLAIN YES Hashtable Serialised Yes
OO-STD YES OO OO-RDF Yes/No
GENERICS YES OO OO-RDF Yes/No

Table 2. E2RS Prototypes * w.r.t ρDF [18]

SP.2) Table 2 summarizes the
current stage of development.
Some E2RS prototypes were im-
plemented4 with Esper, an open
source CEP engine popular in the
SR research field5.

The E2RS prototypes develop-
ment relies on the following as-
sumptions, inspired by [16]: (i)
the entailment regime is ρDF [18]; (ii) the initially ontology is small static and
(iii) its materialization happend in pre-processing.

Plain encodes in EPL the rules for continuous query answer under ρDF
entailment regime; events are serialized triples and the TBox is materialized
within an hash-map. OO-std proposes a solution where both EPL rules and
Java polymorphism are equally exploited to perform typical reasoning tasks of
ρDF (i.e., class hierarchy subsumption). Finally, Generics tries to extend OO-
std exploiting Java-generics.

6 Empirical Evaluation

SCRA and E2SR evaluations are related. The former is evaluated by proving the
effectivenesses of the testing infrastructure and of the investigation methodology.
The latter requires to compare new performance results with the state-of-the-art
solutions. Thus, we consider to start with SCRA evaluation, because E2SR one
strictly relies on it.

To demonstrate Heaven effectiveness we run some experiments on the test
stand, which results are available6. As RSP engine we used some baselines, four
window-based RSP engine implementations that are realized pipelining Esper

3 https://github.com/streamreasoning/heaven
4 https://github.com/streamreasoning/Proto-EESR
5 Esper is written in Java and it supports sliding-windows (e.g [5] uses it to implement

a black box RSP engine). Moreover, it exploits the EPL query language that has all
the characteristics that we need (Section 4).

6 http://streamreasoning.org/TR/2015/Heaven/iswc2015-appendix.pdf

and Jena ARQ. The baselines offer both RDFS näıve reasoning, materialization
of the entire content of the active window at each cycle, and the incremen-
tal reasoning, maintaining the materialization over time by updating the dif-
ferences between two consecutive windows. Our experiments empirically proved
that Heaven influences on systems performance are stable and predictable. Thus,
we can assert that it enables SCRA for RSP engine.

From the obtained insight, what is already clear is that even when an RSP
engines is extremely simple (e.g., one of the baselines), hypothesis verification is
hard (e.g. we cannot confirm that the incremental reasoning baselines outperform
those with a näıve reasoning approach [20]).

7 Conclusion

The impact of enabling a systematic comparative research approach for RSP
engine is potentially high in the Stream Reasoning research field. The initial
insights we got by evaluating the baselines with Heaven showed how less we
know about the RSP engine dynamics.

SCRA is a priority for all the SR community. Our first future work consist
in systematically testing all the supported RSP engines, i.e only in-memory,
window-based RSP engines developed in Java. To realize this we need to (i)
implement an adapting facade for the RSP engines to test and (ii) define a suite
of experiments, which exploits existing RDF streams, ontologies and queries
available in the the state-of-the-art of RSP benchmarking [19, 25, 14] to show
any aspects of the RSP engine dynamics.

About E2SR, Esper-based prototypes (Table 2) are promising, but surely far
from our goals (i.e. the [20] expressiveness and the [16, 7] performances). E2SR
research priority is defining a standard for event processing query language. E2SR
prototypes exploit a specific one: EPL. The future works should consider: (i) the
definition of a minimal fragment of EPL to enable E2SR; (ii) the prototyping
of systems on alternative query languages like Tesla [10]; (iii) the proposal of a
execution semantics for SR system built on CEP.

Acknowledgments. Thanks to my advisor Prof. Emanuele Della Valle (Po-
litecnico di Milano) and my co-advisors Daniele Dell’Aglio and Marco Balduini.

References

1. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language
for event processing and stream reasoning. In: WWW 2011. pp. 635–644 (2011)

2. Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N.: Stream reasoning and complex
event processing in ETALIS. Semantic Web 3(4), 397–407 (2012)

3. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic
foundations and query execution. VLDB J. 15(2), 121–142 (2006)

4. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: Incremental
reasoning on streams and rich background knowledge. In: ESWC 2010. pp. 1–15
(2010)

5. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: Querying
RDF streams with C-SPARQL. SIGMOD Record 39(1), 20–26 (2010)

6. Bolles, A., Grawunder, M., Jacobi, J.: Streaming SPARQL - extending SPARQL
to process data streams. In: The Semantic Web: Research and Applications, pp.
448–462. Springer Berlin Heidelberg (2008)

7. Calbimonte, J., Corcho, Ó., Gray, A.J.G.: Enabling ontology-based access to
streaming data sources. In: The Semantic Web - ISWC 2010. pp. 96–111 (2010)

8. Calbimonte, J., Jeung, H., Corcho, Ó., Aberer, K.: Enabling query technologies for
the semantic sensor web. Int. J. Semantic Web Inf. Syst. 8(1), 43–63 (2012)

9. Creswell, J.W.: Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches. Sage Publications Ltd., 3 edn. (2008)

10. Cugola, G., Margara, A.: Tesla: A formally defined event specification language.
In: ACM International Conference on DEBS. pp. 50–61. ACM (2010)

11. Cugola, G., Margara, A.: Processing flows of information: From data stream to
complex event processing. ACM Comput. Surv. 44(3), 15 (2012)

12. Della Valle, E., Ceri, S., van Harmelen, F., Fensel, D.: It’s a streaming world!
reasoning upon rapidly changing information. IEEE Intelligent Systems (2009)

13. Della Valle, E., Schlobach, S., Krötzsch, M., Bozzon, A., Ceri, S., Horrocks, I.:
Order matters! harnessing a world of orderings for reasoning over massive data.
Semantic Web 4(2), 219–231 (2013)

14. Dell’Aglio, D., Calbimonte, J., Balduini, M., Corcho, Ó., Della Valle, E.: On cor-
rectness in RDF stream processor benchmarking. In: The Semantic Web - ISWC
2013. pp. 326–342 (2013)

15. Gray, J. (ed.): The Benchmark Handbook for Database and Transaction Systems
(2nd Edition). Morgan Kaufmann (1993)

16. Komazec, S., Cerri, D., Fensel, D.: Sparkwave: continuous schema-enhanced pat-
tern matching over RDF data streams. In: 6th ACM International Conference on
Distributed Event-Based Systems, DEBS 2012. pp. 58–68 (2012)

17. Margara, A., Urbani, J., van Harmelen, F., Bal, H.E.: Streaming the web: Reason-
ing over dynamic data. J. Web Sem. 25, 24–44 (2014)

18. Muoz, S., Prez, J., Gutierrez, C.: Minimal deductive systems for RDF. In: Springer-
Verlag. pp. 53–67. ESWC ’07, Springer-Verlag, Berlin, Heidelberg (2007)

19. Phuoc, D.L., Dao-Tran, M., Pham, M., Boncz, P.A., Eiter, T., Fink, M.: Linked
stream data processing engines: Facts and figures. In: The Semantic Web - ISWC
2012. pp. 300–312 (2012)

20. Ren, Y., Pan, J.Z., Zhao, Y.: Ontological stream reasoning via syntactic approxi-
mation. In: Proceedings of the 4th International Workshop on Ontology Dynamics
(IWOD 2010). vol. 651. Citeseer (2010)

21. Scharrenbach, T., Urbani, J., Margara, A., Della Valle, E., Bernstein, A.: Seven
commandments for benchmarking semantic flow processing systems. In: The Se-
mantic Web - ESWC 2013. pp. 305–319 (2013)

22. Stuckenschmidt, H., Ceri, S., Della Valle, E., van Harmelen, F.: Towards expressive
stream reasoning. In: Semantic Challenges in Sensor Networks (2010)

23. Tommasini, R., Della Valle, E., Balduini, M., Dell’Aglio, D.: Heaven test stand:
towards comparative research on RSP engines. In: OrdRing 2015-5rd International
Workshop on Ordering and Reasoning. p. 6p (2015)

24. Walavalkar, O., Joshi, A., Finin, T., Yesha, Y.: Streaming knowledge bases. In:
International Workshop on Scalable Semantic Web Knowledge Base Systems (2008)

25. Zhang, Y., Pham, M., Corcho, Ó., Calbimonte, J.: Srbench: A streaming
RDF/SPARQL benchmark. In: The Semantic Web - ISWC 2012. pp. 641–657

