
Monitoring with Parametrized Extended Life Sequence

Charts⋆

Ming Chai1 and Bernd-Holger Schlingloff2

1 2 Humboldt Universität zu Berlin
2 Fraunhofer FOKUS

{ming.chai,hs}@informatik.hu-berlin.de

Abstract. Runtime verification is a lightweight verification technique that

checks whether an execution of a system satisfies a given property. A problem

in monitoring specification languages is to express parametric properties, where

the correctness of a property depends on both the temporal relations of events,

and the data carried by events. In this paper, we introduce parametrized extended

live sequence charts (PeLSCs) for monitoring sequences of data-carrying events.

The language of PeLSCs is extended from life sequence charts by introducing

condition and assignment structures. We develop a translation from PeLSCs into

the hybrid logic HL, and prove that the word problem of the PeLSCs is linear

with respect to the size of a parametrized event trace. Therefore, the formalism is

feasible for on-line monitoring.

1 Introduction

Even with most advanced quality assurance techniques, correctness of complex soft-

ware can never be guaranteed. To solve this problem, runtime verification has been

proposed to provide on-going protection during the operational phase. Runtime Veri-

fication checks whether an execution of a computational system satisfies or violates a

given correctness property. It is performed by using a monitor. This is a device or a

piece of software that observes the system under monitoring (SuM) and generates a

certain verdict (true or false) as the result. Compared to model checking and testing,

this technique is considered to be a lightweight validation technique, since it does not

try to cover all possible executions of the SuM. It detects failures of an SuM directly

in its actual running environment. This avoids some problems of other techniques, such

as imprecision of the model in model checking, and inadequateness of the artificial

environment in testing.

An execution of a computational system checked by a monitor can be formalized

by a sequence of events. One of the challenges in building a runtime verification system

is to define a suitable specification language for monitoring properties. A monitoring

specification language should be expressive and attractive [22]: The language should

be able to express all expected monitoring properties, and the language should keep the

formulations simple for simple properties. A simple formulation means that the size of

⋆ This work was supported by the State Key Laboratory of Rail Traffic Control and Safety (Con-

tract No.: RCS2012K001), Beijing Jiaotong University

89

the formulation is small, and the notations of the formulation is understood by users

(e.g., system designers).

Over the last years, various runtime verification systems have been developed which

use some form of temporal logic, including linear temporal logic (LTL), metric temporal

logic (MTL), time propositional temporal logic (TPTL) and first-order temporal logic

(LTLFO). Although these specification languages are expressive and technically sound

for monitoring, software engineers are not familiar with them and need extensive train-

ing to use them efficiently. Therefore, many runtime verification systems support also

other specification languages, such as regular expressions and context-free grammars.

Unfortunately, it is difficult to specify properties for parallel systems in these languages,

and they are not (yet) used in practice by system designers.

In previous work [14], we proposed an extension of live sequence chart (LSC) [18]

for expressing monitoring properties. LSC is a visual formalism that specifies the tem-

poral relations of the exchange of messages among instances. It extends the classical

message sequence chart formalism (MSC) by introducing possible and mandatory ele-

ments, including universal and existential charts, and hot and cold messages and condi-

tions. With these extensions, LSCs are able to distinguish between required and allowed

behaviours of an SuM. Our language of the proposed extended LSCs (eLSCs) intro-

duces modal pre-charts. That is, we distinguish between pre-charts that are necessary

conditions of main-charts and those that are sufficient conditions of main-charts.

The eLSC-based monitoring approach so far can not handle parametric properties,

where the correctness of a property depends on both the temporal relations of events

and data carried by the events. One possible workaround for this shortage is to for-

malize each assignment of data with a unique atomic proposition. However, since the

domain of data can be infinite or unknown, this approach is not sufficient in general.

We extend eLSC to parametrized eLSC (PeLSC) by introducing assignment structures

and condition structures.

In this paper, we model data-carrying events with parametrized events, where the

data is represented by parameters. Consider a client/server system that allows clients to

access a server, and consider the following properties.

(P1): If there is a log in to the server, it must be followed by a log out.

(P2): A log out event can not occur, unless it is preceded by a log in.

(P3): If a client logs in to the server, it must log out within 200 sec.

For the first two properties, the monitor can observe a propositional events login and

logout. The expected behaviours can be formalized by the following regular expressions

L1 and L2, respectively.

L1 , Σ∗ ◦ {login} ◦ {logout} ◦Σ∗

L2 , Σ∗ ◦ {login} ◦ {logout} ◦Σ∗

For the property (P3), each of the login and logout events carries a client name

and a time stamp. An execution of this system can be formalized by a sequence of

90

parametrized events. Each of the propositional events carries two parameters client_id

(id) and time_stamp (time). With these definitions, property (P3) can be written more

formally as follows:

When the system emits a login event with (id = x) and (time = y), a logout

event with (id = x′) and (time = y′) should occur afterwards, where (x′ = x)
and (y′ ≤ (y + 200)).

The PeLSCs of Fig. 1 specify the three properties above. The chart (C1) is a stan-

dard LSC formalizing (P1). Property (P2) cannot be formalized with LSCs; an eLSC for

it is (C2). Property (P3) involves parameters on infinite or unknown domains and thus

cannot be expressed by eLSCs. A PeLSC for it is (PU). Formal definitions being given

below, we note that the language PeLSC contains variables, assignment and conditions

for dealing with data-parametrized events. An assignment structure is used to store an

arbitrary parameter value, and a condition structure is used to express constraints on

such values. With these extensions, PeLSCs can be used for monitoring systems where

events carry data.

To generate monitors, we translate PeLSCs into (a subclass of) the hybrid logic

(HL) [13]. HL has a type of symbols called nominals that represent names of param-

eters. Let s be a symbol, an HL formula may contain the downarrow binder “x ↓ s.”.

When evaluating an HL formula over a parametrized event trace, the downarrow binder

assigns all variables x in the formula to the value of the parameter s of the “current”

parametrized event.

(a) PeLSC for P1 (b) PeLSC for P2 (c) PeLSC for P3

Fig. 1. Examples: PeLSCs for properties of a client/server system

A monitor essentially solves the word-problem: given a trace, decide whether the

trace is in the language defined by a monitoring property. As a main result of this paper,

we prove that the complexity of the word-problem of PeLSCs is linear if the proposi-

tions in the condition structures express only comparisons of parameter values. Thus,

monitoring can be done on-line, while the SuM is running.

The rest of the paper is organized as follows. Section 2 outlines related work. Sec-

tion 3 introduces parametrized eLSCs (PeLSCs), including their syntax and trace-based

semantics. Section 4 presents a translation from PeLSCs into a subclasss of HL, and

91

proves the complexity of the word problem of PeLSCs. Section 5 contains some con-

clusions and hints for future work.

2 Related Work

Our extension of LSCs is inspired by the treatment of time in live sequence charts pro-

posed by Harel et. al. [21]. There, a time constraint in LSCs is defined by a combination

of assignment structures and condition structures. In contrast, we provide a more gen-

eral notation for arbitrary data parameters.

There are several other runtime verification approaches for handling parametrized

events. The EAGLE logic [5], which is a linear µ-calculus, is one of the first logics in

runtime verification for specifying and monitoring data-relevant properties. Although

EAGLE has rich expressiveness, it has high computational costs [7]. To avoid this prob-

lem, other rule-based methods have been introduced. They are based on MetateM [4]

and the Rete algorithm [19]. MetateM provides a framework of executing temporal for-

mulae and Rete is an efficient algorithm for matching patterns with objects. Inspired

by MetateM, RuleR is an efficient rule-based monitoring system that can compile var-

ious temporal logics [7]. LogicFire is an internal domain specification language for

artificial intelligence on basis of Rete [23]. The rule-based runtime verification sys-

tems have high performance. However, their implementations are still complex. The

language of PeLSCs has a comparable expressiveness. However, the implementation

of PeLSC based runtime verification system is easier because monitors are generated

automatically with the translation algorithm.

TraceMatches [1] is essentially a regular expression language. It extends the lan-

guage of AspectJ [24] by introducing free variables in the matching patterns. TraceCon-

tract is an API for trace analysis, implemented in Scala, which is able to express para-

metric properties with temporal logic [6]. Monitoring oriented programming (MOP) is

an efficient and generic monitoring framework that integrates various specification lan-

guages [16]. In particular, JavaMOP deals with parametric specification and monitoring

using TraceMatches [25]. TraceMatches and JavaMOP are defined on the basis of trace

slicing, which translates parametrized events into propositional events. With trace slic-

ing, the problem of checking parametrized event traces is translated into a (standard)

propositional word problem. Although JavaMOP has high performance, to our opinion

its expressiveness is insufficient. As pointed out in [3], trace slicing can only handle

traces where all events with the same name carry the same parameters. Our PeLSCs

based approach overcomes this shortage by using formula rewriting algorithms.

Another important direction of parametric monitoring is based on automata theory.

Quantified event automata [3] are an extension of the trace slicing methods mentioned

above. They are strictly more expressive than TraceMatches. In that context, data au-

tomata have been proposed as a down-scaled version of Rete to an automaton-based for-

malism [22]. Unfortunately, properties of parallel systems have complex formulations

when expressed by automata. PeLSCs can keep the monitoring specification attractive

when dealing with such properties.

Various extensions of LTL have been proposed for parametric monitoring. If time

is the only parameter, properties can be formalized with real-time logics such as TLTL

92

[12], MTL [10] and TPTL [15]. For other parameters, first order extensions of LTL

have been introduced. Parametrized LTL [28] contains a binary binding operator, and is

further translated into parametrized automata for monitoring. First-order temporal logic

LTLFO includes both first-order and temporal connectives [26]. For monitoring LTLFO

an algorithm using a spawning automaton has been developed [11]. However, the word

problem of LTLFO is PSPACE-complete [11], and the translation has a potential of

suffering from the state explosion problem. A domain-specific language for monitoring

the exchange of XML messages of web service is LTLFO+ [20]. This language has

a lower complexity than full first order temporal logic. However, its expressiveness is

limited by only allowing to express equivalence of variables. Metric Temporal First-

order Logic (MFOTL) adds quantifiers to MTL [9], and has been used for monitoring

data applications[8]. An MFOTL monitoring system has been built based on a trace

decomposing technique, which may introduce additional errors/mistakes. Similiar to

the languages of automata, all these temporal logics have difficulties in specifying con-

currency properties. The language of PeLSCs can avoid these shortcomings. The word

problem for PeLSCs is linear with respect to the size of traces. Meanwhile, PeLSCs

have richer expressiveness than LTLFO+ by allowing to express general comparisons

of terms. Our rewriting based algorithms avoid the problems introduced by the LTL to

automata translations, and the trace decomposing techniques.

3 Definitions of Parametrized eLSCs

This section presents the syntax and semantics of parametrized extended LSCs

(PeLSCs). The PeLSCs are interpreted over parametrized event traces, which are de-

fined as follows.

Let Σ , {e1, e2, ..., en} be a finite alphabet of events, N , {s1, s2, ...} be a

countable set of nominals and D , {d1, d2, ...} any domain (e.g., integers, strings, or

reals). A parameter is a pair p , 〈s, d〉 from N ×D, where s is the name of p and d is

the value of p.

Definition 1 (Parametrized event). Given an alphabet Σ of events, a set N of nomi-

nals and a domain D, a parametrized event is a pair w , 〈e,P〉, where e ∈ Σ is an

event and P ∈ 2N×D is a set of parameters.

Given a parametrized event w with P , {〈s1, d1〉, ..., 〈sm, dm〉}, we define

Evet(w) , e, Para(w) , P and Nam(w) , {s1, ..., sm}. A parametrized event 〈e,P〉
is deterministic if each parameter name in P is unique, i.e., for all p, p′ ∈ P it holds

that s 6= s′. In this paper, we assume that all parametrized events are deterministic.

Parametrized event traces basically are finite sequences of parameterized events.

Definition 2 (Parametrized event trace). Given N and D, a parameter trace ρ ,

(P1,P2, ...,Pn) over N ×D is a finite sequence of sets of parameters, i.e., an element

of (2N×D)∗. Given Σ, N and D, a parametrized event trace τ , 〈σ, ρ〉 is a pair of

a finite event trace σ and a parameter trace ρ with the same length, i.e., σ ∈ Σ∗ and

ρ ∈ (2N×D)∗ and |σ| = |ρ|.

By τ [i] , 〈σ[i], ρ[i]〉 we denote the ith parametrized event of τ , where σ[i] and ρ[i]
are the ith element of σ and ρ, respectively.

93

3.1 Syntax of PeLSCs

A universal PeLSC consists of two basic charts: a pre-chart and a main-chart. A basic

chart is visually similar to an MSC. It specifies the exchange of messages among a set

of instances. Each instance is represented by a lifeline. Lifelines in a basic chart are

usually drawn as vertical dashed lines, and messages are solid arrows between lifelines.

For each message, there are two actions: the action of sending the message and the

action of receiving it. Each action occurs at a unique position in a lifeline. The partial

order of actions induced by a basic chart is as follows.

– An action at a higher position in a lifeline precedes an action at a lower position in

the same lifeline; and

– for each message m, the send-action of m precedes the receive-action of m.

Formally, we define basic charts as follows.

Let M be a set of messages, and let the set of events be given as Σ , (M ×{!, ?}).
That is, an event e is either m! (indicating that message m is sent, or m? (indicating

that m is received).

A lifeline l is a finite (possibly empty) sequence of events l , (e1, e2, ..., en). A

basic chart C is an n-tuple of lifelines 〈l1, ..., ln〉 with li = (ei1, ..., eim). We say

that an event e occurs at the location (i, j) in chart C if e = eij . An event occur-

rence o , (e, i, j) is a tuple consisting of an event e and the location of e. We define

loc(o) , (i, j) as the location of an event occurrence o, and lab(o) , e be the event of

o. We denote the set of event occurrences appearing in C with EO(C) A communica-

tion 〈(m!, i, j), (m?, i′, j′)〉 in C is a pair of two event occurrences in C representing

sending and receiving of the same message m. We define mat(m!, i, j) , (m?, i, j) to

match a sending event occurrence to a receiving event occurrence of the same commu-

nication. A communication does not have to be completely specified by a basic chart.

That is, it is possible that only the sending event or the receiving event of a message ap-

pears in a basic chart. In addition, an event is allowed to occur multiple times in a basic

chart, i.e., a basic chart can express that a message is repeatedly exchanged. However,

each event occurrence is unique in a basic chart.

The partial relation induced by a chart C on EO(C) is formalized as follows.

1. for any 1 ≤ xj < |lxi| with lxi being a lifeline in C, it holds that (e, xi, xj) ≺
(e′, xi, (xj + 1));

2. for any o ∈ S, it holds that o ≺ mat(o); and

3. ≺ is the smallest relation satisfying 1 and 2.

We admit the non-degeneracy assumption proposed by Alur et. al. [2]: a basic chart

cannot reverse the receiving order of two identical messages sent by some lifeline. For-

mally, a basic chart is degeneracy if and only if there exist two sending event occur-

rences o1, o2 ∈ S with o1 ≺ o2 such that lab(o1) = lab(o2) and mat(o1) 6≺ mat(o2).
For a basic chart, event occurrences are allowed to be absent, i.e., it is possible that

only a sending event or a receiving event of a message appears in a basic chart. Each

event occurrence is unique in a basic chart.

94

With basic charts, a universal eLSC can be defined as follows. A universal chart

in the eLSCs consists of two basic charts: a main-chart (Mch, drawn within a solid

rectangle) and a pre-chart (Pch). There are two possibilities of pre-charts: “necessary

pre-charts” (drawn within a solid hexagon) and “sufficient pre-charts” (drawn within a

hashed hexagon). These two pre-charts are interpreted as a necessary condition and a

sufficient condition for a main-chart, respectively. Intuitively, a universal chart with a

necessary pre-chart specifies all traces such that, if contains a segment which is admitted

by the pre-chart, then it must also contain a continuation segment (directly following the

first segment) which is admitted by the main chart. On the other hand, a universal chart

with a sufficient pre-chart specifies all traces such that, if contains a segment which is

admitted by the main-chart, then the segment must (directly) follows a prefix segment

which is admitted by the pre-chart. Formally, the syntax of eLSCs is as follows.

Definition 3 (Syntax of universal eLSCs). A universal eLSC is a tuple

Uch , (Pch,Mch,Cate)

with Cate ∈ {Suff ,Nec} denoting the category of the pre-chart. More specifically, the

chart (Pch,Mch,Suff) is with a sufficient pre-chart, and (Pch,Mch,Nec) is with a

necessary pre-chart.

We define PeLSCs by introducing condition structure and assignment structure into

eLSCs.

An assignment structure is comprised of a function v := s with v being a variable

and s being the name of a parameter. The variable v is evaluated to the value of a

parameter name p. The function is surrounded by a rectangle with a sandglass icon at

the top right corner. A condition structure is comprised of a proposition prop surrounded

by a rectangle. The proposition expresses the comparisons of parameter values. The

notations for the assignment structure and the condition structure are shown in Fig. 2.

Fig. 2. Examples: an assignment structure (left) and a condition structure (right)

In a PeLSC, assignment structures and condition structures combine naturally with

event occurrences. Intuitively, an assignment structure stores the value of a parameter

carried by the combined event occurrence; and a condition structure expresses the fea-

tures of a parameter carried by the combined event occurrence. Formally, the syntax of

the two structures are given as follows.

Definition 4 (Syntax of assignment and condition structures). Let Uch be an eLSC,

o ∈ EO(Uch) an event occurrence of Uch, v a free variable, s a nominal, and prop

a proposition. An assignment structure is defined as a tuple assi , (v, s, o), where

s represents the name of of a parameter. A condition structure is defined as a pair

cond , 〈prop, o〉.

95

With these structures, a PeLSC can be defined as follows.

Definition 5 (Syntax of PeLSCs). A PeLSC is defined as a tuple PU ,

(Uch,COND,ASSI), where Uch is an eLSC, and COND and ASSI are sets of con-

dition structures and assignment structures, respectively.

There are two possible forms of propositions in condition structures, one is with free

variables (denoted by prop(s1, ..., sn, v1, ..., vm)) and the other is without free variables

(denoted by prop(s1, ..., sn)). These two forms are used to express relative parameter

values and absolute parameter values, respectively. We divide the set COND of a PeLSC

into two subsets CONDFV and CONDNFV . The subset CONDFV is comprised of the

set of condition structures with propositions of the form prop(s1, ..., sn, v1, ..., vm);
and the subset CONDNFV is comprised of the set of condition structures with propo-

sitions of the form prop(s1, ..., sn). It holds that (CONDFV ∩ CONDNFV) = ∅ and

(CONDFV ∪ CONDNFV) = COND.

Given a parametrized event trace, the proposition in a condition structure 〈prop, o〉
is evaluated to a boolean value, according to the parameter values carried by events:

– the nominals s1, ..., sn in prop are replaced by the values of the parameters named

by s1, ..., sn carried by the event lab(o); and

– the variables v1, ..., vm in prop are evaluated to the values from some event oc-

currences through the assignment structures assi(v1, sx1, ox1), ..., assi (vm, sxm,
oxm).

In this paper, we require our PeLSCCs to satisfy an additional non-ambiguity as-

sumption. We say a PeLSC is non-ambiguity, if for any condition structure with a

proposition of the form prop(s1, ..., sn, v1, ..., vm), all free variable v1, ..., vm are eval-

uated to a certain value from a unique event occurrence. More formally, a PeLSC

PU , (Uch,COND,ASSI) is non-ambiguity if and only if for any condition struc-

ture cond = (prop(s1, ..., sn, v1, ..., vm), o) in the set CONDFV it holds that for any

vxi ∈ {v1, ..., vm} there exists an assignment structure (vxi, sxi, o
′) ∈ ASSI with

o
′ ≺ o. With the non-ambiguity assumption, each proposition is able to be evaluated

to a certain boolean value (true or false) over a deterministic parametrized event trace.

To understand this assumption, consider the PeLSCs in Fig. 3. For the chart PU2, the

variable v has no value since there is no assignment structure to store it. For the chart

PU3, the variable v has two values stored by two assignment structures. Therefore, the

condition structure cannot be evaluated to a certain boolean value for both of the two

charts. For the chart PU4, the values of variables v1 and v2 are from different event

occurrences.

The non-ambiguity assumption is a strong assumption. For instance, the variables

v1 and v2 in the chart PU4 have certain values. However, the order of the two events

!m1 and !m2, which are combined with the two assignment structures of v1 and v2, are

uncertain. Since our monitors are generated by translating PeLSCs into HL, the size

of the monitor is increased by expressing all possible executions of the pre-chart in the

resulting formula. This will reduce the monitoring efficiency.

96

(a) non-ambiguity (b) ambiguity (c) ambiguity (d) ambiguity

Fig. 3. Examples: non-ambiguity assumptions of PeLSCs

3.2 The Trace-based Semantics of PeLSCs

A PeLSC (Uch,COND,ASSI) defines a parametrized language (a set of parametrized

event traces) that is an extension of the propositional language (i.e., a set of event traces)

defined by Uch. Intuitively, the parametrized language is comprised of all parametrized

event traces such that the orders of events meets the partial order induced by Uch, and

all propositions in COND are evaluated to true with the values from the parameters

carried by the events. A parametrized event trace τ is admitted by a PeLSC PU if and

only if τ is in the parametrized language defined by PU .

A set of sequences of event occurrences is defined by a basic chart C as follows:

EOcc(C) , {(o[x1], o[x2], ..., o[xn])|{o[x1], o[x2], ..., o[xn]} = EO(C);n =
|EO(C)|; and for all o[xi], o[xj] ∈ EO(C), if o[xi] ≺ o[xj], then xi < xj}.

For languages L and L′, let (L◦L′) be the concatenation of L and L′ (i.e., (L◦L′) ,

{(σσ′) | σ ∈ L and σ′ ∈ L′}); and L be the complement of L (i.e., for any σ ∈ Σ∗,

it holds that σ ∈ L iff σ /∈ L). The language of event occurrences for eLSCs is given as

follows.

Definition 6 (Semantics of universal eLSCs). The language of event occurrences de-

fined by an eLSC Uch , (Pch,Mch,Cate) is as follows

– EOcc(Uch) , EOcc(Pch) ◦ EOcc(Mch), if Cate = Suff ;

– EOcc(Uch) , EOcc(Pch) ◦ EOcc(Mch), if Cate = Nec.

The evaluations of the propositions are formally defined as follows.

Given a set P = {〈s1, d1〉, ..., 〈sn, dm〉} of parameters and a proposition

prop(sy1, ..., syn), we define the evaluation of prop(sy1, ..., syn) over P (denoted with

[[P ⊢ prop(sy1, ..., syn)]]) as follows.

[[P ⊢ prop(sy1, ..., syn)]] =

true if prop(dy1, ..., dyn) is satisfied with

{〈sy1, dy1〉, ..., 〈syn, dym〉} ⊆ P

false otherwise

For the propositions of the form prop(sx1, ..., sxn, vy1, ..., vym) in PU , the values

of the variables vy1, ..., vym are from the assignment structures

97

ASSI(vy1, ..., vym) , {assi(vy1), ..., assi(vym)}, where assi(vyi) , (vyi, syi, o).
By ac(sx1, ..., sxn, vy1, ..., vym) we denote the pair (prop(sx1, ..., sxn, vy1, ..., vym),
ASSI(vy1, ..., vym)). Given a pair 〈P,P ′〉 of two sets of parameters, the evaluation of

the pair ac(sx1, ..., sxn, vy1, ..., vym) over 〈P,P ′〉 is defined as follows.

– [[〈P,P ′〉 ⊢ ac(sx1, ..., sxn, vy1, ..., vym)]] = true, if

prop(dx1, ..., dxn, dy1, ..., dym) is satisfied with {(sx1, dx1), ..., (sxn, dxn)} ⊆ P ′

and

{(sy1, dy1), ..., (syn, dyn)} ⊆ P;

– [[〈P,P ′〉 ⊢ ac(sx1, ..., sxn, vy1, ..., vym)]] = false, otherwise.

A PeLSC PU defines all parametrized event traces (σ, ρ) such that

– σ = (lab(o[1]), ..., lab(o[n])) with (o[1], ..., o[n]) ∈ EOcc(Uch);
– for all 〈prop, o〉 ∈ CONDNFV , if there exists zi ∈ [1, n] with o[zi] = o, then

[[ρ[zi] ⊢ prop]] = true; and

– for all 〈prop(sx1, ..., sxn, vy1, ..., vym), o〉 ∈ CONDFV and (vyi, syi, o
′) ∈

ASSI(vy1, ..., vym), if there exists zj, zk ∈ [1, n] such that o[zj] = o
′ and o[zk] =

o, then [[〈ρ[zj], ρ[zk]〉 ⊢ prop]] = true.

By PTra(PU) we denote the set of parametrized event traces defined by PB. Let

E(Uch) be the set of events appearing in an eLSC. We call each ǫUch ∈ (Σ\E(Uch))
a stutter event, and Pǫ ∈ 2ND an arbitrary set of stutter parameters.

Definition 7 (Trace based semantics for PeLSCs). The parametrized language de-

fined by a PeLSC PU is

PL(PU) , {(ǫ∗, e1, ǫ
∗, ..., en, ǫ

∗), (P∗
ǫ ,P1,P

∗
ǫ ...,Pn,P

∗
ǫ)},

where ((e1, ..., en), (P1, ...,Pn)) ∈ PTra(PU), and

|(ǫ∗, e1, ǫ
∗, ..., en, ǫ

∗)| = |(P∗
ǫ ,P1,P

∗
ǫ ...,Pn,P

∗
ǫ)|, and ǫ∗ and P∗

ǫ are finite (possible

empty) sequences of stutter events and stutter parameters, respectively.

4 A Translation of PeLSCs into HL Formulae

In this subsection, we present a translation of PeLSCs into a subclass of the hybrid logic

(HL) formulae. Whether an observation is admitted by a PeLSC can then be checked

with the resulting formula.

The syntax and semantics of HL are given as follows.

Definition 8 (Syntax of HL). Given the finite set AP of atomic propositions, a set V of

variables, the set Z of integers, and a set N of nominals, the terms π and formulae ϕ
of HL are inductively formed according to the following grammar, where x ∈ V , p ∈
AP , s ∈ N , r ∈ Z and ∼∈ {<,=}:

π ::= x+ r | r
ϕ ::= ⊥ | p | (ϕ1 ⇒ ϕ2) | (ϕ1 U ϕ2) | (π1 ∼ π2) | x ↓ s.ϕ.

98

Intuitively, an HL formula x ↓ s.ϕ(x) is satisfied by a parametrized event trace

τ , (σ, ρ) if and only if ϕ(d) is satisfied by σ with (s, d) ∈ ρ[1]. For instance, let t and

id be parameters representing time stamps and clients’ ID, respectively, a formula

�x ↓ t.y ↓ id.(login⇒ ♦x′ ↓ t.y′ ↓ id.(logout ∧ (y′ = y) ∧ (x′ < 200 + x)))

expresses the property Pro.

Assume that E is a function E : V → Z for assigning free variables in the domain of

integers N≥0 such that E(x + d) = E(x) + d and E(d) = d. Given a variable x and a

natural number d, we denote E[x := d] for the evaluation E ′ such that E ′(x) = d, and

E ′(y) = E(y) for all y ∈ V \{x}. The HL is defined on parametrized event traces as

follows.

Definition 9 (Trace-based Semantics for HL).

Let τ , (σ, ρ) be a parametrized event trace with σ , (e[1], e[2], ...) being an event

trace and ρ , (P[1],P[2]...,) being a parameter trace. Let i ∈ Z>0 be a position, p
a proposition, s a nominal, d a value in the domain of parameters, and ϕ1 and ϕ2 any

HL formulae. The satisfaction relation (τ, i, E) |= ϕ is defined inductively as follows:

(τ, i, E) 2 ⊥;

(τ, i, E) |= p iff p ∈ e[i] ;

(τ, i, E) |= (ϕ1 ⇒ ϕ2) iff (τ, i, E) |= ϕ1 implies (τ, i, E) |= ϕ2;

(τ, i, E) |= (ϕ1 U ϕ2) iff there exists j > i with (τ, j, E) |= ϕ2 and for all i < j′ < j
it holds that (τ, j′, E) |= ϕ1;

(τ, i, E) |= π1 ∼ π2 iff E(π1) ∼ E(π2);

(τ, i, E) |= x ↓ s.ϕ iff (τ, i, E [x := d]) |= ϕ, where (s, d) ∈ P[i].

As usual, τ |= ϕ iff (τ, 1, E) |= ϕ.

We now show how to translate a PeLSC into an HL formula to check whether a

parametrized trace is admitted. The translation is developed on basis of the translation

form an eLSC Uch into an LTL formulae ϕ(Uch) as shown in [14]. Here we concern

the translation of the introduced assignment and condition structures for PeLSCs.

A PeLSC is comprised of a universal eLSCUch, a set COND of condition structures

and a set ASSI of assignment structures. Propositions appearing in a PeLSC are spec-

ified by the comparisons of terms, i.e., π1 ∼ π2. According to the subset CONDNFV

and CONDFV , the following formulae are defined.

– Let e be an even in Uch combined with a constraint structure cond = (prop, o from

the set CONDNFV with prop(s1, ..., sn) and lab(o) = e. The condition structure

is translated into an HL formula

d(cond) , � (x1 ↓ s1. · · ·xn ↓ sn.(e⇒ prop(x1, ..., xn))).

The formula specifies that whenever the event e occurs, then the proposition must

be evaluated to true with values of the parameters named by s1, ..., sn carried by e.
I.e., if the event occurs at a position z1 of the trace, the proposition prop(d1, ..., dn)
is true with {(s1, d1), ..., (sn, dn)} ⊆ ρ[z1].

99

– For a condition structure cond ∈ CONDFV , there is a tuple ac(cond) ,

(prop(szy1, ..., szyn, vzx1, ..., vzxm), o,ASSI(vzx1, .., vzxm)) with ASSI(vzx1, ..,

vzxm) , {assi(vzx1), ..., assi(vzxm)} and assi(vzxi) , (vzxi, szxi, o
′) for any

1 ≤ i ≤ m. Let e = lab(o) and e′ = lab(o′) be the events of the two event

occurrences, the condition structure is translated into an HL formula

d(cond) , �((e′ ∧ ♦e) ⇒ (x1 ↓ v1. · · ·xm ↓ vm.(e
′ ∧ ♦y1 ↓ s1. · · · yn ↓

sn.(e ∧ (prop(y1, ..., yn, x1, ..., xm)))))).

This formula expresses that if both of the events, combined with the assignment

structures and with the condition structure, occurs, then the proposition must be

evaluated to true with the values of the parameters carried by the two events. I.e.,

if e′ and e occur at positions z1 and z2 of the trace, respectively, the proposition

prop(dzy1, ..., dzyn, dzx1, ..., dzxm) is true with {(szy1, dzy1), ..., (szyn, dzyn)} ⊆
ρ[z2] and {(szx1, dzx1), ..., (szxm, dzxm)} ⊆ ρ[z1].

From a PeLSC PU , (Uch,COND,ASSI) we define an HL formula

ϕ(PU) ,

(

ϕ(Uch) ∧
∧

cond∈CONDNF V

d(cond) ∧
∧

cond∈CONDF V

d(cond)

)

.

The formula expresses that, a parametrized event trace τ = (σ, ρ) satisfies the formula

ϕ(PU) if and only if σ is in the language defined by Uch, and the parameters carried

by the events in τ meet the specification of the assignment structures and the condition

structures. For any parametrized event trace τ , it holds that τ is admitted by PU iff

τ |= ϕ(PU).
A rewriting algorithm for HL can be developed directly upon the semantics of the

logic. Then a PeLSC property can be checked by a monitor by implementing the algo-

rithm in some rewriting environment, e.g, Maude [27].

Theorem 1. The complexity of the word-problem of HL is linear with respect to the

size of input traces.

Proof. Given an HL formula ϕ = x ↓ s.ψ(x) and a parametrized event trace τ ,

(σ, ρ). The trace τ satisfies ϕ if and only if σ |= ψ(d) with (s, d) ∈ ρ[1]. Since d is a

certain integer value, the sub-formulae of the comparisons of terms in ϕ is able to be

directly evaluated a boolean value true or false. Therefore, the process of checking an

HL formula over a parametrized event trace τ is essentially the same with the process

of checking an LTL formula over an event trace σ. Since the complexity of checking

whether or not a trace σ satisfies an LTL formula is linear with respect to the size of the

trace σ, the complexity of the word problem of HL is linear with respect to the length

of the input parametrized event traces.

Corollary 1. The complexity of PeLSCs is linear with respect to the size of traces.

According to the corollary, the language of PeLSCs is feasible for runtime verifica-

tion implementations, especially for on-line monitoring.

We implement the algorithms in Maude [17], which provides a formula rewriting

environment for monitoring. The implementation is valuated on several benchmarks.

100

The monitoring efficiency for the property P3 is shown in Fig. 4. The property P3 is

comprised of an eLSC and two condition structures with assignments (i.e., with free

variables). Fig. 4(a) shows the monitoring efficiency for the condition structures, and

Fig. 4(b) shows the monitoring efficiency for the eLSC. In this monitoring implemen-

tation, the most rewrites are spent on monitoring the condition structures with free vari-

ables.

0.00E+00

1.00E+07

2�������

3.00E+07

4.00E+07

5�������

6.00E+07

0 �00 400 600 800 1000 1�00

M
o
n
it
o
ri
n
g
�
ff
ic
ie
n
c
y

(�
e
�
ri
te
)

L
��h �� T�a�
s

(a) Parametric requirements

��������

��������

��������

��������

��������

�������

��!����

"������#

�������

��$����

� !�� ��� ��� $�� ���� �!��

%
&
'
*,
&
-*
'
/
9:
:*
;*
<'
;=

>-
< ?
-*
,<
@A

BCDFGH IJ KNOPCQ

(b) Temporal requirements

Fig. 4. Monitoring efficiency for P3

5 Conclusion

In this paper, we defined PeLSCs for parametric properties by introducing assignment

and condition structures into LSCs. With these structures, PeLSC can be interpreted

over parametrized event traces. The language can than intuitively express requirement

of data (e.g., values of time or other variables) carried by events. We developed trans-

lation from PeLSCs into HL for monitoring. We prove that the complexity of the word

problem of PeLSCs is linear if propositions in the condition structures only express

comparisons of terms.

There are several interesting topics for future work. Firstly, in this paper, we only

concerned comparisons of terms in the condition structures. It is interesting to find

out whether or not the PeLSC is still feasible for monitoring if the expressiveness of

conditions is extended by, e.g., introducing quantifiers ∀ and ∃. Secondly, since the

sizes of resulting formulae are often large, translating PeLSC into HL formulae is not

an efficient way for monitoring. Therefore, we are currently developing a more efficient

implementation, which can check PeLSC specifications directly. Last but not least, the

synthesis problem of PeLSC based monitors is left open in this paper. As PeLSCs have

features of the first order logic, the existing LSC synthesising techniques cannot handle

this problem.

101

References

1. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, O., De Moor,

O., Sereni, D., Sittampalam, G., Tibble, J.: Adding Trace Matching with Free Variables to

AspectJ. In: ACM SIGPLAN Notices. vol. 40, pp. 345–364. ACM (2005)

2. Alur, R., Etessami, K., Yannakakis, M.: Inference of Message Sequence Charts. Software

Engineering, IEEE Transactions on 29(7), 623–633 (2003)

3. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified Event Au-

tomata: Towards Expressive and Efficient Runtime Monitors. In: FM 2012: Formal Methods,

pp. 68–84. Springer (2012)

4. Barringer, H., Fisher, M., Gabbay, D., Gough, G., Owens, R.: MetateM: A Framework

for Programming in Temporal Logic. In: de Bakker, J., de Roever, W.P., Rozenberg, G.

(eds.) Stepwise Refinement of Distributed Systems Models, Formalisms, Correctness, Lec-

ture Notes in Computer Science, vol. 430, pp. 94–129. Springer Berlin Heidelberg (1990),

http://dx.doi.org/10.1007/3-540-52559-9_62

5. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based Runtime Verification. In:

Verification, Model Checking, and Abstract Interpretation. pp. 44–57. Springer (2004)

6. Barringer, H., Havelund, K.: TraceContract: A Scala DSL for Trace Analysis. In: Butler, M.,

Schulte, W. (eds.) FM 2011: Formal Methods, Lecture Notes in Computer Science, vol. 6664,

pp. 57–72. Springer Berlin Heidelberg (2011), http://dx.doi.org/10.1007/978-

3-642-21437-0_7

7. Barringer, H., Rydeheard, D., Havelund, K.: Rule Systems for Run-time Monitoring: from

Eagle to RuleR. Journal of Logic and Computation 20(3), 675–706 (2010)

8. Basin, D., Caronni, G., Ereth, S., Harvan, M., Klaedtke, F., Mantel, H.: Scalable Offline

Monitoring. In: Bonakdarpour, B., Smolka, S. (eds.) Runtime Verification, Lecture Notes in

Computer Science, vol. 8734, pp. 31–47. Springer International Publishing (2014), http:

//dx.doi.org/10.1007/978-3-319-11164-3_4

9. Basin, D., Klaedtke, F., Müller, S.: Policy Monitoring in First-order Temporal Logic. In:

Computer Aided Verification. pp. 1–18. Springer (2010)

10. Basin, D., Klaedtke, F., Zălinescu, E.: Algorithms for Monitoring Real-time Properties. In:

Runtime Verification. pp. 260–275. Springer (2012)

11. Bauer, A., Küster, J.C., Vegliach, G.: From Propositional to First-order Monitoring. In: Run-

time Verification. pp. 59–75. Springer (2013)

12. Bauer, A., Leucker, M., Schallhart, C.: Runtime Verification for LTL and TLTL. ACM Trans-

actions on Software Engineering and Methodology (TOSEM) 20(4), 14 (2011)

13. Blackburn, P., Seligman, J.: Hybrid Languages. Journal of Logic, Language and Information

4(3), 251–272 (1995), http://dx.doi.org/10.1007/BF01049415

14. Chai, M., Schlingloff, B.: Monitoring Systems with Extended Live Sequence Charts. In:

Runtime Verification - 5th International Conference, RV 2014, Toronto, ON, Canada,

September 22-25, 2014. Proceedings. pp. 48–63 (2014), http://dx.doi.org/10.

1007/978-3-319-11164-3_5

15. Chai, M., Schlingloff, H.: A Rewriting Based Monitoring Algorithm for TPTL. In: CS&P

2013. pp. 61–72. Citeseer (2013)

16. Chen, F., Roşu, G.: Mop: an Efficient and Generic Runtime Verification Framework. In:

ACM SIGPLAN Notices. vol. 42, pp. 569–588. ACM (2007)

17. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı-Oliet, N., Meseguer, J., Talcott, C.: Maude

Manual (version 2.6). University of Illinois, Urbana-Champaign 1(3), 4–6 (2011)

18. Damm, W., Harel, D.: LSCs: Breathing Life into Message Sequence Charts. Formal Methods

in System Design 19(1), 45–80 (2001)

102

19. Forgy, C.L.: Rete: A Fast Algorithm for the Many Pattern/many Object Pattern Match Prob-

lem. Artificial intelligence 19(1), 17–37 (1982)

20. Halle, S., Villemaire, R.: Runtime Monitoring of Message-based Workflows with Data. In:

Enterprise Distributed Object Computing Conference, 2008. EDOC’08. 12th International

IEEE. pp. 63–72. IEEE (2008)

21. Harel, D., Marelly, R.: Playing with Time: On the Specification and Execution of Time-

enriched LSCs. In: Modeling, Analysis and Simulation of Computer and Telecommunica-

tions Systems, 2002. MASCOTS 2002. Proceedings. 10th IEEE International Symposium

on. pp. 193–202. IEEE (2002)

22. Havelund, K.: Monitoring with Data Automata. In: Leveraging Applications of Formal Meth-

ods, Verification and Validation. Specialized Techniques and Applications, pp. 254–273.

Springer (2014)

23. Havelund, K.: Monitoring with Data Automata. In: Leveraging Applications of Formal Meth-

ods, Verification and Validation. Specialized Techniques and Applications, pp. 254–273.

Springer (2014)

24. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An Overview

of AspectJ. In: ECOOP 2001ŮObject-Oriented Programming, pp. 327–354. Springer (2001)

25. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Roşu, G.: An Overview of the MOP Runtime

Verification Framework. International Journal on Software Tools for Technology Transfer

14(3), 249–289 (2012)

26. Merz, S.: Decidability and Incompleteness Results for First-order Temporal Logics of Linear

Time. Journal of Applied Non-Classical Logics 2(2), 139–156 (1992)

27. Olveczky, P.C.: Real-time Maude 2.3 Manual. Research report (2004)

28. Stolz, V.: Temporal Assertions with Parametrized Propositions. Journal of Logic and Com-

putation 20(3), 743–757 (2010)

