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Abstract. In this paper, five greedy heuristics for construction of association

rules are compared from the point of view of the length and coverage of con-

structed rules. The obtained rules are compared also with optimal ones con-

structed by dynamic programming algorithms. The average relative difference

between length of rules constructed by the best heuristic and minimum length of

rules is at most 4%. The same situation is with coverage.
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1 Introduction

Association rule mining is one of the important fields of data mining and knowledge

discovery. It aims to extract interesting correlations, associations, or frequent patterns

among sets of items in data set.

There are many algorithms for construction of association rules. One of the most

popular is Apriori algorithm based on frequent itemsets [1]. During years, many new

algorithms were designed which are based on, e.g., hash based technique [15], parti-

tioning the data [18], and others [7, 10, 19].

The most popular measures for mining association rules are support and confi-

dence [9], however in the paper length and coverage as rule evaluation measures are

considered. The choice of length is connected with the Minimum Description Length

Principle [17]. Shorter rules are better from the point of view of understanding and in-

terpreting by experts. Search of rules with big coverage allows us to discover major

patterns in the data, and it is important from the point of view of knowledge represen-

tation.

In the paper, greedy algorithms for construction of association rules are studied

since the problems of construction of rules with minimum length or maximum coverage

are NP -hard [6, 12, 14]. The most part of approaches, with the exception of brute-

force, Apriori algorithm or extensions of dynamic programming, cannot guarantee the

construction of optimal rules (i.e., rules with minimum length or maximum coverage).
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In the paper [12], it was shown based on results of U. Feige [8] that, under reasonable

assumptions on the class NP, some greedy algorithm is close to the best polynomial

approximate algorithms for minimization of association rule length. We do not know

about similar results for coverage.

Application of rough sets theory to the construction of rules for knowledge represen-

tation or classification tasks are usually connected with the usage of decision table [16]

as a form of input data representation. In such a table one attribute is distinguished as a

decision attribute and it relates to a rule’s consequence. However, in the last years, as-

sociative mechanism of rule construction, where all attributes can occur as premises or

consequences of particular rules, is popular. Association rules can be defined in many

ways. In the paper, a special kind of association rules is studied, i.e., they relate to de-

cision rules. Similar approach was considered in [12, 13], where a greedy algorithm for

minimization of length of association rules was investigated.

In this paper, we consider five greedy heuristics for construction of association rules

and compare them from the point of view of the length and coverage of constructed

rules. We also compare the obtained rules with optimal ones constructed by dynamic

programming algorithms. We show that the average relative difference between length

of rules constructed by the best heuristic and minimum length of rules is at most 4%.

The same situation is with coverage.

The paper consists of five sections. Section 2 contains main notions. In Sect. 3,

we discuss five greedy heuristics. Section 4 contains experimental results for decision

tables from UCI Machine Learning Repository, and Sect. 5 – short conclusions.

2 Main Notions

An information system I is a rectangular table with n+1 columns labeled with attributes

f1, . . . , fn+1. Rows of this table are filled by nonnegative integers which are interpreted

as values of attributes.

An association rule for I is a rule of the kind

(fi1 = a1) ∧ . . . ∧ (fim
= am) → fj = a,

where fj ∈ {f1, . . . , fn+1}, fi1 , . . . , fim
∈ {f1, . . . , fn+1} \ {fj}, and a,a1,. . . ,am

are nonnegative integers.

The notion of an association rule for I is based on the notions of a decision table

and decision rule. We consider two kinds of decision tables: with many-valued decisions

and with single-valued decisions.

A decision table with many-valued decisions T is a rectangular table with n columns

labeled with (conditional) attributes f1, . . . ,fn. Rows of this table are pairwise different

and are filled by nonnegative integers which are interpreted as values of conditional

attributes. Each row r is labeled with a finite nonempty set D(r) of nonnegative integers

which are interpreted as decisions (values of a decision attribute). For a given row r of

T , it is necessary to find a decision from the set D(r).
A decision table with single-valued decisions T is a rectangular table with n

columns labeled with (conditional) attributes f1, . . . ,fn. Rows of this table are pair-

wise different and are filled by nonnegative integers which are interpreted as values of
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conditional attributes. Each row r is labeled with a nonnegative integer d(r) which is

interpreted as a decision (value of a decision attribute). For a given row r of T , it is

necessary to find the decision d(r). Decision tables with single-valued decisions can

be considered as a special kind of decision tables with many-valued decisions in which

D(r) = {d(r)} for each row r.

For each attribute fi ∈ {f1, . . . , fn+1}, the information system I is transformed

into a table Ifi
. The column fi is removed from I and a table with n columns labeled

with attributes f1, . . . , fi−1, fi+1, . . . , fn+1 is obtained. Values of the attribute fi are

attached to the rows of the obtained table Ifi
as decisions.

The table Ifi
can contain equal rows. We transform this table into two decision

tables – with many-valued and single-valued decisions. A decision table Im−v
fi

with

many-valued decisions is obtained from the table Ifi
by replacing each group of equal

rows with a single row from the group with the set of decisions attached to all rows

from the group. A decision table Is−v
fi

with single-valued decisions is obtained from

the table Ifi
by replacing each group of equal rows with a single row from the group

with the most common decision for this group.

The set {Im−v
f1

, . . . , Im−v
fn+1

} of decision tables with many-valued decisions obtained

from the information system I is denoted by Φm−v(I). We denote by Φs−v(I) the set

{Is−v
f1

, . . . , Is−v
fn+1

} of decision tables with single-valued decisions obtained from the

information system I . Since decision tables with single-valued decisions are a special

case of decision tables with many-valued decisions, we consider the notion of decision

rule for tables with many-valued decisions.

Let T ∈ Φm−v(I). For simplicity, let T = Im−v
fn+1

. The attribute fn+1 will be con-

sidered as a decision attribute of the table T . We denote by N(T ) the number of rows in

table T . For a decision a, denote N(T, a) the number of rows r of T such that a ∈ D(r),
and M(T, a) = N(T )−N(T, a). A decision a is a common decision of T if a ∈ D(r)
for any row r of T . We denote by E(T ) the set of conditional attributes of T which are

not constant on T . A table obtained from T by removal some rows is called a subtable

of T . We denote by T (fi1 , a1), . . . , (fim
, am) a subtable of T which consists of rows

that at the intersection with columns fi1 , . . . , fim
have values a1, . . . , am.

The expression

(fi1 = a1) ∧ . . . ∧ (fim
= am) → fn+1 = a

is called a decision rule over T if fi1 , . . . , fim
∈ {f1, . . . , fn}, a1, . . . , am are the val-

ues of the corresponding attributes, and a is a decision. We correspond to the considered

rule the subtable T ′ = T (fi1 , a1), . . . , (fim
, am) of the table T . This rule is called real-

izable for a row r of T if r belongs to T ′. This rule is called true for T if a is a common

decision of T ′. We say that the considered rule is a rule for T and r, if this rule is true

for T and realizable for r. The number m is called the length of the rule. The coverage

of the rule is the number of rows r from T ′ for which a ∈ D(r). If the considered rule

is a rule for T and r then its coverage is equal to N(T ′).

Decision rules which are true for decision tables from Φm−v(I) can be considered

as association rules (modification for many-valued decision model) that are true for the

information system I . Decision rules which are true for decision tables from Φs−v(I)
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can be considered as association rules (modification for single-valued decision model)

that are true for the information system I .

3 Greedy Heuristics

We consider the work of five greedy heuristics on an example of the table T = Im−v
fn+1

.

Let r = (b1, . . . , bn) be a row of T and a be a decision from D(r). A heuristic H
constructs a decision rule for T and r. This heuristic starts with a rule whose left-hand

side is empty → fn+1 = a, and then sequentially adds conditions to the left-hand side

of this rule. Let during the work of the heuristic H , we already constructed the following

rule:

(fi1 = bi1) ∧ . . . ∧ (fim
= bim

) → fn+1 = a.

We correspond to this rule the subtable T ′ = T (fi1 , bi1), . . . , (fim
, bim

) of the table T .

If a is a common decision for T ′ then the work of H is finished and the constructed rule

is returned. Otherwise, we should select a new attribute fim+1
and construct a new rule:

(fi1 = bi1) ∧ . . . ∧ (fim
= bim

) ∧ (fim+1
= bim+1

) → fn+1 = a.

Denote T ′′ = T ′(fim+1
, bim+1

), M(fim+1
, r, a) = M(T ′′, a) = N(T ′′) − N(T ′′, a),

and RM(fim+1
, r, a) = (N(T ′′) − N(T ′′, a))/N(T ′′). We denote α(fim+1

, r, a) =
N(T ′, a) − N(T ′′, a) and β(fim+1

, r, a) = M(T ′, a) − M(T ′′, a). We describe now

how five greedy heuristics select the attribute fim+1
.

Heuristic “M” selects an attribute fim+1
∈ E(T ′) which minimizes the value

M(fim+1
, r, a).

Heuristic “RM” selects an attribute fim+1
∈ E(T ′) which minimizes the value

RM(fim+1
, r, a).

Heuristic “maxCov” selects an attribute fim+1
∈ E(T ′) which minimizes the value

α(fim+1
, r, a) given that β(fim+1

, r, a) > 0.

Heuristic “poly” selects an attribute fim+1
∈ E(T ′) which maximizes the value

β(fim+1
,r,a)

α(fim+1
,r,a)+1 .

Heuristic “log” selects an attribute fim+1
∈ E(T ′) which maximizes the value

β(fim+1
,r,a)

log2(α(fim+1
,r,a)+2) .

Let H be one of the considered heuristics. For a row r of the table T , we apply it to

the row r and each decision a ∈ D(r). As a result, we obtain |D(r)| rules. Depending

on our aim, we either choose among these rules a rule with minimum length or a rule

with maximum coverage.

4 Experimental Results

Experiments were made using data sets from UCI Machine Learning Repository [5]

and software system Dagger [2]. Some decision tables contain conditional attributes

that take unique value for each row. Such attributes were removed. In some tables there

were equal rows with, possibly, different decisions. In this case each group of identical
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rows was replaced with a single row from the group with the most common decision

for this group. In some tables there were missing values. Each such value was replaced

with the most common value of the corresponding attribute. Prepared 12 data sets were

considered as information systems (see Table 1 which contains some information about

each of these information systems).

Table 1. Data sets considered as information systems

Data set Rows Attr

Adult-stretch 16 5

Balance-scale 625 5

Breast-cancer 266 10

Cars 1728 7

Hayes-roth-data 69 5

Lenses 24 5

Monks-1-test 432 7

Monks-3-test 432 7

Shuttle-landing 15 7

Teeth 23 9

Tic-tac-toe 958 10

Zoo-data 59 17

For each information system I , we construct the set Φm−v(I) of decision tables

with many-valued decisions and the set Φs−v(I) of decision tables with single-valued

decisions. For each row r of each table T ∈ Φm−v(I), we apply to this row each of the

considered five greedy heuristics as it was described at the end of the previous section.

We rank five heuristics for row r relative to the length and coverage of constructed rules

and find, for each heuristic, the average ranks relative to length and coverage among all

rows of all tables from Φm−v(I). After that we consider mean of average ranks among

all 12 information systems and obtain overall ranks. Results can be found in Table 2.

The best three heuristics for length are M, log, and RM. The best three heuristics for

coverage are poly, log, and RM. We study in the same way decision tables with single-

valued decisions (see Table 2). The best three heuristics for length are M, RM, and log.

The best three heuristics for coverage are poly, log, and RM.

For each heuristic and each row r of each table T ∈ Φm−v(I), we compare the

length of rule constructed by heuristic for r (we denote it length_greedy) with min-

imum length of rule (we denote it length_min) and calculate the relative difference
length_greedy−length_min

length_min
(we assume that 0

0 = 0). The minimum length of rule can be

found by dynamic programming algorithms (see [3, 4, 20, 21] for decision tables with

single-valued decisions and [11] for decision tables with many-valued decisions). Later,

we find average relative difference among all rows of all tables from Φm−v(I), and

overall average relative difference for all 12 information systems. Results can be found

in Table 3. The best three heuristics for the length are M (2% difference), RM (4%),

and log (13%). Similar study was done for coverage and decision tables with many-
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valued decisions. The relative difference is given by coverage_max−coverage_greedy
coverage_max

where coverage_greedy is the coverage of the rule constructed by greedy heuristic, and

coverage_max is the maximum coverage of the rule calculated by a dynamic program-

ming algorithm. The best three heuristics for the coverage are poly (4% difference), log

(8%), and maxCov (14%).

Table 2. Overall ranks for the heuristics

Heuristics

poly log maxCov M RM

Single-valued decisions
Length 3.38 2.25 5.00 2.17 2.21

Coverage 1.67 1.83 4.00 4.21 3.29

Many-valued decisions
Length 3.33 2.33 5.00 1.79 2.54

Coverage 1.67 1.83 3.67 4.21 3.62

We study in the same way decision tables with single-valued decisions (see results

in Table 3). The best three heuristics for the length are RM (4% difference), M (5%),

and log (14%). The best three heuristics for the coverage are poly (4% difference), log

(8%), and maxCov (15%).

Table 3. Overall average relative differences for the heuristics

Heuristics

poly log maxCov M RM

Single-valued decisions
Length 0.27 0.14 0.84 0.05 0.04

Coverage 0.04 0.08 0.15 0.24 0.21

Many-valued decisions
Length 0.29 0.13 0.83 0.02 0.04

Coverage 0.04 0.08 0.14 0.23 0.20

From the considered results it follows that, for the length minimization, we should

use the heuristic M and, probably, the heuristic RM. For the coverage maximization we

should use the heuristic poly.

5 Conclusions

We compared five heuristics for construction of association rules in the frameworks

of both multi-valued and single-valued decision approaches. We shown that the aver-

age relative difference between coverage of rules constructed by the best heuristic and

maximum coverage of rules is at most 4%. The same situation is with length. In the

future, we are planning to use the best heuristic for coverage in algorithms constructing

relatively small systems of rules covering almost all objects in information systems.
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