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Abstract. In the paper, an application of dynamic programming approach for

optimization of association rules from the point of view of knowledge represen-

tation is considered. Experimental results present cardinality of the set of asso-

ciation rules constructed for information system and lower bound on minimum

possible cardinality of rule set based on the information obtained during algo-

rithm work.

Key words: association rules, decision rules, dynamic programming, set cover

problem, rough sets.

1 Introduction

Association rules are popular form of knowledge representation. They are used in vari-

ous areas such as business field for decision making and effective marketing, sequence-

pattern in bioinformatics, medical diagnosis, etc. One of the most popular application

of association rules is market basket analysis that finds associations between different

items that customers place in their shopping baskets.

There are many approaches for mining association rules. The most popular, is Apri-

ori algorithm based on frequent itemsets [1]. During years, many new algorithms were

designed which are based on, e.g., transaction reduction [2], sampling the data [13], and

others [7, 9].

The most popular measures for association rules are support and confidence, how-

ever in the literature many other measures have been proposed [8, 9]. In this paper, we

are interested in the construction of rules which cover many objects. Maximization of

the coverage allows us to discover major patterns in the data, and it is important from the

point of view of knowledge representation. Unfortunately, the problem of construction

of rules with maximum coverage is NP -hard [6]. The most part of approaches, with

the exception of brute-force and Apriori algorithm, cannot guarantee the construction
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of rules with the maximum coverage. The proposed dynamic programming approach

allows one to construct such rules.

Application of rough sets theory to the construction of rules for knowledge repre-

sentation or classification tasks are usually connected with the usage of decision ta-

ble [12] as a form of input data representation. In such a table, one attribute is distin-

guished as a decision attribute and it relates to a rule consequence. However, in the

last years, associative mechanism of rule construction, where all attributes can occur as

premises or consequences of particular rules, is popular. Association rules can be de-

fined in many ways. In the paper, a special kind of association rules is studied, i.e., they

relate to decision rules. Similar approach was considered in [10, 11], where a greedy

algorithm for minimization of length of association rules was studied. In [15], a dy-

namic programming approach to optimization of association rules relative to coverage

was investigated.

When association rules for information systems are studied and each attribute is

sequentially considered as the decision one, inconsistent tables are often obtained, i.e.,

tables containing equal rows with different decisions. In the paper, two possibilities of

removing inconsistency of decision tables are considered. If in some tables there are

equal rows with, possibly, different decisions, then (i) each group of identical rows is

replaced with a single row from the group with the most common decision for this

group, (ii) each group of identical rows is replaced with a single row from the group

with the set of decisions attached to rows from the considered group. In the first case,

usual decision tables are obtained (decision tables with single-valued decisions) and, for

a given row, we should find decision attached to this row. In the second case, decision

tables with many-valued decisions are obtained and, for a given row, we should find an

arbitrary decision from the set of decisions attached to this row.

For each decision table obtained from the information system, we construct a system

of exact rules in the following way: during each step, we choose a rule which covers

the maximum number of previously uncovered rows. We stop the construction when all

rows of the table are covered. If the obtained system of rules is short enough, then it

can be considered as an intelligible representation of the knowledge extracted from the

decision table. Otherwise, we can consider approximate rules, and stop the construction

of the rule system when the most part of the rows (for example 90% of the rows) are

covered.

In [4], the presented algorithm was proposed as application for multi-stage opti-

mization of decision rules for decision tables. We extend it to association rules. The

presented algorithm can be considered as a simulation of a greedy algorithm for con-

struction of partial covers. So we can use lower bound on the minimum cardinality for

partial cover based on the information about greedy algorithm work which was obtained

in [10].

The paper consists of five sections. Section 2 contains main notions. In Sect. 3, al-

gorithm for construction of system of association rule systems is presented. Section 4

contains experimental results for decision tables from UCI Machine Learning Reposi-

tory, and Section 5 – short conclusions.
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2 Main Notions

An information system I is a rectangular table with n+1 columns labeled with attributes

f1, . . . , fn+1. Rows of this table are filled by nonnegative integers which are interpreted

as values of attributes.

An association rule for I is a rule of the kind

(fi1 = a1) ∧ . . . ∧ (fim
= am) → fj = a,

where fj ∈ {f1, . . . , fn+1}, fi1 , . . . , fim
∈ {f1, . . . , fn+1} \ {fj}, and a,a1,. . . ,am

are nonnegative integers.

The notion of an association rule for I is based on the notions of a decision table

and decision rule. We consider two kinds of decision tables: with many-valued decisions

and with single-valued decisions.

A decision table with many-valued decisions T is a rectangular table with n columns

labeled with (conditional) attributes f1, . . . ,fn. Rows of this table are pairwise different

and are filled by nonnegative integers which are interpreted as values of conditional

attributes. Each row r is labeled with a finite nonempty set D(r) of nonnegative integers

which are interpreted as decisions (values of a decision attribute). For a given row r of

T , it is necessary to find a decision from the set D(r).

A decision table with single-valued decisions T is a rectangular table with n
columns labeled with (conditional) attributes f1, . . . ,fn. Rows of this table are pair-

wise different and are filled by nonnegative integers which are interpreted as values of

conditional attributes. Each row r is labeled with a nonnegative integer d(r) which is

interpreted as a decision (value of a decision attribute). For a given row r of T , it is

necessary to find the decision d(r). Decision tables with single-valued decisions can

be considered as a special kind of decision tables with many-valued decisions in which

D(r) = {d(r)} for each row r.

For each attribute fi ∈ {f1, . . . , fn+1}, the information system I is transformed

into a table Ifi
. The column fi is removed from I and a table with n columns labeled

with attributes f1, . . . , fi−1, fi+1, . . . , fn+1 is obtained. Values of the attribute fi are

attached to the rows of the obtained table Ifi
as decisions.

The table Ifi
can contain equal rows. We transform this table into two decision

tables – with many-valued and single-valued decisions. A decision table Im−v
fi

with

many-valued decisions is obtained from the table Ifi
by replacing each group of equal

rows with a single row from the group with the set of decisions attached to all rows

from the group. A decision table Is−v
fi

with single-valued decisions is obtained from

the table Ifi
by replacing each group of equal rows with a single row from the group

with the most common decision for this group.

The set {Im−v
f1

, . . . , Im−v
fn+1

} of decision tables with many-valued decisions obtained

from the information system I is denoted by Φm−v(I). We denote by Φs−v(I) the set

{Is−v
f1

, . . . , Is−v
fn+1

} of decision tables with single-valued decisions obtained from the

information system I . Since decision tables with single-valued decisions are a special

case of decision tables with many-valued decisions, we consider the notion of decision

rule for tables with many-valued decisions.
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Let T ∈ Φm−v(I). For simplicity, let T = Im−v
fn+1

. The attribute fn+1 will be con-

sidered as a decision attribute of the table T . We denote by Row(T ) the set of rows of

T . Let D(T ) =
⋃

r∈Row(T ) D(r).
A decision table is called empty if it has no rows. The table T is called degenerate if

it is empty or has a common decision, i.e.,
⋂

r∈Row(T ) D(r) 6= ∅. We denote by N(T )

the number of rows in the table T and, for any t ∈ ω, we denote by Nt(T ) the number

of rows r of T such that t ∈ D(r). By mcd(T ) we denote the most common decision

for T which is the minimum decision t0 from D(T ) such that Nt0(T ) = max{Nt(T ) :
t ∈ D(T )}. If T is empty then mcd(T ) = 0.

For any conditional attribute fi ∈ {f1, . . . , fn}, we denote by E(T, fi) the set of

values of the attribute fi in the table T . We denote by E(T ) the set of conditional

attributes for which |E(T, fi)| ≥ 2.

Let T be a nonempty decision table. A subtable of T is a table obtained from T by

the removal of some rows. Let fi1 , . . . , fim
∈ {f1, . . . , fn} and a1, . . . , am ∈ ω where

ω is the set of nonnegative integers. We denote by T (fi1 , a1) . . . (fim
, am) the subtable

of the table T containing the rows from T which at the intersection with the columns

fi1 , . . . , fim
have numbers a1, . . . , am, respectively.

As an uncertainty measure for nonempty decision tables we consider relative mis-

classification error rme(T ) = (N(T )−Nmcd(T )(T ))/N(T ) where Nmcd(T )(T ) is the

number of rows r in T containing the most common decision for T in D(r).
A decision rule over T is an expression of the kind

(fi1 = a1) ∧ . . . ∧ (fim
= am) → fn+1 = t (1)

where fi1 , . . . , fim
∈ {f1, . . . , fn}, and a1, . . . , am, t are numbers from ω. It is possi-

ble that m = 0. For the considered rule, we denote T 0 = T , and if m > 0 we denote

T j = T (fi1 , a1) . . . (fij
, aj) for j = 1, . . . ,m. We will say that the decision rule (1)

covers the row r = (b1, . . . , bn) of T if r belongs to Tm, i.e., bi1 = a1, . . . , bim
= am.

A decision rule (1) over T is called a decision rule for T if t = mcd(Tm), and if

m > 0, then T j−1 is not degenerate for j = 1, . . . ,m, and fij
∈ E(T j−1). We denote

by DR(T ) the set of decision rules for T .

Let ρ be a decision rule for T which is equal to (1). The value rme(T, ρ) =
rme(Tm) is called the uncertainty of the rule ρ. Let α be a real number such that

0 ≤ α ≤ 1. We will say that a decision rule ρ for T is an α-decision rule for T if

rme(T, ρ) ≤ α. If α = 0 (in this case, for each row r covered by ρ, the set D(r) con-

tains the decision on the right-hand side of ρ) then we will say that ρ is an exact rule.

We denote by DRα(T ) the set of α-decision rules for T .

3 Algorithm for Construction of Association Rule System

α-Decision rules for tables from Φm−v(I) can be considered as α-association rules

(modification for many-valued decision model) for the information system I . α-

Decision rules for decision tables from Φs−v(I) can be considered as α-association

rules (modification for single-valued decision model) for the information system I . In

this section, we consider an algorithm for construction of an association rule system for
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I in the frameworks of both many-valued decision model and single-valued decision

model. Since decision tables with single-valued decisions are a special kind of deci-

sion tables with many-valued decisions, we will discuss mainly many-valued decision

model.

Let T = Im−v
fn+1

. Let S be a nonempty finite set of α-decision rules for T (system of

α-decision rules for T ), and β be a real number such that 0 ≤ β ≤ 1. We say that S is

a β-system of α-decision rules for T if rules from S cover at least (1 − β)N(T ) rows

of T .

We describe an algorithm α-β-Rules which, for a decision table T , and real numbers

α and β, 0 ≤ α ≤ 1, and 0 ≤ β ≤ 1, constructs a β-system of α-decision rules for T .

During each step, we choose (based on a dynamic programming algorithm [4]) a deci-

sion rule which covers maximum number of uncovered previously rows. We stop when

the constructed rules cover at least (1− β)N(T ) rows of T . We denote by Ruleα,β(T )
the constructed system of rules.

We denote by C(T, α, β) the minimum cardinality of a β-system of α-decision

rules for T . It is clear that C(T, α, β) ≤ |Ruleα,β(T )|. Using information based on the

work of algorithm α-β-Rules, we can obtain lower bound on the parameter C(T, α, β).
During the construction of β-system of α-decision rules for T , let the algorithm α-

β-Rules selects consequently rules ρ1, . . . , ρt. Let B1, . . . , Bt be sets of rows of T
covered by rules ρ1, . . . , ρt, respectively. Set B0 = ∅, δ0 = 0 and, for i = 1, . . . , t,
set δi = |Bi \ (B0 ∪ . . . ∪ Bi−1)|. The information derived from the algorithm’s work

consists of the tuple (δ1, . . . , δt) and the numbers N(T ) and β.

From the results obtained in [10] regarding a greedy algorithm for the set cover

problem it follows that C(T, α, β) ≥ l(T, α, β) where

l(T, α, β)) = max

{⌈

⌈(1 − β)N(T )⌉ − (δ0 + . . . + δi)

δi+1

⌉

: i = 0, . . . , t − 1

}

.

Using algorithm α-β-Rules, for each decision table T ∈ Φm−v(I), we con-

struct the set of rules Ruleα,β(T ). As a result, we obtain the system of rules (α-

association rules for the information system I – modification for many-valued deci-

sion model) Rulem−v
α,β (I) =

⋃

T∈Φm−v(I) Ruleα,β(T ). This system contains, for each

T ∈ Φm−v(I), a subsystem which is a β-system of α-decision rules for T . We denote

by Cm−v(I, α, β) the minimum cardinality of such system. One can show that

Lm−v(I, α, β) ≤ Cm−v(I, α, β) ≤ Um−v(I, α, β),

Lm−v(I, α, β) =
∑

T∈Φm−v(I) l(T, α, β) and Um−v(I, α, β) =
∣

∣

∣
Rulem−v

α,β (I)
∣

∣

∣
.

We can do the same for the set Φs−v(I) of decision tables with single-valued deci-

sions. As a result, we obtain the system of rules (α-association rules for the information

system I – modification for single-valued decision model) Rules−v
α,β (I) =

⋃

T∈Φs−v(I)

Ruleα,β(T ) which contains, for each T ∈ Φs−v(I), a subsystem which is a β-system of

α-decision rules for T . Denote Cs−v(I, α, β) the minimum cardinality of such system.

One can show that

Ls−v(I, α, β) ≤ Cs−v(I, α, β) ≤ Us−v(I, α, β),
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Table 1. Total number of rules (upper bound / lower bound)

Ls−v(I, α, β) =
∑

T∈Φs−v(I) l(T, α, β) and Us−v(I, α, β) =
∣

∣

∣
Rules−v

α,β (I)
∣

∣

∣
.

4 Experimental Results

Experiments were made using data sets from UCI Machine Learning Repository [5]

and software system Dagger [3]. Some decision tables contain conditional attributes

that take unique value for each row. Such attributes were removed. In some tables, there

were equal rows with, possibly, different decisions. In this case each group of identical

rows was replaced with a single row from the group with the most common decision

for this group. In some tables there were missing values. Each such value was replaced

with the most common value of the corresponding attribute.

Prepared 12 data sets were considered as information systems. Table 1 contains

name (column “Information system”), number of rows (column “Rows”), and number

of attributes (column “Attr”) for each of the considered information systems. Table 1

presents also upper / lower bounds (see descriptions at the end of the previous section)

on Cm−v(I, α, β) (column “many-val”) and on Cs−v(I, α, β) (column “single-val”)

for pairs (α = 0, β = 0) and (α = 0.3, β = 0.2).

We can see that, for tables with many-valued decisions, upper and lower bounds

on the number of rules are less than or equal to the bounds for decision tables with

single-valued decision. We considered a threshold

30 × (number of attributes)
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Table 2. Total number of rules for information system balance-scale with 5 attributes

as a reasonable upper bound on the number of rules if a system of rules is used for

knowledge representation. In the case α = 0 and β = 0, the threshold is exceeded

for five information systems (see numbers in bold): balance-scale, breast-cancer, cars,

hayes-roth-data, and tic-tac-toe. The consideration of approximate rules and partial cov-

ers can improve the situation. In the case α = 0.3 and β = 0.2, the threshold is ex-

ceeded for three information systems (balance-scale, breast-cancer, and tic-tac-toe) if

we consider decision tables with single-valued decisions and for two information sys-

tems (breast-cancer and tic-tac-toe) if we consider decision tables with many-valued

decisons.

For four information systems (balance-scale, breast-cancer, cars, and hayes-roth-

data), upper / lower bounds on Cm−v(I, α, β)) and on Cs−v(I, α, β)) for β ∈
{0, 0.01, 0.05, 0.1, 0.15, 0.2} and α ∈ {0, 0.1, 0.3} can be found in Tables 2, 3, 4, and

5.

5 Conclusions

In the paper, an algorithm for construction of association rule system is proposed. It sim-

ulates the work of greedy algorithm for set cover problem. Experimental results present

cardinality of the set of association rules constructed for information system and lower

bound on minimum possible cardinality of such set based on the information about the

algorithm work. In the future, the length of constructed association rules will be stud-

ied also. We are planning to extend an approach proposed in [14] for decision rules to

construction of association rule systems. This approach allows one to construct rules

with coverage close to maximum and requires less time than the dynamic programming

approach.



19

Table 3. Total number of rules for information system breast-cancer with 10 attributes

Table 4. Total number of rules for information system cars with 7 attributes
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Table 5. Total number of rules for information system hayes-roth-data with 5 attributes
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