
Considering Concurrency in Early Spacecraft Design

Studies

Jafar Akhundov, Peter Tröger, and Matthias Werner

Operating Systems Group, TU Chemnitz, Germany
{jafar.akhundov,peter.troeger,matthias.werner}@cs.tu-chemnitz.de

Abstract. In real-world spacecraft systems, concurrent system activities must be
constrained for energy efficiency and functional reasons. Such constraints must
be considered in the early design phases, in order to avoid costly reiterations and
modifications of the proposed system design in later phases. Although some ini-
tial attempts for using formal specifications exist in the domain, there is a lack of
concurrency support in the utilized approaches. In this paper, we therefore first
formalize an existing domain-specific language for specifying spacecraft designs
and their constraints. Since this language does not support the modelling of con-
currency issues, we extend it accordingly and map it to standard timed automata,
based on a general system model. The new-style specifications can now be pro-
cessed with existing and proven automata modelling tools, which enables faster
and more reliable feasibility checks for early spacecraft system designs.

1 Introduction

The model-based engineering paradigm is widely accepted in the aerospace industry.
One specific implementation is "Concurrent Engineering (CE)", an approach that has
evolved into an important support mechanism for early space mission design decisions.
It is supposed to clarify the baseline requirements and design properties for a future
spacecraft, such as overall mass, power consumption and costs for development and
operation. Studies have shown that up to 85% of the overall spacecraft project costs
result from decisions made in this early phase [14].

During the CE project phase, multiple spacecraft design alternatives are simultane-
ously created, refined and analyzed by a group of engineers. Everybody in this group
has an own range of responsibilities, such as the consideration of satellite trajectories,
the realization of communication mechanisms, or the consideration of thermal aspects
[11]. This makes the evaluation and ranking of architecture variations a complicated
issue, since local design changes always have implications on global system scope.
Those modifications may even impact the feasibility of the complete system design,
if not correctly tracked and understood before the next project phase. This led to the
development of feasibility checking approaches as part of CE in the past. They are con-
ducted iteratively after each major design change, to provide feedback for engineers
and the spacecraft customer.

The following paper discusses the consideration of concurrency demands and re-
strictions in the CE project phase based on a formal specification. Section 2 first intro-
duces an abstract system model for spacecraft systems, in order to restrict the model

23

entities to a necessary minimum. Section 3 then explains a domain-specific language
being used in a German spacecraft project for the formulation of constraints and prop-
erties. In Section 4, we show how this DSL must be enhanced to consider concurrency
issues properly. Section 5 finally explains how the resulting DSL can be translated to
timed automata for better analysis support from existing tools.

2 Spacecraft System Model

A spacecraft system can be modeled as a set of internal and external state variables
S = IS ∪ ES. The internal state si is defined by all state variables that can be directly
manipulated through spacecraft’s activities, e.g., the charging level of the battery or
the available free memory. External state variables change by themselves and are not
directly affected by spacecraft activities. Examples are temperature, the time, or the
availability of sun light. They constitute the external state se.

The spacecraft activity can be abstractly defined based on the idea of interacting
components. One relevant property here is the consideration of their concurrent activ-
ities and their relation to time. Let T = {τ1, ..., τn}, n ∈ N be a set of operational
states representing activities of the spacecraft components, e.g. the active charging of
the satellite battery from solar panels or the usage of some data transmission down-link.
I.e., for each τi, there exists a transition function fi(se, si,∆t) = ∆si that describes
the change of the internal system’s state if a component is active for the time ∆t.

In real-world satellite systems, concurrent component activities must be constrained
for energy efficiency and functional reasons. Not all spacecraft components can be ac-
tive at the same time. Let C = {c1, ..., ck}, k ∈ N represent a set of constraints for
the state variables. Please note that the mission goals can be seen as special mission
constraints.

Given the above definitions, a schedule or a plan is defined as a mapping of the
component activity set T onto a set of time intervals:

P : T 7→ I, (1)

where I = {(b, f) : b, f ∈ R
+, b < f} is a set of finite length time intervals with

b, f begin the start- and end-times of the intervals, respectively. As a side condition, all
Ci must be true at any time.

Based on the given system model, we are now discussing how constraints can be
formulated and checked for a specific system model instance.

3 DSL-Based Constraint Description

Different methods can be used to check a spacecraft system model’s compliance with
the intended constraints and goals for the planned mission time. Schaus et al. described
how an expert can formulate such requirements in a dedicated domain specific language

(DSL) and use search algorithms to check the feasibility with respect to the given con-
straints [10]. The proposed syntax was used to create a description for a representative
flying mission called satellite TET-1 [7, 16]. The DSL syntax turned out to be detailed

24

enough to be fed into a search algorithm that looks for an execution trace fulfilling all
conditions as mission plan [12].

Originally, the proposed concept was called continuous verification. We avoid the
term ‘verification’ intentionally here, since at such an early design phase there is no
real detailed system specification against which the system would be formally verified.
Actually, creating unambiguous specifications is the purpose of the whole preliminary
analysis. Instead of ‘verification’, the terms ‘feasibility study/check’ will be used.

In the published DSL syntax, the engineer can define different system components
being exclusively active (called states) and system parameters (called operational state

variables) which can be changed by the components’ activities. The values of these
parameters define the global system state. I.e., there exist implicit constraints

∀i, j, i 6= j, τi ⇒ ¬τj (2)

The mission goal is defined as a constraint on the operational state variables. Addi-
tional constraints beside the central mission goal can also be formulated. Furthermore,
for every component there are corresponding rates of changes to the system parameters.
The generated mission plan is a chain of activity periods derived from this description,
such as Battery Charge → Collect Data with Cameras → Send Data to Earth → Idle

→
Since satellite systems depend not only on the internal components, but also on the

execution environment, there is a possibility to describe such environmental properties
in the DSL, too. This is done by parameterizing external simulation models (SGP4) [10,
6] to compute satellite trajectories and generate periodic external events that activate
components.

The original DSL from [10] is translated to the grammar description in Figure 1. It
contains of the following parts:

– The solver construct determines the actual search algorithm which is used to find
an appropriate solution.

– The state parameters together with the initial parameter values define system pa-
rameters which determine spacecraft system’s state.

– The operational states represent the components of the satellite being active.
– The starting state defines the first component being active.
– The operational state changes define rates of change of system parameters by com-

ponents’ activities.
– For some of the state parameters, there could exist upper or lower bounds that are

determined in the operational constraints construct.
– The goal of the whole mission can be defined as a set of state parameter values

which can be set in the operational goals section.
– External events and intervals are determined by using external simulation modules

being defined. Only the construct for a simulation step is given, since the rest is
initialization of the satellite’s trajectory and coordinates of the ground stations for
down-link and up-link communications.

Since in the original language there is no component concurrency being considered,
only one component resp. operational state can be active at any point in time. Con-
sequently, there is no explicit time notion in the language, with the only exception of

25

Fig. 1. Syntactical structure of an existing domain-specific language for spacecraft de-
sign descriptions, derived from [10]. Some non-terminals, such as identifiers, are omit-
ted due to space restrictions.

26

simulation step which is the parameter fed to the external orbit simulator. This also de-
termines the values for the changes of state parameters and the maximum number of
steps before the mission deadline.

An important issue in the aforementioned DSL is that the operational state of the
system, a vector of all state variables, is assumed to be directly bounded to the state

of the currently active component. In other words: The system is specified with having
only one active component at a time. This is an obvious over-constraining of the model,
since a satellite as a system cannot be observed isolated from its environment. Concur-
rency consideration should be therefore not only a possible, but a desirable property.
Several components of a satellite can be active simultaneously. One simple example is
data being sent to earth while the battery is being charged. Furthermore, such a restric-
tive execution model can lead to the false negative check result, although the mission
could still be possible to execute with a more “dense” plan1.

Supporting concurrency in the DSL and the implied execution model would lead to
increased expressiveness of the language and allow for more realistic derivable analysis
results. Furthermore, with the concurrent execution model the generated plans are more
‘dense’ and thus the probability of a false negative result of the feasibility checking is
lower.

4 Extended DSL Syntax

Given the formal system model from Section 2, we translate the semantics of the given
DSL first into the set-theoretical constructs to understand the missing expressivity and
determine the necessary enhancements:

– A solver is implementation-specific and defines a search method to trace the state
space of a given problem. Hence, it is not part of the formal model.

– The state parameters are represented by the set S of state variables in the formal
model. Their initial values are implementation-specific.

– The operational states are defined by the set T of the formal model. Starting State
does not need to be determined by the engineer since a satellite can have several
active components simultaneously and their enabling depends on the validity con-
ditions.

– The operational state changes are also defined by the set T of the formal model.
– The operational goals and constraints are represented by the set C of the formal

model.

There is no explicit notion of duration in the given DSL. The set of prohibited over-
lapped component activities is also missing in the explicit form. Implicitly, however, one
could say that the set is given by the assumption in the execution model that all over-
lapped executions are forbidden. Furthermore, events which enable certain component
activities are not explicitly present in the DSL. They are generated by the simulation
modules and directly fed to the search algorithm.

1 Here, the term “plan density” is loosely coined to describe a possibility to use overlapping
time intervals to pack more activity into the mission time.

27

For supporting the missing concurrency semantics, the DSL is now enhanced with
three syntactical constructs, as shown in Figure 2: Explicit durations per component
activity, prohibited component activity overlapping, and events + durations.

Fig. 2. DSL Enhancements for Concurrency Support

As a result of the reformulation and enhancement of the DSL grammar, the problem
of feasibility analysis can now be reformulated as an off-line scheduling problem with
several constraints [8]. Therefore, any formal modeling method supporting concurrency
and having explicit notion of time would be a potential solution helper for the problem.
Well-known examples are Timed CSP, Timed Petri Nets, Timed Automata, or Hybrid
Automata.

We decided to map the enhanced DSL to Timed Automata [1, 2] for several reasons:

– The concepts of timed automata are easier accepted by engineers unrelated to com-
putational logic and formal modeling.

– The structure of the DSL introduced in [10] translates one-to-one to a automata
description.

– Timed automata have been proven to be more expressive than Timed Petri Nets [5]
and just as expressive as Timed CSP models[9]

Although hybrid automata are more general and more expressive than timed au-
tomata [13], we sticked with pure time automata eventually, since they provide enough
modeling capabilities for the given concurrency analysis problem.

28

5 Determining Feasibility

5.1 Timed Automata Representation

Mapping the enhanced DSL to timed automata constructs enables the system modeler
to generate mission plans with appropriate existing tools, based on a transformed de-
scription with the DSL. Generally, the following definition holds:

Definition 1. A timed automaton A is a tuple (L, l0, X, Inv, T, Σ) where:

– L is a finite set of states (locations)

– l0 is the initial state

– X is a finite set of synchronously running real-valued clocks

– T ⊆ L×C(X)×Σ×2X ×L is a finite set of transitions l
g,a,r
−−−→ l′, where g is the

guarding condition for the transition, a is the action and r is a set of clocks which

are reset by the transition

– Inv : L → C<(X) represents an invariant for every corresponding location

– Σ is an alphabet of all possible actions.

Timed automata can model communication through binary synchronization, repre-
sented here by synchronization actions that are represented by according transitions.
They can be either input actions (sync?) or output actions (sync!) that are performed in
pair. [15, 3]

In the sequential execution model of the original DSL, only one operational state
was allows to be active at a time. Hence, in such a representation, the whole set of com-
ponents can be modeled as a single automaton with single inactive state (for idle mode)
and several active states - one for each component. The values of system parameters
will change with the given rates in some finite fixed step size which will be measured
by a global clock.

Mapping the enhanced DSL description to the timed automata formalism is now
straightforward. An operational state or component activity can be represented by a
single automaton consisting of two locations - Active and Inactive. Validity conditions
for the component to become active are represented by guards in the language of the
TA. Clocks represent a maximum duration, if any is given. A component can remain
active or inactive so long as the invariants are correspondingly fulfilled.

Mission goals and constraints can be embedded in two ways. Constraints are simply
the guards on the transitions or location invariants which cannot be violated. To each
goal there exists a dedicated automaton which also consists of two states. Once the
goal is reached this automaton moves from one location to the the second and remains
there representing a fulfilled goal. If all of the goals are satisfied before the global clock
reaches some predefined value (mission time constraints), then the mission is feasible.

5.2 Application in Case Study

Based on the original DSL expressiveness, [12] researched implementations of vari-
ous search methods, heuristics and optimizations of verification run times for different
kinds of space missions. Depending on the complexity of the system and on the chosen

29

technique, execution times varied from fractions of a second up to several minutes on
an i7 running at 3 Ghz with 8 Gb of RAM. The main challenge of [12] has been to find
an optimal value function and heuristics to minimize the effects of state space explo-
sion. However, the system schedule did not make any statement beyond satisfiability of
mission constraints and mission feasibility for the case where system components are
activated in a sequential manner.

Using the proposed enhanced DSL and its mapping to an automata formalism, the
TET-1 mission was again modelled by the authors in the UPPAAL tool [3, 4]. Specifi-
cally , it allowed us to perform a reachability analysis and to create a simulation trace
as representation of a feasible mission plan with concurrent component activities.

We investigated a major improvement of the analysis run-time in comparison to the
original behavior, which is shown in Table 1. Feasibility check times are now in the
sub-second area. In comparison to the sequential methods used in [10], this introduces
an improvement of almost two orders of magnitude of run-time with a more realistic,
concurrent execution model.

Table 1. Performance of the feasibility check with UPPAAL 4.0.18. The average results
are given for three different search methods available in the tool.

Search Order 10 Gb Data

Breadth first out of memory error
Depth first 0.35 s

Randomized Depth first 0.34 s

6 Summary

In the earliest design phases of spacecraft systems, concurrent of component activities
must already be considered to create optimized but still feasible system designs and mis-
sion plans. The article discussed a specific domain specific language being used for de-
scribing such system designs and their constraints. We showed how the expressiveness
of the DSL can be extended to describe concurrent system activities. We furthermore
presented a mapping to standard timed automata, which allows the re-use the broad ex-
isting body of tools for evaluation and analysis. Our enhanced description methodology
has shown to be applicable for real-world space mission systems, extending the state of
the art in early spacecraft design methodologies.

References

1. Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: Proceedings of the Sev-
enteenth International Colloquium on Automata, Languages and Programming. pp. 322–
335. Springer-Verlag, New York, NY, USA (1990), http://dl.acm.org/citation.
cfm?id=90397.90438

30

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126, 183–
235 (1994)

3. Behrmann, G., David, R., Larsen, K.G.: A tutorial on UPPAAL (2004)
4. Bengtsson, J., Larsson, F., Pettersson, P., Yi, W., Christensen, P., Jensen, J., Jensen, P.,

Larsen, K., Sorensen, T.: UPPAAL: a tool suite for validation and verification of real-time
systems (1996)

5. Cassez, B.B.F.: Comparison of the expressiveness of timed automata and time petri nets. In:
Proceedings of FORMATSŠ05. LNCS, vol. 3829, pp. 211–25. Springer (2005)

6. Dong, W., Chang yin, Z.: An Accuracy Analysis of the SGP4/SDP4 Model. Chinese Astron-
omy and Astrophysics 34(1), 69–76 (2010)

7. Foeckersperger, S., Lattner, K., Kaiser, C., Eckert, S., Bärwald, W., Ritzmann, S., Mühlbauer,
P., Turk, M., Willemsen, P.: The modular german microsatellite TET-1 for technology on-
orbit verification. In: Proceedings of the IAA Symposium on Small Satellite Systems and
Services (2008)

8. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory & Practice. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA (2004)

9. Ouaknine, J., Worrell, J.: Timed csp = closed timed automata. In: Proceedings of EX-
PRESS’02. ENTCS, vol. 38 (2002)

10. Schaus, V., Tiede, M., Fischer, P.M., Lüdtke, D., Gerndt, A.: A continuous verification pro-
cess in concurrent engineering. In: AIAA Space Conference (September 2013), http:
//elib.dlr.de/84093/

11. Stark, J.P.W., Fortescue, P.W., Swinerd, G.: Spacecraft systems engineering (2003)
12. Tiede, M.: Evaluation of search algorithms for formal verification of space missions (ger-

man: Evaluierung von suchalgorithmen zur formalen verifikation von raumfahrtmissionen).
Bachelor’s Thesis 83865, Ostfalia Hochschule für angewandte Wissenschaften (2013)

13. Tripakis, S., Dang, T.: Modeling, verification and testing using timed and hybrid automata.
Model-Based Design for Embedded Systems pp. 383–436 (2009)

14. Walden, D.D., Roedler, G.J. (eds.): INCOSE Systems Engineering Handbook: A Guide for
System Life Cycle Processes and Activities. Wiley (2015)

15. Wardana, A.: Development of Automatic Program Verification for Continuous Function
Chart Based on Model Checking. Embedded Systems II Forschung, Kassel University Press
(2009)

16. Wertz, J., Larson, W.: Space Mission Analysis and Design. Space Technology Library,
Springer Netherlands (1999)

