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Abstract. HORNETS are Petri nets that have nets as tokens. There are an alge-

braic extension of elementary object nets (EOS) with the possibility to mofify the

structure of the net-tokens. In previous contributions we investigated elementary

HORNETS as well as their subclass of safe elementary HORNETS. We showed that

the reachability problem for safe elementary HORNETS requires at least exponen-

tial space. We have also showed that exponential space is sufficient. This shows

that safe elementary HORNETS are much more complicated than safe elemen-

tary object nets (safe EOS), where reachability is known to be PSPACE-complete.

In this contribution we study structural restrictions of elementary HORNETS that

have a better complexity: fan-bounded HORNETS. It turns out that reachability is

again in PSPACE for this class of HORNETS.
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1 Hornets: Higher-Order Object Nets

In this paper we study self-modifying systems in the formalisms of HORNETS. HOR-

NETS are a generalisation of object nets [1, 2], which follow the nets-within-nets

paradigm as proposed by Valk [3].

Fig. 1. An Elementary Object Net System (EOS)

With object nets we study Petri nets where the tokens are nets again, i.e. we have

a nested marking. Events are also nested. We have three different kinds of events – as

illustrated by the example given in Figure 1:

1. System-autonomous: The system net transition t̂ fires autonomously, which moves

the net-token from p̂1 to p̂2 without changing its marking.

2. Object-autonomous: The object net fires transition t1 “moving” the black token

from q1 to q2. The object net remains at its location p̂1.
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3. Synchronisation: Whenever we add matching synchronisation inscriptions at the

system net transition t̂ and the object net transition t1, then both must fire syn-

chronously: The object net is moved to p̂2 and the black token moves from q1 to q2

inside. Whenever synchronisation is specified, autonomous actions are forbidden.

For HORNETS we extend object-nets with algebraic concepts that allow to modify

the structure of the net-tokens as a result of a firing transition. This is a generalisation

of the approach of algebraic nets [4], where algebraic data types replace the anonymous

black tokens.

The use of algebraic operations in HORNETS relates them to algebraic higher-order

(AHO) systems [5], which are restricted to two-levelled systems but have a greater flex-

ibility for the operations on net-tokens, since each net transformation is allowed. There

is also a relationship to Nested Nets [6], which are used for adaptive systems.

It is not hard to prove that the general HORNET formalism is Turing-complete. In

[7] we have proven that there are several possibilities to simulate counter programs:

One could use the nesting to encode counters. Another possibility is to encode counters

in the algebraic structure of the net operators.

In our general research we like to study the complexity that arises due the algebraic

structure. Therefore, we restrict HORNETS to guarantee that the system has a finite state

space: First, we allow at most one token on each place, which results in the class of safe

HORNETS. However this restriction does not guarantee finite state spaces, since we

have the nesting depth as a second source of undecidability [2]. Second, we restrict the

universe of object nets to finite sets. Finally, we restrict the nesting depth and introduce

the class of elementary HORNETS, which have a two-levelled nesting structure. This is

done in analogy to the class of elementary object net systems (EOS) [1], which are the

two-level specialisation of general object nets [1, 2].

If we rule out these sources of complexity the main origin of complexity is the use

of algebraic transformations, which are still allowed for safe, elementary HORNETS. As

a result we obtain the class of safe, elementary HORNETS – in analogy to the class of

safe EOS [8]. We have shown in [8–10] that most problems for safe EOS are PSPACE-

complete. More precisely: All problems that are expressible in LTL or CTL, which

includes reachability and liveness, are PSPACE-complete. This means that with respect

to these problems safe EOS are no more complex than p/t nets. In a previous publication

[11] we have shown that safe, elementary HORNETS are beyond PSPACE. We have

shown a lower bound, i.e. that “the reachability problem requires exponential space”

for safe, elementary HORNETS – similarly to well known result of for bounded p/t nets

[12]. In [13] we give an algorithm thats needs at most exponential space, which shows

that lower and upper bound coincide.

In this paper we would like to study restrictions of Elementary HORNETS to obtain

net classes where the reachability requires less than exponential space. From [11] we

know that the main source of complexity for EHORNETS is mainly due to the huge

number of different of net-tokens, which is double-exponential for safe EHORNETS.

A closer look reveals that the number of net-token’s marking is rather small – “only”

single-exponential, while the number of different object nets is double-exponential. We

conclude that restricting the net-tokens’ marking beyond safeness would not improve

complexity. Instead, we have to impose structural restrictions on the object-nets. Petri
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net theory offers several well known candidates for structural restrictions, like state

machines, free-choice nets etc. Here, we restrict object-nets to state-machines.

The paper has the following structure: Section 2 defines Elementary HORNETS.

Since the reachability problem is known to be undecidable even for EOS, we restrict

elementary HORNETS to safe ones, which have finite state spaces. State Machines have

at most one place in the pre- and in the post-set. In Section 3 we generalise this notion

in the way that the number of all places in pre- and postset of an object-net is below a

given bound. So, we obtain the maximal synchronisation degree of the objects nets (i.e.

the maximal pre- and postset size) as a fresh complexity parameter. Section 4 shows

that the reachability problem is PSPACE-complete.

2 Definition of Elementary Hornets (EHORNETS)

A multiset m on the set D is a mapping m : D → N. Multisets can also be represented

as a formal sum in the form m =
∑n

i=1 xi, where xi ∈ D.

Multiset addition is defined component-wise: (m1 + m2)(d) := m1(d) + m2(d).
The empty multiset 0 is defined as 0(d) = 0 for all d ∈ D. Multiset-difference m1−m2

is defined by (m1 − m2)(d) := max(m1(d) − m2(d), 0).
The cardinality of a multiset is |m| :=

∑
d∈D m(d). A multiset m is finite if |m| <

∞. The set of all finite multisets over the set D is denoted MS (D).
Multiset notations are used for sets as well. The meaning will be apparent from its

use.

Any mapping f : D → D′ extends to a multiset-homomorphism f ♯ : MS (D) →
MS (D′) by f ♯ (

∑n
i=1 xi) =

∑n
i=1 f(xi).

A p/t net N is a tuple N = (P, T,pre,post), such that P is a set of places, T is

a set of transitions, with P ∩ T = ∅, and pre,post : T → MS (P ) are the pre- and

post-condition functions. A marking of N is a multiset of places: m ∈ MS (P ). We

denote the enabling of t in marking m by m
t
−→. Firing of t is denoted by m

t
−→ m′.

Net-Algebras We define the algebraic structure of object nets. For a general introduc-

tion of algebraic specifications cf. [14].

Let K be a set of net-types (kinds). A (many-sorted) specification (Σ,X, E) con-

sists of a signature Σ, a family of variables X = (Xk)k∈K , and a family of axioms

E = (Ek)k∈K .

A signature is a disjoint family Σ = (Σk1···kn,k)k1,··· ,kn,k∈K of operators. The set

of terms of type k over a signature Σ and variables X is denoted T
k
Σ(X).

We use (many-sorted) predicate logic, where the terms are generated by a signature

Σ and formulae are defined by a family of predicates Ψ = (Ψn)n∈N. The set of formulae

is denoted PLΓ , where Γ = (Σ,X, E, Ψ) is the logic structure.

Let Σ be a signature over K. A net-algebra assigns to each type k ∈ K a set

Uk of object nets – the net universe. Each object N ∈ Uk, k ∈ K net is a p/t net

N = (PN , TN ,preN ,postN ). We identify U with
⋃

k∈K Uk in the following. We

assume the family U = (Uk)k∈K to be disjoint.

The nodes of the object nets in Uk are not disjoint, since the firing rule allows to

transfer tokens between net tokens within the same set Uk. Such a transfer is possible,
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if we assume that all nets N ∈ Uk have the same set of places Pk. Pk is the place

universe for all object nets of kind k.

In general, Pk is not finite. Since we like each object net to be finite in some sense,

we require that the transitions TN of each N ∈ Uk use only a finite subset of Pk, i.e.

∀N ∈ U : |•TN ∪ TN
•| < ∞.

The family of object nets U is the universe of the algebra. A net-algebra (U , I)
assigns to each constant σ ∈ Σλ,k an object net σI ∈ Uk and to each operator σ ∈
Σk1···kn,k with n > 0 a mapping σI : (Uk1 × · · · × Ukn

) → Uk.

A net-algebra is called finite if Pk is a finite set for each k ∈ K.

Since all nets N ∈ Uk have the same set of places Pk, which is finite for EHORNETS,

there is an upper bound for the cardinality of Uk.

Proposition 1 (Lemma 2.1 in [11]). For each k ∈ K the cardinality of each net uni-

verse Uk is bound as follows: |Uk| ≤ 2(24|Pk|).

A variable assignment α = (αk : Xk → Uk)k∈K maps each variable onto an

element of the algebra. For a variable assignment α the evaluation of a term t ∈ T
k
Σ(X)

is uniquely defined and will be denoted as α(t).
A net-algebra, such that all axioms of (Σ,X, E) are valid, is called net-theory.

Nested Markings A marking of an EHORNET assigns to each system net place one

or many net-tokens. The places of the system net are typed by the function k : P̂ →
K, meaning that a place p̂ contains net-tokens of kind k(p̂). Since the net-tokens are

instances of object nets, a marking is a nested multiset of the form:

µ =

n∑

i=1

p̂i[Ni, Mi] where p̂i ∈ P̂ , Ni ∈ Uk(p̂i), Mi ∈ MS (PNi
), n ∈ N

Each addend p̂i[Ni, Mi] denotes a net-token on the place p̂i that has the structure of

the object net Ni and the marking Mi ∈ MS (PNi
). The set of all nested multisets is

denoted as MH . We define the partial order ⊑ on nested multisets by setting µ1 ⊑ µ2

iff ∃µ : µ2 = µ1 + µ.

The projection Π
1,H
N (µ) is the multiset of all system-net places that contain the

object-net N :1

Π
1,H
N

(∑n

i=1
p̂i[Ni, Mi]

)
:=

∑n

i=1
1N (Ni) · p̂i (1)

where the indicator function 1N is defined as: 1N (Ni) = 1 iff Ni = N .

Analogously, the projection Π
2,H
N (µ) is the multiset of all net-tokens’ markings

(that belong to the object-net N ):

Π
2,H
N

(∑n

i=1
p̂i[Ni, Mi]

)
:=

∑n

i=1
1k(Ni) · Mi (2)

The projection Π
2,H
k (µ) is the sum of all net-tokens’ markings belonging to the

same type k ∈ K:

Π
2,H
k (µ) :=

∑
N∈Uk

Π
2,H
N (µ) (3)

1 The superscript H indicates that the function is used for HORNETS.
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Synchronisation The transitions in an HORNET are labelled with synchronisation in-

scriptions. We assume a fixed set of channels C = (Ck)k∈K .

– The function family l̂α = (l̂kα)k∈K defines the synchronisation constraints. Each

transition of the system net is labelled with a multiset l̂k(t̂) = (e1, c1) + · · · +
(en, cn), where the expression ei ∈ T

k
Σ(X) describes the called object net and

ci ∈ Ck is a channel. The intention is that t̂ fires synchronously with a multiset of

object net transitions with the same multiset of labels. Each variable assignment α

generates the function l̂kα(t̂) defined as:

l̂kα(t̂)(N) :=
∑

1≤i≤n

α(ei)=N

ci for l̂k(t̂) =
∑

1≤i≤n
(ei, ci) (4)

Each function l̂kα(t̂) assigns to each object net N a multiset of channels.

– For each N ∈ Uk the function lN assigns to each transition t ∈ TN either a channel

c ∈ Ck or ⊥k, whenever t fires without synchronisation, i.e. autonomously.

System Net Assume we have a fixed logic Γ = (Σ,X, E, Ψ) and a net-theory (U , I).

An elementary higher-order object net (EHORNET) is composed of a system net N̂ and

the set of object nets U . W.l.o.g. we assume N̂ 6∈ U . To guarantee finite algebras for

EHORNETS, we require that the net-theory (U , I) is finite, i.e. each place universe Pk

is finite.

The system net is a net N̂ = (P̂ , T̂ ,pre,post, Ĝ), where each arc is labelled with

a multiset of terms: pre,post : T̂ → (P̂ → MS (TΣ(X))). Each transition is labelled

by a guard predicate Ĝ : T̂ → PLΓ . The places of the system net are typed by the

function k : P̂ → K. As a typing constraint we have that each arc inscription has to be

a multiset of terms that are all of the kind that is assigned to the arc’s place:

pre(t̂)(p̂), post(t̂)(p̂) ∈ MS (T
k(p̂)
Σ (X)) (5)

For each variable binding α we obtain the evaluated functions preα,postα : T̂ →

(P̂ → MS (U)) in the obvious way.

Definition 1 (Elementary Hornet, EHORNET). Assume a fixed many-sorted predicate

logic Γ = (Σ,X, E, Ψ).

An elementary HORNET is a tuple EH = (N̂ ,U , I, k , l, µ0) such that:

1. N̂ is an algebraic net, called the system net.

2. (U , I) is a finite net-theory for the logic Γ .

3. k : P̂ → K is the typing of the system net places.

4. l = (l̂, lN )N∈U is the labelling.

5. µ0 ∈ MH is the initial marking.

Events The synchronisation labelling generates the set of system events Θ. We have

three kinds of events:
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1. Synchronised firing: There is at least one object net that has to be synchronised, i.e.

there is a N such that l̂(t̂)(N) is not empty.

Such an event is a pair θ = t̂α[ϑ], where t̂ is a system net transition, α is a variable

binding, and ϑ is a function that maps each object net to a multiset of its transitions,

i.e. ϑ(N) ∈ MS (TN ). It is required that t̂ and ϑ(N) have matching multisets of

labels, i.e. l̂(t̂)(N) = l
♯
N (ϑ(N)) for all N ∈ U . (Remember that l

♯
N denotes the

multiset extension of lN .)

The intended meaning is that t̂ fires synchronously with all the object net transitions

ϑ(N), N ∈ U .

2. System-autonomous firing: The transition t̂ of the system net fires autonomously,

whenever l̂(t̂) is the empty multiset 0.

We consider system-autonomous firing as a special case of synchronised firing gen-

erated by the function ϑid , defined as ϑid(N) = 0 for all N ∈ U .

3. Object-autonomous firing: An object net transition t in N fires autonomously,

whenever lN (t) = ⊥k.

Object-autonomous events are denoted as id p̂,N [ϑt], where ϑt(N
′) = {t} if N =

N ′ and 0 otherwise. The meaning is that in object net N fires t autonomously

within the place p̂.

For the sake of uniformity we define for an arbitrary binding α:

preα(id p̂,N )(p̂′)(N ′) = postα(id p̂,N )(p̂′)(N ′) =

{
1 if p̂′ = p̂ ∧ N ′ = N

0 otherwise.

The set of all events generated by the labelling l is Θl := Θ1 ∪ Θ2, where Θ1

contains synchronous events (including system-autonomous events as a special case)

and Θ2 contains the object-autonomous events:

Θ1 :=
{

τ̂α[ϑ] | ∀N ∈ U : l̂α(t̂)(N) = l
♯
N (ϑ(N))

}

Θ2 :=
{
id p̂,N [ϑt] | p̂ ∈ P̂ , N ∈ Uk(p̂), t ∈ TN

} (6)

Firing Rule A system event θ = τ̂α[ϑ] removes net-tokens together with their individ-

ual internal markings. Firing the event replaces a nested multiset λ ∈ MH that is part

of the current marking µ, i.e. λ ⊑ µ, by the nested multiset ρ. The enabling condition

is expressed by the enabling predicate φEH (or just φ whenever EH is clear from the

context):

φEH (τ̂α[ϑ], λ, ρ) ↔ ∀k ∈ K :

∀p̂ ∈ k−1(k) : ∀N ∈ Uk : Π
1,H
N (λ)(p̂) = preα(τ̂)(p̂)(N) ∧

∀p̂ ∈ k−1(k) : ∀N ∈ Uk : Π
1,H
N (ρ)(p̂) = postα(τ̂)(p̂)(N) ∧

Π
2,H
k (λ) ≥

∑
N∈Uk

pre
♯
N (ϑ(N)) ∧

Π
2,H
k (ρ) = Π

2,H
k (λ) +

∑
N∈Uk

post
♯
N (ϑ(N)) − pre

♯
N (ϑ(N))

(7)

The predicate φEH has the following meaning: Conjunct (1) states that the removed

sub-marking λ contains on p̂ the right number of net-tokens, that are removed by τ̂ .
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Conjunct (2) states that generated sub-marking ρ contains on p̂ the right number of

net-tokens, that are generated by τ̂ . Conjunct (3) states that the sub-marking λ enables

all synchronised transitions ϑ(N) in the object N . Conjunct (4) states that the marking

of each object net N is changed according to the firing of the synchronised transitions

ϑ(N).
Note, that conjunct (1) and (2) assures that only net-tokens relevant for the firing are

included in λ and ρ. Conditions (3) and (4) allow for additional tokens in the net-tokens.

For system-autonomous events t̂α[ϑid ] the enabling predicate φEH can be simpli-

fied further: Conjunct (3) is always true since preN (ϑid(N)) = 0. Conjunct (4) sim-

plifies to Π
2,H
k (ρ) = Π

2,H
k (λ), which means that no token of the object nets get lost

when a system-autonomous events fires.

Analogously, for an object-autonomous event τ̂ [ϑt] we have an idle-transition τ̂ =

id p̂,N and ϑ = ϑt for some t. Conjunct (1) and (2) simplify to Π
1,H
N ′ (λ) = p̂ =

Π
1,H
N ′ (ρ) for N ′ = N and to Π

1,H
N ′ (λ) = 0 = Π

1,H
N ′ (ρ) otherwise. This means that

λ = p̂[M ], M enables t, and ρ = p̂[M − preN (t̂) + postN (t̂)].

Definition 2 (Firing Rule). Let EH be an EHORNET and µ, µ′ ∈ MH markings.

– The event τ̂α[ϑ] is enabled in µ for the mode (λ, ρ) ∈ M2
H iff λ ⊑ µ ∧

φEH (τ̂ [ϑ], λ, ρ) holds and the guard Ĝ(t̂) holds, i.e. E |=α
I Ĝ(τ̂).

– An event τ̂α[ϑ] that is enabled in µ can fire – denoted µ
τ̂α[ϑ](λ,ρ)
−−−−−−→

EH

µ′.

– The resulting successor marking is defined as µ′ = µ − λ + ρ.

Note, that the firing rule has no a-priori decision how to distribute the marking on

the generated net-tokens. Therefore we need the mode (λ, ρ) to formulate the firing of

τ̂α[ϑ] in a functional way.

3 Fan-Bounded Safe, Elementary HORNETS

We know from [11, Lemma 3.1] that a safe EHORNET has a finite reachability set. More

precisely: There are at most
(
1 + U(m) · 2m

)|P̂ |
different markings, where m is the

maximum of all |Pk| and U(m) is the number of object nets. In the general case we

have U(m) = 2(24m), which dominates the bound. It is double-exponential, while the

number of different marking wihin each net-token is 2m, i.e. “only” single-exponential.

The huge number of object nets is the source of the exponential space requirement for

the reachability problem.

Therefore, if one wants to require less than exponential space one has to restrict the

structure of possible object nets in Uk. The huge number of object-nets in Uk arises since

we allow object nets with any number of places in the preset or postset, i.e. unbounded

joins or forks. Therefore it seems promising to restrict the synchronisation degree.

In the following we want to restrict the number of object-nets in Uk. We forbid

unbounded joins or forks. From a practical point of view this can be considered as a

rather unlikely. From a theoretical point of view we can take this into account with

an parametrised complexity analysis. The parameter considered here is the maximal
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number of places in the pre- or postset, i.e. the maximal synchronisation at object-net

level.

Definition 3. An elementary HORNET EH = (N̂ ,U , I, k , l, µ0) is called β-fan-

bounded whenever all transitions of all object-nets have at most β places in the pre-

and in the postset:

∀k ∈ K : ∀N ∈ Uk : ∀t ∈ TN : |•t| ≤ β ∧ |t•| ≤ β

The fan-bound of EH is defined as:

β(EH ) := max {|•t|, |t•| : k ∈ K : N ∈ Uk : t ∈ TN}

Note, that an elementary HORNET is always fan-bounded, since PN ⊆ Pk and Pk is

always finite in the elementary case: β(EH ) ≤ |Pk| < ∞.

Proposition 2. For a safe, β-fan-bounded EHORNET the cardinality of each net uni-

verse Uk is bounded for each k ∈ K as follows: |Uk| ≤ 2O(n(4β)) where n := |Pk|.

Proof. For a safe, β-fan-bounded EHORNET the number of possible objects is calcu-

lated as follows: Each possible transition t chooses a subset of Pk for the preset •t and

another subset for the postset t• with the constraint that these subsets have a cardinality

of at most β. The number of these subsets is:

∣∣∣∣∣

β⋃

i=0

(
Pk

i

)∣∣∣∣∣ =

β∑

i=0

(
|Pk|

i

)
=

(
|Pk|

0

)
+

(
|Pk|

1

)
+ · · · +

(
|Pk|

β

)

(Here
(
A
i

)
denote the set of all subsets of A that have cardinality i.)

We identify t with the pair (•t, t•). The number of different transitions is:

|Tk| =
((

|Pk|
0

)
+

(
|Pk|
1

)
+ · · · +

(
|Pk|
β

))2

≤
(
1 + n + n·(n−1)

2! · · · +
(n)β

β!

)2

≤
(
const · nβ

)2

= const · n(2β)

So, the number of different transitions is in O
(
n2β

)
.2

The set of labelled transitions is LTk := Tk × (Ck ∪ {⊥k}) and we have |LTk| =
|Tk × (Ck ∪ {⊥k})| different labelled transitions. We cannot use more channels than

we have transitions in the object net, i.e. we could use at most |Tk| different channels

from Ck ∪ {⊥k}. Thus, we have:

|LTk| = |Tk| · (|Ck| + 1) ≤ |Tk| · |Tk|

2 Note, that while the bound we have given for the general case in Lemma 2.1 in [11] is strict

(i.e. there are Hornets that exactly have this number of object-nets) the calculation given here

gives us only an upper bound.
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From |Tk| ≤ const · n(2β) we obtain:

|LTk| ≤
(
const · n2β

)2
= const · n(4β)

Thus the set of labelled transitions is in O
(
n(4β)

)
, i.e. a polynomial in the number of

places n = |Pk| where the degree of the polynomial is given by the fan-parameter β.

Since each object net N in Uk is characterised by its set of labelled transitions and

there are |P(LTk)| = 2|LTk| subsets of LTk, we have at most 2O(n(4β)) different object

nets. qed.

Thus the of different object nets is only single-exponential for fan-bounded EHOR-

NETS – and not double-exponential as in the general case.

Note, that the set of transitions is a polynomial in the number of places m where the

degree is given by the fan-parameter β = β(m) ≤ m. Of course if we have transitions

that use all the places in the pre- or postset, i.e. β = m we have an exponential number

as before, since:

|Tk| =

((
|Pk|

0

)
+

(
|Pk|

1

)
+ · · · +

(
|Pk|

m

))2

=
(
2|Pk|

)2

= 2(2|Pk|)

So, the general analysis is just the special case where the fan-parameter β equals the

numer of places m.

For safe, β-fan-bounded EHORNET we can give an upper bound for the number of

reachable markings. The number of reachable markings is in 2O(n(4β+1)), i.e. exponen-

tial, where the exponent is a polynomial in the number of places n where the degree is

given by the fan-parameter β.

Proposition 3. A safe, β-fan-bounded EHORNET has a finite reachability set.

The number of reachable markings is bounded by 2O(n(4β+1)) where n is the maxi-

mum of all |Pk| and |P̂ |.

Proof. Analogously Prop. 1 we have at most (1 + U(m) · 2m)
|P̂ |

different markings in

the safe HORNET.

For a β-fan-bounded EHORNET we have obtained in Prop. 2 a bound for the number

of possible object-nets: |Uk| ≤ U(m) = 2(const·m(4β)). Thus the number of different

markings in the safe, β-fan-bounded EHORNET is:

(1 + U(m) · 2m)
|P̂ | ≤

(
1 + 2(const·m(4β)) · 2m

)|P̂ |

≤
(
2(const·m(4β)+m)

)|P̂ |

≤
(
2(const·m(4β))

)|P̂ |

= 2(const·m(4β)·|P̂ |)

With n := max(m, |P̂ |) the bound simplifies to:

2(const·m(4β)·|P̂ |) ≤ 2(const·n(4β)·n) = 2(const·n(4β+1))
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The number of reachable markings is in 2O(n(4β+1)), i.e. exponential, where the expo-

nent is a polynomial. qed.

The most extreme restriction is to forbid forks and joins at all. In this case we

consider elementary HORNETS that have state-machines as object-nets only, i.e.

∀k ∈ K : ∀N ∈ Uk : ∀t ∈ TN : |•t| ≤ 1 ∧ |t•| ≤ 1

An elementary Hornet with this restriction is called ESMHORNET (elementary state-

machine HORNET) for short. An ESMHORNET is 1-fan-bounded EHORNET by defini-

tion. Therefore, we obtain the following corollary of Lemma 3:

Corollary 1. A safe ESMHORNET has a finite reachability set. The number of reach-

able markings is bounded by 2O(n5) where n is the maximum of all |Pk| and |P̂ |.

4 Complexity of the Reachability Problem

As p/t nets are a special subcase of fan-bounded EHORNETS (we simply restrict the

system net to a single place with the p/t net of interest as the unique net-token) the

reachability problem for safe, fan-bounded EHORNETS cannot be simpler than for p/t

nets, i.e. it is at least PSPACE-hard, since the reachability problem for safe p/t nets

is PSPACE-complete. In the following we show that the reachability problem for lies

within PSPACE.

Lemma 1. For safe, β-fan-bounded EHORNETS there exists a non-deterministic algo-

rithm that decides the reachability problem within polynomial space:

Reachβ-seH ∈ NSpace
(
O

(
n(4β+1)

))
where n is the maximum of all |Pk| and |P̂ |.

Proof. Whenever µ∗ is reachable it is reachable by a firing sequence without loops.

The main idea of the algorithm is to guess a firing sequence µ0
θ1−→ µ1

θ2−→ · · ·
θmax−−−→

µmax = µ∗, where µ∗ is the marking to be tested for reachability.

By Prop. 3 we know we have at most max = 2O(n(4β+1)) different markings. There-

fore, we can safely cut off the computation after max steps.

For each step µi
θi−→ µi+1 we choose non-deterministically some event θi. For a

given marking µi we guess an event θi and a marking µi+1 and test whether µi
θi−→ µi+1

holds.

– The markings µi and µi+1 can be stored in O
(
n(4β+1)

)
bits, i.e. polynomial space.

– The event θi can be stored in polynomial bits: The choice for the system net tran-

sition t̂ fits in polynomial space. The variable binding α selects for each variable

in the arc inscriptions some object net from the universe Uk. Since we have always

have a finite number of variables polynomial space is sufficient. For each kind k we

have the multiset of channels l̂kα(t̂) to synchronise with. In the proof of Prop 2 we

have seen that we have at most const · n(4β) labelled transitions in the object nets,

i.e. polynomial space is sufficient. We guess a mode (λ, ρ). (Since we consider safe

HORNETS the choice for λ is unique, since there is at most one net-token on each
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place, which implies that whenever an event t̂α[ϑ] is enabled, then λ is uniquely

determined. For the multiset ρ, we use the fact that for each place in the object net

N we have at most one token to distribute over all generated net-tokes. For each net

N ∈ Uk we select one of the net-tokens generated in the postset. All these choices

need at most polynomial many bits.

– To check whether the event is enabled we have to whether test α ⊑ µ. This holds

iff ∃µ′′ : µ = α + µ′′. Since α and µ are known, this can be tested in-place by

‘tagging’ all addends from α in µ.

Finally we check whether the successor marking µ′ = µ − λ + ρ is equal to µi+1.

This can be done in-place as µ − λ are those addends, that have not been tagged.

After each step µi
θi−→ µi+1 we decrement a counter (which has been initialised

with the maximal sequence length max ), forget µi, and repeat the procedure with µi+1

again until either the marking of interested is reached or the counter reaches zero.

As each step can be tested in polynomial space, the whole algorithm needs at most

polynomial many bits to decide reachability. qed.

Now we use the technique of Savitch to construct a deterministic algorithm from

the non-deterministic algorithm above.

Proposition 4. The reachability problem Reachβ-seH for safe β-fan-bounded EHOR-

NETS can be solved within polynomial space.

Proof. We known by Lemma 1 that Reachβ-seH ∈ NSpace(O
(
n(4β+1)

)
). From Sav-

itch’s Theorem we obtain:

Reachβ-seH ∈ DSpace

(
O

(
n(4β+1)

)2
)

= DSpace
(
O

(
n2(4β+1)

))

This proves our central result that the reachability problem for safe, fan-bounded

EHORNETS is PSPACE-complete, while it requires exponential space in the general

case of safe EHORNETS.
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