
Gained and Excluded Classified Actions by Dynamic

Security Policies ⋆

Damas P. Gruska

Institute of Informatics, Comenius University

Mlynska dolina, 842 48 Bratislava, Slovakia

gruska@fmph.uniba.sk

Abstract. Dynamic security policies and formalisms for expressing information

on private actions obtained by observing public ones are presented. Two sets of

private actions are considered. The set of actions which execution is guaranteed

according to observations and the set of actions which execution is excluded ac-

cording to observations of public actions. Moreover, we consider also intruders

which have limited memory capacity to record these sets during an attack as well

as policies which change due to elapsing of time.

Key words: dynamic security policy, gained and excludes actions, information

flow, security, non-interference

1 Introduction

Information flow based security properties assume an absence of any information flow

between private and public systems activities. This means, that systems are considered

to be secure if from observations of their public activities no information about pri-

vate activities can be deduced. Such security properties could be quantified to avoid the

unrealistic requirement of absolutely none information flow and hence to express an

amount of possibly "leaked secrecy" in several ways. For example, Shannon’s informa-

tion theory was applied for simple imperative languages (see [CHM07,CMS09]) or for

process algebras (see [Gru08]). Another possibility is to exploit probabilistic theory as

it was used for process algebras in [Gru09] or by expressing subsets of private actions

which occurrence (and not occurrence) can be deduced by an intruder who can observe

public behaviour of the system [Gru11]. All above mentioned concepts are based on

a static security policy, i.e. policy which is not changed during executions. This ap-

proach seems to be rather restrictive for applications where their security policies (clas-

sification, declassification etc.) change dynamically during runtime. Hence, there is a

growing research and a number of papers devoted to dynamic security policies tailored

for various formalizations and computational paradigms. For instance, in the case of

imperative programs, security policy requires that values of classified variables could

not be obtained by observing public ones, what can be formalizes by an equivalence

relation on values of program’s variables. In the case of a dynamic security policy, this

relation can change during a computation (see, for example [DHS15]). In general, a

⋆ Work supported by the grant VEGA 1/1333/12.

171

dynamic security property permits different information flows at different points during

program/system’s execution.

The aim of this paper is to formulate dynamic security policies for security con-

cepts based on the sets of gained and excluded private actions [Gru11]. In this case, a

dynamic security policy defines a set of private actions at a given state of execution.

That means that the set of private actions is not fixed but it can change dynamically

during system’s execution. We study the resulting concepts and we show how they are

related to traditional static security properties as well. Later, we consider also so called

limited intruders (intruders with limited storage to record obtained information) who

always try to be prepared for declassifications of private actions but have to take into

account also new classification of non-public, so called invisible, actions. We will de-

fine also a special class of dynamic security policies which change only with elapsing

of time.

The paper is organized as follows. In Section 2 we describe the timed process al-

gebra TPA which will be used as a basic formalism. In Section 3 we formalize sets of

gained and excludes private actions with respect to a static security policy. In Section

4 we define gained and excludes private actions with respect to dynamic security poli-

cies. The next section is devoted to limited intruders and time dynamic security policies.

Section 6 contains discussion and plans for a future work.

2 Timed Process Algebra

In this section we define Timed Process Algebra, TPA for short. TPA is based on Mil-

ner’s CCS (see [Mil89]) but the special time action t which expresses elapsing of (dis-

crete) time is added (see also [Gru10]). The presented language is a slight simplification

of the Timed Security Process Algebra (tSPA) introduced in [FGM00]. We omit the ex-

plicit idling operator ι used in tSPA and instead of this we allow implicit idling of

processes. Hence processes can perform either "enforced idling" by performing t ac-

tions which are explicitly expressed in their descriptions or "voluntary idling". But in

the both cases internal communications have priority to action t in the case of the par-

allel operator. Moreover we do not divide actions into private and public ones as it is

in tSPA. TPA differs also from the tCryptoSPA (see [GM04]). TPA does not use value

passing and strictly preserves time determinacy in case of choice operator + what is not

the case of tCryptoSPA.

To define the language TPA, we first assume a set of atomic action symbols A not

containing symbols τ and t, and such that for every a ∈ A there exists a ∈ A and

a = a. We define Act = A ∪ {τ}, Actt = Act ∪ {t}. We assume that a, b, . . . range

over A, u, v, . . . range over Act, and x, y . . . range over Actt. Assume the signature

Σ =
⋃

n∈{0,1,2} Σn, where

172

Σ0 = {Nil}

Σ1 = {x. | x ∈ A ∪ {t}} ∪ {[S] | S is a relabeling function}

∪{\M | M ⊆ A}

Σ2 = {|,+}

with the agreement to write unary action operators in prefix form, the unary operators

[S], \M in postfix form, and the rest of operators in infix form. Relabeling functions,

S : Actt → Actt are such that S(a) = S(ā) for a ∈ A, S(τ) = τ and S(t) = t.
The set of TPA terms over the signature Σ is defined by the following BNF notation:

P ::= X | op(P1, P2, . . . Pn) | µXP

where X ∈ V ar, V ar is a set of process variables, P, P1, . . . Pn are TPA terms, µX−
is the binding construct, op ∈ Σ.

The set of CCS terms consists of TPA terms without t action. We will use a usual

definition of opened and closed terms where µX is the only binding operator. Closed

terms which are t-guarded (each occurrence of X is within some subexpression t.A, i.e.

between any two t actions only finitely many non timed actions can be performed) are

called TPA processes. Note that Nil will be often omitted from processes descriptions

and hence, for example, instead of a.b.Nil we will write just a.b.

We give a structural operational semantics of terms by means of labeled transition

systems. The set of terms represents a set of states, labels are actions from Actt. The

transition relation → is a subset of TPA × Actt × TPA. We write P
x
→ P ′ instead

of (P, x, P ′) ∈ → and P 6
x
→ if there is no P ′ such that P

x
→ P ′. The meaning of the

expression P
x
→ P ′ is that the term P can evolve to P ′ by performing action x, by P

x
→

we will denote that there exists a term P ′ such that P
x
→ P ′. We define the transition

relation as the least relation satisfying the inference rules for CCS (see [Mil89]) plus

the following inference rules:

Nil
t
→ Nil

A1
u.P

t
→ u.P

A2

P
t
→ P ′, Q

t
→ Q′, P | Q 6

τ
→

P | Q
t
→ P ′ | Q′

Pa1
P

t
→ P ′, Q

t
→ Q′

P + Q
t
→ P ′ + Q′

S

Here we mention the rules that are new with respect to CCS. Axioms A1, A2 al-

low arbitrary idling. Concurrent processes can idle only if there is no possibility of an

internal communication (Pa1). A run of time is deterministic (S). In the definition of

the labeled transition system we have used negative premises (see Pa1). In general this

may lead to problems, for example with consistency of the defined system. We avoid

these dangers by making derivations of τ independent of derivations of t. For an expla-

nation and details see [Gro90]. Regarding behavioral relations we will work with the

timed version of weak trace equivalence. Note that here we will use also a concept of

observations which contain complete information which includes also τ actions and not

173

just actions from A and t action as it is in [FGM00]. For s = x1.x2.xn, xi ∈ Actt
we write P

s
→ instead of P

x1→
x2→ · · ·

xn→ and we say that s is a trace of P . The set of all

traces of P will be denoted by Tr(P).

We will write P
x
⇒M P ′ for M ⊆ A iff P

s1→
x
→

s2→ P ′ for s1, s2 ∈ (M ∪{τ})⋆ and

P
s
⇒M instead of P

x1⇒M
x2⇒M · · ·

xn⇒M . Instead of ⇒∅ we will write ⇒ and instead

of ⇒{h} we will write ⇒h. By Succ(P) we will denote the set of all successors P ′

of P i.e. processes for which P
s
→ P ′ for some s ∈ Actt∗. By s|B we will denote

the sequence obtained from s by removing all actions not belonging to B. By s′ ⊑ s
we will denote that s′ is a subsequence of s i.e. s′ can be obtained by removing some

actions from s. We conclude this section with definitions of M-bisimulation and M-trace

equivalence.

Definition 1. Let (TPA, Actt,→) be a labelled transition system (LTS). A relation ℜ ⊆
TPA × TPA is called a M-bisimulation if it is symmetric and it satisfies the following

condition: if (P,Q) ∈ ℜ and P
x
→ P ′, x ∈ Actt then there exists a process Q′ such

that Q
x̂
⇒M Q′ and (P ′, Q′) ∈ ℜ. Two processes P,Q are M-bisimilar, abbreviated

P ≈M Q, if there exists a M-bisimulation relating P and Q.

Definition 2. The set of M-traces of process P for M,M ⊆ A ∪ {t} is defined as

TrtM (P) = {s ∈ (A ∪ {t})⋆|∃P ′.P
s
⇒M P ′}. Instead of Trt∅(P) we will write

Trt(P). Two processes P and Q are M-trace equivalent (P ≈tM Q) iff TrtM (P) =
TrtM (Q).

Note that for M = ∅ these two notions correspond to weak bisimulation and weak

trace equivalence (see [Mil89]) and they will be denoted by ≈ and ≈t, respectively.

3 Gained and Excluded Classified Actions

In this we recall (with slightly modified notations) concepts of gained and excluded

classified actions (see [Gru11]). We suppose that all actions are divided into two groups,

namely public (low level) actions L and private (high level) actions H i.e. A = L ∪
H,L ∩ H = ∅. Moreover, we suppose that H 6= ∅ and L 6= ∅ and that for every

h ∈ H, l ∈ L we have h ∈ H, l ∈ L. Hence the division is given by the set of

high level actions. To denote sequences of public actions, i.e sequences consisting of

actions from L ∪ {t} and sequences of private actions from H , we will use notation

l̃, l̃′, . . . for sequences from (L ∪ {t})⋆ (note that elapsing of time - i.e. t action is also

a public action) and h̃, h̃′, . . . for sequences from H⋆, respectively. The set of actions

could be divided to more than two subsets, what would correspond into more levels of

classification. All the following concepts could be naturally extended to such setting.

First we define a set of private actions which occurrence can be learned by an in-

truder who see a process to perform a sequence of public actions l̃ (we will call such

action as gained actions).

Definition 3. Let P ∈ TPA and l̃ ∈ TrtH(P). Then the occurrence of the set of

private action which can be gained about P by public observing l̃ is defined as follows:

gH(P, l̃) = {h|h ∈ H,P 6
l̃
⇒H\{h}}.

174

According to Definition 3 the set of private actions gH(P, l̃) is the one which has to

be performed by P if an intruder sees P to perform public actions l̃.

Example 1. Let P = l1.h.l2.Nil + l1.l2.Nil and P ′ = l1.h.h′.l2.Nil + l1.h.l2.Nil.
Let l̃ = l1.l2 then we have g(P, l̃) = ∅, g(P ′, l̃) = {h}.

Definition 4. Let P ∈ TPA. Then the occurrence of the set of private action which can

be excluded by observing P performing public action l̃ (i.e. l̃ ∈ TrtH(P)) is defined as

follows:

eH(P, l̃) =
⋂

P
l̃
⇒M

H \ M.

If we have that eH(P, l̃) = ∅ that means that an intruder after observing l̃ cannot

exclude occurrence of any private action.

There is no direct correlation between sets g(P, l̃) and e(P, l̃) since there are pro-

cesses such that for one is the former set empty and the later nonempty and vice versa.

If both of them are empty, that means, that an intruder can learn practically nothing on

private actions by observing process P and seeing it to perform l̃. In some sense g(P, l̃)
and e(P, l̃) are complementary as it is stated in the following proposition (see [Gru11]).

Proposition 1. For every process P and every l̃, l̃ ∈ TrtH(P) it holds g(P, l̃) ∩
e(P, l̃) = ∅ and ∅ ⊆ g(P, l̃) ∪ e(P, l̃) ⊆ H .

Now we are prepared to formulate how much information can be gained by observ-

ing public activities O,O ⊆ L∗ of a process. The formal definition follows.

Definition 5. Let P ∈ TPA. By gO
H(P) we will denote the set of private actions which

occurrence by P can be gained (detected) by an intruder observing sequences of public

actions from O as

gO
H(P) =

⋃

l̃∈O

gH(P, l̃).

We say that no private information can be gained by observing P by O if gO
H(P) =

∅.

Now we can define a set of private actions which occurrence could be excluded by

the set of observations O.

Definition 6. Let P ∈ TPA. Then the occurrence of the set of private action which

executions could be excluded by the set of observations O,O ⊆ TrtH(P) is defined as

follows:

eO
H(P) =

⋃

l̃∈O

eH(P, l̃).

For a given process P the size of sets gO
H(P), eO

H(P) with respect to the size of

H and O, give us another quantification of security. For example, small |O| and big

|gO
H(P)| and/or |eO

H(P)| indicate a rather low level of security.

175

4 Dynamic Security Policies

Division of actions to public and private ones is based on fixed (static) security policy

which is not changed during system computation. This approach seems to be rather

restrictive for applications where their security policies (classification, declassification

etc.) change dynamically during runtime. In the presented framework by a policy we

mean some set M of actions which are supposed to be private at the given points during

program/system’s execution. By dynamic security policy D we mean a partial mapping

which assigns to every process P and sequence of actions some policy i.e. subset of

actions. Moreover we require that D is uniquely defined with respect to weak bisimu-

lation.

Definition 7. By dynamic security policy we mean partial mapping D, D : TPA ×
Actt∗ → 2Actt such that D(P, s) = D(P ′, s) whenever P ≈ P ′.

Hence by D(P, s) we denote the set of actions which are private after the execution

of s by P if P
s
→ otherwise D(P, s) is not defined. Now we can define the set of gained

actions with respect to dynamic security policy D. In this case an intruder gains private

actions given by a security policy valid at the moment and from this set removes actions

which are declassified. To do so we divide every execution trace to (maximal) intervals

during which a policy is not changed. The formal definition follows.

Definition 8. Let P ∈ TPA. Let s ∈ Trt(P) and s = s1. . . . sk such that

si = xi
1.x

i
ni

for i = 1, . . . , k. such that Pi
si→ Pi+1 where P = P1 i.e.

Pi

xi

1→ P 1
i , P 1

i

xi

2→ P 2
i , . . . , Pni−1

i

xi

ni→ Pi+1 such that D(Pi, ǫ) = Hi and also

D(Pi, x
i
1.x

i
j |Actt\Hi

) = Hi for every j, 1 ≤ j < ni. Moreover, we suppose that

Hi 6= Hi+1. Let l̃ = l̃1. . . . , l̃k where l̃i = si|Actt\Hi
. Then we define

gD(P, l̃1) = gH1
(P, l̃1)

gD(P, l̃1.l̃n+1) = (gD(P, l̃1.l̃n) ∩ Hi+1) ∪ gHi+1
(Pi, l̃n+1).

Definition 9. Let P ∈ TPA. By gO
D(P) we will denote the set of private actions which

occurrence by P can be gained (detected) by an intruder observing sequences of public

actions from O under dynamic security policy D as

gO
D(P) =

⋃

l̃∈O

gD(P, l̃).

We say that no private information can be gained by observing P by O if gO
D(P) =

∅.

We can define partial ordering between dynamic security policies.

Definition 10. Let D,D′ are two dynamic security policies. We say that D is stronger

than D′ (denoted by D′ � D) if for every P and s it holds D′(P, s) ⊆ D(P, s).

176

Both the ordering of dynamic security properties as well as ordering (by inclusion)

of sets of observations influence resulting sets of gained action as it is stated by the

following proposition.

Proposition 2. For every process P , sets of obsevations O,O′ and dynamic policies

D,D′ such that O ⊆ O′ and D′ � D it holds gO
D(P) ⊆ gO′

D (P) and gO
D(P) ⊆ gO

D′(P),
respectively.

Proof. Sketch. The first part of the proof follows directly from Definition 9. The second

part follows from Definitions 8 and 10.

Now we can show how the property "no private information can be gained by ob-

serving P " by dynamic security policy is related to persistent variant of absence-of-

information-flow property, so called Strong Nondeterministic Non-Interference (SNNI,

for short). We recall its definition (see [FGM00]). Process P has SNNI property (we will

write P ∈ SNNI) if P \ H behaves like P for which all high level actions are hidden

for an observer. To express this hiding we introduce hiding operator P/M, M ⊆ A,

for which it holds if P
a
→ P ′ then P/M

a
→ P ′/M whenever a 6∈ M ∪ M̄ and

P/M
τ
→ P ′/M whenever a ∈ M∪M̄ . Moreover, process has persistent SNNI property

(denoted by PSNNI) if also all its successors have SNNI property. Formal definition of

SNNI and PSNNI follows.

Definition 11. Let P ∈ TPA. Then P ∈ SNNIH iff P \ H ≈t P/H and P ∈
PSNNIH iff P ′ ∈ SNNIH for every P ′, P ′ ∈ Succ(P).

The persistent variant of SNNI property is stronger than SNNI itself as it is ex-

pressed by the next proposition.

Proposition 3. PSNNIH ⊂ SNNIH .

Proof. Clearly PSNNIH ⊆ SNNIH . Let P = (l.l.Nil + h.e.(h.l.Nil + l.Nil)).
Then it is easy to check thatP 6∈ PSNNIH but P ∈ SNNIH .

Now we are ready to formulate relationship between PSNNI property and the set of

gained actions under a constant dynamic security policy.

Proposition 4. If P ∈ PSNNIH then gO
DH

(P) = ∅ for constant dynamic policy DH

which assigns the set H to every process and sequence of actions.

Proof. The main idea. Let P ∈ PSNNIH and suppose that gO
DH

(P) 6= ∅. Hence there

exists P ′, P ′ ∈ Succ(P) and such that and subsequence o′ of some observation o from

O, o ∈ TrtHi
(P ′) and h, h ∈ H and such that P ′ 6

o′

⇒H\{h}. But then there exists

sequence s which contains o′ and h such that s ∈ Trt(P
′/H) but s 6∈ Trt(P

′ \H) i.e.

P ′ \ H 6≈t P/H i.e. P ′ 6∈ SNNIH and hence P 6∈ PSNNIH .

The inverse of the previous proposition does not hold as it shows the following

example.

177

Example 2. Let P =
∑

1≤i≤n hi.l.Nil and H = {h1, . . . , hn}. Then gO
DH

(P) = ∅ but

P has not PSNNI property since P \ H 6≈t P/H . Indeed P \ H cannot perform the

sequence of action τ.l while P/H can perform it and an intruder seeing l can deduce

that a private action was performed.

Corollary. Let D � DH and P ∈ PSNNIH then gO
D(P) = ∅.

Proof. The proof follows from Proposition 2 and 4.

Now we will define sets of excluded private action first for a single observation and

later for a set of observations.

Definition 12. Let P ∈ TPA. Let s ∈ Trt(P) and s = s1. . . . sk such that

si = xi
1.x

i
ni

for i = 1, . . . , k. such that Pi
si→ Pi+1 where P = P1 i.e.

Pi

xi

1→ P 1
i , P 1

i

xi

2→ P 2
i , . . . , Pni−1

i

xi

ni→ Pi+1 such that D(Pi, ǫ) = Hi and also

D(Pi, x
i
1.x

i
j |Actt\Hi

) = Hi for every j, 1 ≤ j < ni. Moreover, we suppose that

Hi 6= Hi+1. Let l̃ = l̃1. . . . , l̃k where l̃i = si|Actt\Hi
. Then we define

eD(P, l̃1) = eH1
(P, l̃1)

eD(P, l̃1.l̃n+1) = (eD(P, l̃1.l̃n) ∩ Hi+1) ∪ eHi+1
(Pi, l̃n+1).

Definition 13. Let P ∈ TPA. By gD(P) we will denote the set of private actions which

occurrence by P can be excluded by an intruder observing sequences of public actions

from O under dynamic security policy D as

eO
D(P) =

⋃

l̃∈O

eD(P, l̃).

We say that no private information can be excluded by observing P by O if gO
D(P) =

∅.

For excluded action we can formulate the similar property which holds for gained

actions. Also the proof is similar.

Proposition 5. For every P ′ and D,D′ such that D′ � D it holds eO
D(P) ⊆ eO

D′(P).

There is no direct correlation between sets gD(P, l̃) and eD(P, l̃) since there are

processes such that the former set is empty and the later one is nonempty and vice versa.

If the both of them are empty, that means, that an intruder can learn practically nothing

on private actions by observing process P to perform l̃ under the dynamic security

policy D. In some sense gD(P, l̃) and eD(P, l̃) are complementary as it is stated in the

following proposition.

Proposition 6. For every process P it holds gD(P, l̃) ∩ eD(P, l̃) = ∅ and ∅ ⊆
gD(P, l̃) ∪ eD(P, l̃) ⊆

⋃
s,s⊑l̃ D(P, s).

178

Proof. Let h ∈ gD(P, l̃). We now that every execution of sequence of visible action

l̃ has to contain h for some P ′ ∈ Succ(P) i.e. if P ′ l̃
⇒M then h ∈ Hi. That means

h 6∈ Hi \ M i.e. h 6∈ eD(P, l̃). As regards the second part of the proposition let us

consider process P = l.Nil + h.l.Nil. We have g(P, l) = e(P, l) = ∅. If we consider

H = {h} then we see that gDH
(P, l̃) ∪DH

(P, l̃) = H i.e. ⊆ cannot be replaced by ⊂
in general.

We could further quantify levels of security by relating size of gO
D(P), eO

D(P) to the

size of O and D as it was suggested at the end of the previous section.

5 Limited Intruders and Variants of Dynamic Security Policies

In this section we will assume intruders which are aware of dynamicity of security

policy and try to learn as much as can be done with limited amount of memory where

obtained information can be recorded. That means, (s)he tries to record also invisible

but declassified actions for the case that they become classified in the future. First, let

us consider three types of actions. Low level (public) actions, which are always visible,

and the rest of the actions is called invisible (I). Moreover, the invisible actions could

contain private (high level) actions, i.e. A = L ∪ I, L ∩ I = ∅ and H ⊆ I . Now

we will consider dynamic security policies for which D(P, s) ⊆ I . That means that

neither the set of visible nor invisible actions are changed by D. Only the set of high

level actions can be changed but they are always invisible. We assume that |I| ≥ n.

We suppose intruders who try to learn information about all classified actions but also

about declassified actions which are not visible at the moment for the case that they will

become classified in the future. Moreover, we assume that s(he) has only limited storage

to record obtain information and hence in the case that the amount of this information

is bigger then memory capacity, then some part of this already obtained information

has to be forgotten. To model this we define a mapping which assigns to given set of

classified actions M , capacity of storage n and given set N a set of subsets of N , with

size n (or less if the capacity of storage is not reached) preferably containing actions

from M . The formal definition follows.

Definition 14. Fn
M (N) = {N ′| where N ′ = N if |N | ≤ n otherwise if |N ∩

M | ≥ n then N ′ ⊆ N ∩ M such that |N ′| = n and if |N ∩ M | < n then N ′ ⊆
N such that N ∪ M ⊆ N ′ and |N ′| = n}.

Mapping Fn
M could be naturally extended for sets of sets. Let T ⊆ 2I , then

Fn
M (T) =

⋃
N∈T Fn

M (N). Now we reformulate Definitions 3, 8 and 9 for limited

intruders.

Definition 15. Let P ∈ TPA and l̃ ∈ TrtI(P). Then the occurrence of the set of

private action which can be gained about P by public observing l̃ is defined as follows:

gH(P, l̃, n) = Fn
H({h|h ∈ I, P 6

l̃
⇒I\{h}}).

179

Definition 16. Let P ∈ TPA. Let s ∈ Trt(P)) and s = s1. . . . sk such that

si = xi
1.x

i
ni

for i = 1, . . . , k. such that Pi
si→ Pi+1 where P = P1 i.e.

Pi

xi

1→ P 1
i , P 1

i

xi

2→ P 2
i , . . . , Pni−1

i

xi

ni→ Pi+1 such that D(Pi, ǫ) = Hi and also

D(Pi, x
i
1.x

i
j |Actt\Hi

) = Hi for every j, 1 ≤ j < ni. Moreover, we suppose that

Hi 6= Hi+1. Let l̃ = l̃1. . . . , l̃k where l̃i = si|Actt\Hi
. Then we define

gD(P, l̃1, n) = gH1
(P, l̃1)

gD(P, l̃1.l̃n+1, n) = Fn
Hi+1

((gD(P, l̃1.l̃n) ∩ Hi+1) ∪ gHi+1
(Pi, l̃n+1)).

Definition 17. Let P ∈ TPA. By gO
D(P) we will denote the set of private actions which

occurrence by P can be gained (detected) by an intruder observing sequences of public

actions from O under dynamic security policy D as

gO
D(P, n) =

⋃

l̃∈O

gD(P, l̃, n).

We say that no private information can be gained by observing P by O if gO
D(P) =

∅.

Note that in the previous definition we do not apply Fn
M (H) since the whole concept

is based on one time attacks. If M ∈ gO
D(P, n) than (there is a possibility that) an

intruder can gain actions from M . Hence E =
⋃

M∈gO

D
(P,n) M is the set of possibly

gained actions. Clearly, with a bigger memory an intruder can learn more as it is stated

by the following proposition.

Proposition 7. Let n ≤ m. Then for every M , M ∈ gO
D(P, n) there exists M ′, M ′ ∈

gO
D(P,m) such that M ⊆ M ′.

Proof. The main idea. It is clear from Definition 14 that mapping Fn
M is monotonic

with respect to parameter n.

If n sufficiently large limited and unlimited intruders can learn the same as it is

stated by the following proposition.

Proposition 8. Let |
⋃

s D(P, s)| ≤ n for every P and s. Then gO
D(P, n) = gO

D(P).

Proof. The main idea. From Definition 14 we see that Fn
M (H) is identical function if

|
⋃

s D(P, s)| ≤ n

For |
⋃

s D(P, s)| > n we cannot say, in general, whether gO
D(P, n) is equal to

gO
D(P) or not. We cannot say this even if |D(P, s)| > n for some s. We could define

also sets of excluded actions for limited intruders in the similar way as it is done for

gained actions. But instead of that we concentrate on special cases of dynamic security

policies. First, we define finite dynamic security policies and then time dynamic security

policies.

180

Definition 18. We say that dynamic security policy is finite iff there exists set F =
{H1, . . . ,Hm} such that for every P and s we have D(P, s) ∈ F .

Definition 19. By time dynamic security policy we dynamic security policy such that

for every P and s, s′ such that s|{t} = s′|{t} it holds D(P, s) = D(P, s′).

In the case of finite dynamic security policy D we could design process PD which

could "compute" the both sets of excluded and private actions for finite state processes

in the following sense h.g ∈ Trt(C[P]|PD) iff h ∈ gO
D(P, n) and h.e ∈ Trt(C[P]|PD)

iff h ∈ eO
D(P, n) where C[] is an appropriate process context (see [Gru10]). In this case

we obtain decidability of sets gO
D(P) and eO

D(P) (and their derivatives) for finite state

processes which are undecidable in general.

Time dynamic security policies are useful for formalization of systems which allow

partial classification/declassification of actions within some time windows. Study of

these two specific dynamic security policies we leave for the further research.

6 Conclusions

We have presented several security concepts based on an information flow and dynamic

security policies. They express which set of private actions was performed (gained sets)

or which set of private actions could be excluded by an intruder observing systems

public actions (excluded sets), taking into account dynamic security policies which can

change sets of high level actions during runtime. The concepts offer a finer security

notion with respect to traditional ones which usually only ensure that an intruder cannot

learn that some private action was performed (for example, persistent variant of SNNI).

Moreover, the sets of excluded and gained actions can be used for reduction of a space

of possible private actions and if the reduction is significant then it really threatens

systems security.

Concepts of gained and excluded private actions are complementary. Roughly

speaking, only systems for which both the sets - gained and excluded private actions

are empty could be considered fully secure with respect to a given dynamic security

policy D and set of observations O. But since this is a very rare situation we have sug-

gested how to numerically express corresponding level of security by relating size of

sets of gained or excluded actions to the set of all appropriate actions and the size of O.

That means, if the resulting measure is small enough the system can still be considered

secure with respect to some given requirements. Later we have introduced the concept

of limited intruders, i.e. intruders who have limited storage to record information ob-

tained by observing public system activities. Such intruders could try to record also

declassified but invisible action for the case that during execution they could become

classified. We had to resolve the case when not all information on invisible actions could

be recorded due to the lack of memory space which has an intruder at disposal.

In the future we plan, besides already mentioned research, to investigate also addi-

tional covert channels which could be exploited by an intruder. Particularly interesting

are termination and divergence channels. They can be exploited by an intruder who

can learn that the system is still working but does not react (for example, by power

consumption). It might happen, for example, that the system is completely secure if an

intruder cannot see termination (or divergence) and vice versa.

181

References

[CHM07] Clark D., S. Hunt and P. Malacaria: A Static Analysis for Quantifying the In-

formation Flow in a Simple Imperative Programming Language. The Journal of

Computer Security, 15(3). 2007.

[CMS09] Clarkson, M.R., A.C. Myers, F.B. Schneider: Quantifying Information Flow

with Beliefs. Journal of Computer Security, to appear, 2009.

[DHS15] van Delft B., S. Hunt, D. Sands: Very Static Enforcement of Dynamic Policies.

In Principles of Security and Trust, LMCS 9036, 2015.

[FGM00] Focardi, R., R. Gorrieri, and F. Martinelli: Information flow analysis in a

discrete-time process algebra. Proc. 13th Computer Security Foundation Work-

shop, IEEE Computer Society Press, 2000.

[GM04] Gorrieri R. and F. Martinelli: A simple framework for real-time cryptographic

protocol analysis with compositional proof rules. Science of Computer Program-

ming archive Volume 50, Issue 1-3, 2004.

[GM82] Goguen J.A. and J. Meseguer: Security Policies and Security Models. Proc. of

IEEE Symposium on Security and Privacy, 1982.

[Gro90] Groote, J. F.: Transition Systems Specification with Negative Premises. Baeten,

J.C.M. and Klop, J.W. (eds.), CONCUR’90, Springer Verlag, Berlin, LNCS 458,

1990.

[Gru11] Gruska D.P.: Gained and Excluded Private Actions by Process Observations.

Fundamenta Informaticae, Vol. 109, No. 3, 2011.

[Gru10] Gruska D.P.: Process Algebra Contexts and Security Properties. Fundamenta

Informaticae, vol. 102, Number 1, 2010.

[Gru09] Gruska D.P.: Quantifying Security for Timed Process Algebras, Fundamenta In-

formaticae, vol. 93, Numbers 1-3, 2009.

[Gru08] Gruska D.P.: Probabilistic Information Flow Security. Fundamenta Informaticae,

vol. 85, Numbers 1-4, 2008.

[Mil89] Milner, R.: Communication and concurrency. Prentice-Hall International, New

York, 1989.

