
Detecting Hazardous Events from Sequential Data with

Multilayer Architectures

Karol Kurach and Krzysztof Pawlowski⋆

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw

Banacha 2, 02-097 Warsaw, Poland

{kkurach,kpawlowski236}@gmail.com

Abstract. Multivariate time series data play an important role in many domains,

including real-time monitoring systems. In this paper, we focus on multilayer

neural architectures that are capable of learning high level representations from

raw data. This includes our previous solution based on Recurrent Neural Net-

works with Long Short-Term Memory (LSTM) cells. We build upon this work

and present improved methods that aim to achieve higher prediction quality and

better generalization to other similar tasks. We apply new deep neural architec-

tures, minimize feature engineering and explore different ways of model selec-

tion. In particular, our focus on architectures includes networks with attention

mechanism and convolutional networks. We tackle overfitting challenges in a

presence of concept drift.

Key words: Time Series Forecasting, Recurrent Neural Networks, Ensemble

Methods, Deep Learning

1 Introduction

Predicting future level of methane concentration in a coal mine is an important task,

on which depends an efficiency of mining operation[12]. We focus on this supervised

learning classification problem, which was also the topic of the IJCRS’15 Data Chal-

lenge: Mining Data from Coal Mines competition[6]. As a part of an earlier solution[8]

we developed methods based on Deep Neural Networks, that achieved competitive re-

sults. However, a few opportunities for improvement were left. In this paper, we extend

our previous work and develop improved methods. In particular, the main contributions

of this paper are the following enhancements:

1. Minimal feature engineering that allows better generalization and easier applica-

tion to other domains and tasks,

2. More advanced neural architectures to allow models with even greater learning

capacity and higher prediction quality,

3. Explore different model selection methods in attempt to reduce overfitting, and

in general investigate what techniques work best for problems with concept drift

and highly correlated data at the same time.

⋆ Both authors contributed equally.



2

The rest of this paper is organized follows. In Section 2 we describe the problem. In

Section 3 we describe our previous, „baseline” solution which is based on Deep Neural

Networks. In Section 4 we present the improved methods. Finally, Section 5 concludes

the paper and proposes the future work.

2 Problem Statement

We start this section describing the data used in the competition. Then, we document the

evaluation procedure, including the target measure to be optimized. Finally, we review

the most important challenges relevant to the task.

2.1 Data

The goal of IJCRS’15 Data Challenge competition was to predict dangerous level of

methane concentration in coal mines based on the readings of 28 sensors. It is an exam-

ple of supervised learning classification task. The data is split into training and test set,

where the training set contains 51700 records and the test set contains 5076 records.

Each record is a collection of 28 time series – corresponding to 28 sensors that are

installed in the coal mine. The sensors record data such as level of methane concentra-

tion, temperature, pressure, electric current of the equipment etc. Each of the time series

contains 600 readings, taken every second, for a total of 10 minutes of the same time

period for each sensor. That gives a total of 16800 features per record. The time periods

described in the training data set overlap and are given in a chronological order. For the

test data, however, the time periods do not overlap and are given in random order.

For each record in the training set, three labels are given. The test set is missing the

labels – it is the goal of the competition to predict those values. Each label instance can

be either normal or warning. Those levels signify the amount of methane concentration,

as recorded by the three known sensors, named MM263, MM264 and MM256. The

second-by-second readings of those sensors are described in time series mentioned in

the previous paragraph. The predictions are to be made about the methane level in the

future - that is during the period between three and six minutes after the end of the

training (time series) period. If the level of methane concentration reaches or exceeds

1.0, then the corresponding label should be warning. Otherwise, it should be normal.

2.2 Evaluation

The submissions consist of three predictions of label values, made for each of 5076
records in the test set. Each prediction is a number – a higher value denotes a higher

likelihood that the true label value is warning. The score is defined as a mean of area

under the ROC curve, averaged over the three labels.

Participants may submit their predictions during the course of the competition. Until

the finish of the competition, the participants are aware only of the score computed over

preliminary test set – a subset of the whole test set that contains approximately 20%
of the records. This subset is picked at random by the organizers and is fixed for all

competitors but it is not revealed to the participants which of the test records belong to



3

it. The participants may choose a single final solution, possibly taking into the account

the scores obtained on the preliminary test set. However, the final score is computed

over the final test set – remaining approximately 80% of the test data. This score is

revealed only after the end of the competition and is used to calculate the final standings

– the team with the highest score is declared the winner.

2.3 Challenges

We describe the two main challenges one needs to overcome when tackling this

problem.

Overlapping training periods. Almost all adjacent training records overlap by 9 out

of the total 10 minutes recorded in the time series. It clearly violates the assumption

of i.i.d. that underpins the theoretical justification of many learning algorithms. In

addition, due to the overlap, a classical cross-validation approach may result in splits

very „similar” data across different folds and in turn yield over-optimistic estimates of

the model performances.

Concept drift. Training and test data come from different time periods. The records in

the training set are sorted by time, so it’s easy to notice that there are very significant

trends in the data that change along with the time. With test data samples taken at times

belonging to a different interval than training samples, one can expect a severe concept

drift - and indeed exploratory tests showed that classifier performance degrades on the

test set, as compared to the same classifier’s performance when it is evaluated on the

interval of training data that was not used for its learning.

3 Baseline Model

In this section we present a brief summary of our solution to IJCRS’15 competition[8].

Our method consist of the two main parts: the Recurrent Neural Network with Long

Short-Term Memory cells (which we refer to as "LSTM" later in the paper) and Deep

Feedforward Neural Network ("DFNN"). Intuitively, the LSTM processes the whole in-

put sequence, taking the order of sensor readings into account, while DFNN operates on

the last 30 readings. Finally, we ensemble the predictions to improve the performance.

3.1 Long Short-Term Memory Model

Recurrent Neural Network (RNN) is a type of artificial neural network in which depen-

dencies between nodes form a directed cycle. This kind of network is particularly suited

for modeling sequential data, where the length of the input is not fixed or can be very

long.



4

Long Short-Term Memory is an RNN architecture designed to be better at storing

and accessing information than standard RNN [5]. LSTM block contains memory cells

that can remember a value for an arbitrary length of time and use it when needed. It also

has a special forget gate that can erase the content of the memory when it is no longer

useful. All the described components are built from differentiable functions and trained

during back-propagation step. The connections in LSTM cells vary slightly between

implementations. The variant that we used is presented in Figure 1.

Fig. 1. A graphical representation of LSTM memory cells used in [16] and in our solu-

tion. The value hl
t−1

represents the hidden state at the previous time step (same layer).

The value hl−1

t represent the hidden state at the same time step (layer below).

Architecture and training The network that we used was unfolded to 60 time steps

and trained using back-propagation through time[14]. The sensor values go through the

hidden layer, which in this case consist solely of LSTM cells. At time step t ∈ 1, .., 60,

the input for RNN are 28 average sensor values from seconds [(t − 1) ∗ 10, t ∗ 10).

After processing the whole sequence, the last network’s hidden state encodes all

sensor averages in the same order in which they were seen. On top of this we build

a standard supervised classifier (Multi-Layer Perceptron in this case) that predicts the

binary outcome. The warning class is assigned a value of 1.0 and normal class is as-

signed a value of 0.0. The loss function used in the final model was Mean Squared

Error. It performed better than Binary Cross Entropy loss which is typically used for

binary classification



5

The training is done using standard Stochastic Gradient Descent. To improve the

convergence of this algorithm, the data was normalized to mean 0 and variance 1. Also,

the training data is randomly shuffled after every training epoch. We initialize all the

parameters by sampling from uniform distribution. To avoid exploding gradient prob-

lem, the gradients are scaled globally during training, so that their norm is not grater

than 1% of parameters’ norm. All models were trained using Torch[3] on a machine

with a GPU card.

3.2 DFNN Model

Deep feedforward neural network (DFNN) is an artificial neural network with multiple

layers of hidden neurons. One notable difference between DFNN and LSTM network

(described in Section 3.1) is that DFNN architecture does not contain recursive connec-

tions – instead, every neuron of the previous layer is connected with every neuron of

the next layer. We train the DFNN model with a backpropagation algorithm[13] that

uses stochastic gradient descent (with mini-batch and momentum) as an optimization

procedure to minimize the root mean squared error between numeric predictions and

the target values. To avoid overfitting to the training set we use two regularization[4]

methods: ad-hoc early stopping[9] and dropout[10].

Feature engineering For DFNN model we apply the following preprocessing steps:

1. scale the readings (separately for each sensor) to mean 0 and standard deviation 1
2. transform the values with x → log(1 + x) function,

3. compute mean and standard deviation for every sensor, taken over the last 30 read-

ings (30-second period),

4. keep the last 20 readings for the sensor that corresponds to the target label,

5. discard all the original features.

Such preprocessing reduces the number of features from 16800 (28 ∗ 600) to just 76
(28 ∗ 2 + 20).

Training and parameter tuning For each target label we train a different DFNN

model and tune its parameters independently. We perform model selection to optimize

the performace on two sets. Initially, we use the validation set created from 20% of the

original data and train on the remaining 80%. For the final submission, we use the pre-

liminary test set. See Subsection 3.3 for the discussion of model selection challenges.

3.3 Ensemble

The Baseline Model is an ensemble of two submodels - LSTM described in Subsection

3.1 and DFNN described in Subsection 3.2. More precisely, the ensemble procedure

computes rank for each of the submodels (independently) and then, for each record it

takes the arithmetical average of the corresponding ranks as a final prediction. Table 1

illustrates the scores that particular models achieve on the preliminary test set.



6

Table 1. Model scores

AUC score \ label MM263 MM264 MM256

LSTM 0.9599 0.9560 0.9605
DFFN - 0.9773 0.9602
ensemble - 0.9722 0.9683

As the Baseline Model we combine the best-performing methods for each target

label. That is, for label MM263 we use LSTM, for label MM264 we use DFNN and for

label MM256 we use the ensemble of LSTM and DFNN.

subsectionResults and challenges

Baseline Model achieves the final score of 0.94 – recall that this score is computed

on the final test set and revealed only after the end of competition. While the score on

the final test set is good, we noticed that Baseline Model achieves a much better score

of 0.9685 on the preliminary test set.

Such decrease in performance is probably caused by overfitting and rather easy to

explain: we performed model selection based on the preliminary test scores. There-

fore, it is not surprising that the very best model, as judged by its performance on the

preliminary test set, does not achieve a similar performance on the final test set.

The cross-validation procedure is a standard Machine Learning methodology to deal

with a danger of overfitting. We did not use it for optimizing the Baseline Model, be-

cause we observed a significant concept drift between the training and test set (as stated

in Subsection 2.3). Our hypothesis was that the data more similar to the final test set

would give more useful estimates of the model’s final performance.

During the contest, we did not test this hypothesis and the obvious challenge is to

verify, and possibly to refute it. We address this challenge in Subsection 4.3.

4 Improved Methods

We improve the algorithm described in Section 3, particularly to address the challenges

described in Subsection 3.3. To that end, we:

1. Minimize feature engineering for better generalization to other time series tasks

and to make the improved model easier to apply,

2. Introduce new architectures to increase model’s capacity for learning,

3. Improve model selection to reduce the overfitting effect.

The rest of this section describes these improvements in detail.

4.1 Minimize Feature Engineering

Recall from Section 3 that some components of our Baseline Model required a signif-

icant feature engineering, particularly as described in Subsection 3.2. Such approach,

while effective in practice, makes model less generalizable as the feature engineering



7

steps depend on the problem at hand. If one could reduce this process to minimum, it

would be much easier to apply the methods to other multivariate time series problems.

That is what we aim for. To that end, we limit feature engineering only to the following

two operations:

– Data normalization, in regards to mean and standard deviation. This is a standard

Machine Learning procedure, and as such it should be applicable to almost any

problem. Without data normalization, and thus with data at different scales, it could

be difficult to control the optimization procedure and the regularization.

– Downsampling the data. That is, replacing groups of adjacent values in the time

series with their average. We do not optimize the downsampling granularity for the

best possible score, it is only set to fit in the memory and decrease computing time.

4.2 New Architectures

In Section 3 we described a solution that was an ensemble of Recurrent Neural Network

and Deep Feedforward Neural Network. We investigate how we could improve on this

architecture and train a powerful model without the need of ensembling techniques.

To this end, we propose several modifications to our baseline network. This includes

changes to the LSTM training procedure, adding attention mechanism and applying

convolutional layers.

LSTM improvements In the RNN network described in the Section 3.1, the target

binary value is predicted from hn (the last hidden state). This architecture unfortunately

has some drawbacks: there is only one signal at the end of the sequence, which can be

distorted during long back-propagation. As a result, the model will not learn much

from the data at the begin of the sequence. To address this problem, we modify the

architecture to predict the target label at every time step (from every hi).

Another improvement is related to the fact that the network had only one hidden

layer. An easy modification is to train the network with l ≥ 2 vertical layers. Such a

network has a capacity to express several different transitions happening at one time

step.

Attention mechanism One of the recently introduced improvements for LSTMs is the

attention mechanism[2]. The general idea behind this modification is based on the ob-

servation that LSTMs process long sequences with a limited memory. After processing

the whole input data, the LSTM needs to encode all of it in the internal memory cells.

For longer sequences, it is impossible to do without some information loss. The atten-

tion mechanism solves this problem by allowing the network to automatically search for

parts of the input that are relevant. There are two main types of attention: hard atten-

tion[1], which is based on Reinforcement Learning techniques and soft attention[15]

that is differentiable and trained by back-propagation. In our work, we focus on the

latter and add a similar mechanism to the network.



8

Convolutional networks Deep Neural Networks achieve state of the art performance

in image recognition[7]. The best performing models are built using convolutional and

subsampling layers[11]. The weight sharing in convolution allows the network to sig-

nificantly reduce the number of parameters to train, and as a result detect features ir-

respective of their position in the image. Inspired by 2D convolutions used for images,

we train a 1D convolutions for the time series data. This can be compared to training

moving window "patterns" in the sequential data, and searching for them at the test

time. One of the main advantages of this approach is simplicity of training, compared

to more complex recurrent networks.

4.3 Better Model Selection

Recall from Subsection 3.3 that Baseline Model experiences quite heavy drop in score

when it is applied to the final test set, from the results it achieved on the preliminary test

set. It is caused by fact, that we performed model selection with preliminary test set –

a classical example of overfitting. We believe that, given heavy distribution drift, such

choice had some justification. Yet it could be beneficial to compare different schemes

of model selection, which we describe below.

Standard k-fold cross-validation is probably one of the most common Machine

Learning method. However, in our problem the data overlap by 9 out of 10 minutes,

which makes adjacent record very similar. If each record is assigned to a random fold,

as standard k-fold cross validation requires, the procedure could favor models that are

overfit to the training data.

Deterministic cross-validation One improvement to cross-validation is by partitioning

the records in such a way, that the number of overlapping instances assigned to differ-

ent folds is minimized. To that end a procedure similar to k-fold cross-validation can

be used. Instead of assigning records randomly to the folds, one sorts all the records

chronologically and then divides them into equal, continuous, folds. For example, in

5-fold procedure, the first fold contains the fifth of the earliest records, the second fold

contains the second fifth of the earliest records and so on.

Repeated deterministic cross-validation Another improvement to deterministic

k-fold cross-validation could be to perform it on a fixed number of continuous inter-

vals, repeated and together covering the whole set. That makes records belonging to

the same fold more diverse and still does not assign too many overlapping records to

different folds.

The partitioning of methods mentioned above are illustrated in Table 2.



9

Table 2. Illustration of cross-validation partitionings for 20 records (5 folds). Records

are sorted chronologically. Different letters denote assignment to different folds

c-v method/record number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

standard (randomized) 5-fold C E C C C E E A A E D B D B B B D A D A

deterministic 5-fold A A A A B B B B C C C C D D D D E E E E

2-repeated deterministic 5-fold A A B B C C D D E E A A B B C C D D E E

Rolling validation In all methods described so far, future data can be used to train

model that is then validated on past instances. Such inversion of chronology is not al-

ways desirable, especially if significant trends exist. In practical real-time application

one could never predict the present based on the knowledge learned „from the future”.

To implement this constraint, and possibly increase accuracy of estimations, one can

partition the records in the same way as for deterministic cross-validation. However,

only folds earlier (chronologically) than validation fold are allowed to take part in train-

ing the model. As the estimate of the measure, one simply takes average of the results

from all (k − 1) the runs. Table 3 demonstrates the partitioning.

Table 3. Illustration of rolling validation partitioning (5 folds). Records are sorted

chronologically. „T” denotes that record is used for training; „V” denotes that record

is used for validation; „-” denotes that record is not used at all

run/record number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

run 1 T T T T V V V V - - - - - - - - - - - -

run 2 T T T T T T T T V V V V - - - - - - - -

run 3 T T T T T T T T T T T T V V V V - - - -

run 4 T T T T T T T T T T T T T T T T V V V V

5 Conclusion

The IJCRS’2015 Data Challenge competition was an opportunity to develop and test

methods of solving multivariate time series problem that features a concept drift. Our

first, baseline solution based on Deep Neural Networks achieved a competitive score of

0.94. We build upon it to further enhance the performance and generalization. The con-

tribution of this paper are improved methods of approaching such tasks. In particular,

we apply new deep neural architectures, minimize feature engineering and explore dif-

ferent ways of model selection. The immediate future work is to obtain precise results

of the above methods and analyze them. The next step would be to evaluate how the

described methods generalize to different datasets.



10

References

1. Ba, J., Mnih, V., Kavukcuoglu, K.: Multiple object recognition with visual attention. CoRR

abs/1412.7755 (2014), http://arxiv.org/abs/1412.7755

2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align

and translate. CoRR abs/1409.0473 (2014), http://arxiv.org/abs/1409.0473

3. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: A matlab-like environment for machine

learning. In: BigLearn, NIPS Workshop. No. EPFL-CONF-192376 (2011)

4. Girosi, F., Jones, M.B., Poggio, T.: Regularization theory and neural networks architectures.

Neural computation 7(2), 219–269 (1995)

5. Graves, A.: Generating sequences with recurrent neural networks. CoRR abs/1308.0850

(2013), http://arxiv.org/abs/1308.0850

6. Janusz, A., Ślęzak, D., Sikora, M., Wróbel, L., Stawicki, S., Grzegorowski, M., Wojtas,

P.: Mining data from coal mines: IJCRS’15 Data Challenge. In: Proceedings of IJCRS’15.

LNCS, Springer (2015), in print November 2015

7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional

neural networks. In: Advances in neural information processing systems. pp. 1097–1105

(2012)

8. Pawłowski, K., Kurach, K.: Detecting methane outbreaks from time series data with deep

neural netowrks. In: Proceedings of IJCRS’15. LNCS, Springer (2015), in print November

2015

9. Prechelt, L.: Early stopping-but when? In: Neural Networks: Tricks of the trade, pp. 55–69.

Springer (1998)

10. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: A sim-

ple way to prevent neural networks from overfitting. The Journal of Machine Learning Re-

search 15(1), 1929–1958 (2014)

11. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,

V., Rabinovich, A.: Going deeper with convolutions. CoRR abs/1409.4842 (2014), http:

//arxiv.org/abs/1409.4842

12. Szlązak, N., Obracaj, D., Borowski, M., Swolkień, J., Korzec, M.: Monitoring and control-

ling methane hazard in excavations in hard coal mines. AGH Journal of Mining and Geo-

engineering 37 (2013)

13. Werbos, P.: Beyond regression: New tools for prediction and analysis in the behavioral sci-

ences (1974)

14. Werbos, P.J.: Generalization of backpropagation with application to a recurrent gas market

model. Neural Networks 1(4), 339–356 (1988)

15. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A.C., Salakhutdinov, R., Zemel, R.S., Ben-

gio, Y.: Show, attend and tell: Neural image caption generation with visual attention. CoRR

abs/1502.03044 (2015), http://arxiv.org/abs/1502.03044

16. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization. CoRR

abs/1409.2329 (2014), http://arxiv.org/abs/1409.2329


