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Abstract. Decision table decomposition is a method that decomposes given de-

cision table into an equivalent set of decision tables. Decomposition can enhance

the quality of knowledge discovered from databases by simplifying the data min-

ing task. The paper contains a description of decision table decomposition method

and their evaluation for data classification. Additionally, a novel method of ob-

taining attributes sets for decomposition was introduced. Experimental results

demonstrated that decomposition can reduce memory requirements preserving

the accuracy of classification.

Key words: Data Mining, Decomposition, Clasifications, Dynamic Program-

ming

1 Introduction

Increasing amount of data requires to develop new data analysis methods. A common

approach in data mining is to make a prediction based on decision tables. Decomposi-

tion of a decision table to smaller subtables could be obtained by the divide and conquer

strategy. This idea comes from logic synthesis and functional decomposition [1].

The fundamentals of decision system and logic synthesis are different, but there are

many similarities between them. The decision system is usually described by a deci-

sion table, and combinational logic of a digital system by a truth table. Input variables

of digital systems correspond to conditional attributes. Therefore, multiple terms from

logic synthesis may be extended to data mining. Functional decomposition could be

used to build a hierarchical decision system.

The functional decomposition was firstly used in logic synthesis of digital systems.

In this situation, decomposition involves breaking a large logic functions, which are

difficult to implement, into several smaller ones, which can be easy to implement. A

similar problem in machine learning relies on disassembling the decision table to the

subsystems in such a way that the original decision table can be recreated through a

series of operations corresponding to the hierarchical decision making. But the most

important is that we can induce noticeably simpler decision rules and trees for the re-

sulting components to finally make the same decision as for the original decision table.

[2–4]
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For evaluation of decomposition, the decision trees and rules classifiers based on

extensions of dynamic programming [5] were used. Decision tree and rules were se-

quentially optimized for different cost functions (for example, relative to number of

misclassification and depth of decision trees). In the case of decision trees and rules this

approach allowed to describe set of trees or rules by directed acyclic graph (DAG).

2 Basic Concepts

2.1 Preliminary Notions

Information system is a pair A = (U, A), where U is a non-empty, finite set of objects

called the universe, A is a non-empty, finite set of attributes, i.e. each element a ∈ A
is a function from U into Va, where Va is the domain of a called value set of a. Then,

the function ρ maps the product of U and A into the set of all values. The value of the

attribute for a specific object is denoted by ρ(ut, ai), with ut ∈ U , ai ∈ A
One or more distinguished attributes from set A of information system may indicate

a decision from rest of attributes. Such information system is called decision system.

Formally, decision system is information system denoted by A = (U, A ∪ D), where

A ∩ D = ∅. Attributes in set A are referred to as conditional attributes while attributes

in set D are referred to as decision attributes. However, in the case when function ρ
maps U × (A ∪ D) into the set of all attribute values such system is called decision

table.

Let A = (U, A) be an information system. For each subset B ⊆ A we define

B-indiscernibility relation INDA(B):

INDA(B) =
{

(up, uq) ∈ U2 : ∀ai ∈ B, ρ(up, ai) = ρ(uq, ai)
}

(1)

The attribute values a1, i.e. ρpi = ρ(up, a1) and ρqi = ρ(uq, a1) are compatible (ρpi ∼
ρqi) if, and only if, ρpi = ρqi or ρpi = ∗ or ρqi = ∗, where "∗" represents attributes

value "do not care". In the other case ρpi and ρqi are not compatible (ρpi ≁ ρqi).
The consequence of this definition is compatibility relation COMA(B) associated

with every B ⊆ A :

COMA(B) =
{

(up, uq) ∈ U2 : ∀ai ∈ B, ρ(up, ai) ∼ ρ(uq, ai)
}

(2)

COMA(B) classifies objects by grouping them into compatibility classes, i.e.

U/COMA(B), where B ⊆ A. Collection of subsets U/COM(B) is called r-partition

on U and denote as ΠA(B). R-partition on a set U may be viewed as a collection of

non-disjoint subsets of U , where the set union is equal U . All symbols and operations

of partition algebra [6] are applicable to r-partitions. The r-partition generated by a set

B is the product of r-partitions generated by the attributes ai ∈ B:

ΠA(B) =
⋂

i

ΠA({ai}) (3)

If B = {ai1, ..., aik}, the product can be expressed as: Π(B) = Π(ai1) · ... · Π(aik).
We will write often · instead of ∩.
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2.2 Hierarchical Decomposition

To compress data and accelerate computations, hierarchical decomposition can be ap-

plied. The goal is to break down a decision table into two smaller subtables.

Let F be a functional dependency D = F(A) for a consistent decision system A =
(U, A∪D), where A is a set of conditional attributes and D is a set of decision attributes.

Let B1, B2 be subsets of A such that A = B1 ∪ B2 and B1 ∩ B2 = ∅. A simple

hierarchical decomposition relative to B1, B2 exists for F(A) if and only if:

F(A) = H(B1, G(B2)) = H(B1, δ) (4)

where G and H represent the following functional dependencies: G(B2) = δ and

H(B1, δ) = D, where δ is a intermediate attribute. The output of functions F(A) and

H are exactly the same. In other words we try to find a function H depending on the

variables of the set B1 as well on the output δ of a function G depending on the set B2.

Table 1. An example decision table A = (U, A ∪ D)

a0 a1 a2 a3 a4 a5 d
0 0 0 0 0 0 0 1

1 0 0 1 1 0 0 1

2 1 2 2 0 1 1 2

3 0 1 1 0 0 1 2

4 0 1 0 2 0 1 3

5 1 2 2 3 2 0 2

6 1 2 2 2 0 1 1

7 0 0 1 1 0 1 3

8 0 1 0 3 2 0 4

9 2 2 2 3 2 0 4

Partition-based representation of data tables can be used to describe decomposition

algorithms [6, 3]

Theorem 1. ([3]) Functional dependencies G and H represent hierarchical decompo-

sition of function F(A) = H(B1, G(B2)), if there exists a r-partition ΠG ≥ Π(B2)
such that:

Π(B1) · ΠG ≤ Π(D) (5)

where all the r-partitions are over the set of objects, and the number of values of com-

ponent G is equal to L(ΠG) where L(Π) denotes the number of blocks of r-partition

Π .

In Theorem 1., r-partition ΠG represents component G, and the product of r-

partitions Π(B1) and ΠG corresponds to H . The decision tables of the resulting com-

ponents can be easily obtained from these r-partitions.
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According to Theorem 1 the main problem is to find a partition ΠG. To solve

that problem, a subset of original attributes B2 and an m-block partition Π(B2) =
{K1, K2, ...,Km} generated by that subset is appropriate to consider. Two blocks

Ki, Kj of partition Π(B2) are compatible if and only if the partition Π ′ obtained from

Π(B2) by joining the blocks Ki and Kj into a single block Kij (without changing the

other ones) satisfies the equation (5), i.e. iff Π ′ · ΠG ≤ Π(D). Otherwise, Ki, Kj are

incompatible.

For decision table from Table 1 and sets of attributes B1 = {a0, a5}, B2 =
{a1, a2, a3, a4} the following set of incompatible pairs could be found:

E = {(K1, K8), (K2, K4), (K2, K8), (K3, K7)(K4, K5)}. The subset of n partition

blocks, Π(B2) = {Ki1 , Ki2 , ...,Kin
} where Kij

∈ Π(B2) is the compatible class

of Π(B2) partition blocks iff all blocks of that subset are pairwise compatible. The

compatibility class is referred to as maximal compatibility class (MCC) iff it does not

belong to any other compatibility class of the partition concerned.

K1

K2

K3

K4

K5

K6

K7

K8

Fig. 1. Incompatibility graph and its coloring

The decomposition process may be interpreted in terms of an incompatibility graph

(Fig. 1). The edges represent the incompatible pairs of partition Π(B2) : (K1, K8),
(K2, K4), (K2, K8), (K3, K7), (K4, K5). It is clearly visible that the proper coloring

of the graph specifies the compatible classes: {K1, K2, K3, K5} , {K4, K6, K7, K8}
and, as a consequence, the partition

ΠG =
{

0, 1, 2, 4, 5, 7, 9; 3, 6, 8
}

.

Another approach to building an incompatibility graph is to create a labeled parti-

tion matrix [7, 8] (Table 2). It should be noted that the columns represent all possible

combinations of the attributes values in B2. Each column thus denotes the behavior of

decision table when the attributes in B1 set are constant. Therefore each column can be

treated as object from decision table. To build incompatibility graph it is necessary to

apply the equation (2) to each pair of columns. When the compability relation is met

then pair is compatible, otherwise it is incompatible.
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Table 2. Partition matrix for the example set from Table 1 and the sets of attributes

B1 = {a0, a5} and B2 = {a1, a2, a3, a4}

a1 0 0 2 1 1 2 2 1

a2 0 1 2 1 0 2 2 0

a3 0 1 0 0 2 3 2 3

a0 a6 a4 0 0 1 0 0 2 0 2

0 0 1 1 ∗ ∗ ∗ ∗ ∗ 4

1 1 ∗ ∗ 2 ∗ ∗ ∗ 1 ∗
0 1 ∗ 3 ∗ 2 3 ∗ ∗ ∗
1 0 ∗ ∗ ∗ ∗ ∗ 2 ∗ ∗
2 0 ∗ ∗ ∗ ∗ ∗ 4 ∗ ∗

K1 K1 K3 K4 K5 K6 K7 K8

2.3 Attributes Selection Criteria for Further Decomposition

Simple hierarchical decomposition requires to divide a set of conditional attributes A
to two disjoint subsets B1 and B2. Proposed idea of obtaining sets is based on the

attributes relationship called attributes dependency from Rough Set theory [9].

Let C and B be sets of attributes, then B depends entirely on a set of attributes

C, denoted C ⇒ B, if all values of attributes from B are uniquely determined by the

values of attributes from C. If B depends in degree k, 0 ≤ k ≤ 1, on C, then:

k = γ(C, B) =
|POSC(B)|

|U |
(6)

where

POSC(D) =
⋃

X∈U/B

C∗(X) (7)

called a positive region of the partition U/B with respect to C, is the set of all

elements of U that can be uniquely classified to blocks of the partition U/B, by means

of C.

Proposed method allows us to measure dependency between all possible pairs of

conditional attributes and decision attribute. Related dependency of one conditional at-

tribute can be generated from a given information system: A = (U, A ∪ {d}), where

A = {a0, ..., ak} is a set of conditional attributes and d is a decision attribute:

r(x) =

∑k
0
γ({x, ai} , {d})

|A|
, x ∈ A (8)

The above function of related dependency is used for comparison of attributes. This

function is being calculated for each attribute, then the results are being sorted by the

value of function r. The most dependent attributes are put in set B1, which corresponds

to the final decision table H .
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Example 1. For Table 1 first step of the algorithm is to built a matrix of attribute depen-

dency between each pair of condition attributes and decision attribute. Then the mean

of partial results is calculated, which is represented by related dependency r(x) in Ta-

ble 3. These results can be sorted by value and divided into two equinumerous sets.

If the number of attributes is odd, then set |B1| = |B2| + 1. An example of sorting

and assignment attributes is presented in Table 4. The calculation of related depen-

dency r(x) allows formulating an accurate method for assessing sets B1 and B2, i.e.

B1 = {a1, a3, a5} and B2 = {a0, a2, a4}. Therefore the decomposition is as follows:

F(A) = H({a1, a3, a5} , G({a0, a2, a4})).

Table 3. Matrix of attributes depen-

dency

a0 a1 a2 a3 a4 a5

a0 0 0.1 0.1 0.6 0.5 0.2

a1 0.1 0 0.2 0.6 0.3 0.4

a2 0.1 0.2 0 0.6 0.3 0.2

a3 0.6 0.6 0.6 0 0.1 0.5

a4 0.5 0.3 0.3 0.1 0 0.3

a5 0.2 0.4 0.2 0.5 0.3 0

r(x) 0.250 0.267 0.233 0.400 0.250 0.267

Table 4. Attributes for partitions

G(B2) and H(B1)

a2 0.233

B2a0 0.250

a4 0.250

a5 0.267

B1a1 0.267

a3 0.400

3 Classification Schema

3.1 Hierarchical Decision Making

Due to the decomposition of decision tables, there is a need for hierarchical decision

system to evaluate this method for the purpose of classification [6]. This method is

based on disassembling the decision table into the subtables. The most important ad-

vantage is the possibility to induce a simpler classification model, for example shorter

decision rules or smaller decision tree for the resulting components to finally make the

same decision as for the original decision table. Following the process of decompo-

sition, we propose to take decisions hierarchically. For the part of the attributes B2 a

prediction model to calculate intermediate decision was built. Then this intermediate

decision was used simultaneously with the attributes from B1 to build final classifica-

tion model. Then, on the basis of both, i.e., these attributes and the intermediate decision

δ, the final decision was taken (Fig. 2).

3.2 Dynamic Programing Classifiers

For decision prediction, the approach based on an extension of dynamic programming

was used. These methods were developed in [5]. They allow sequential optimization

of decision trees and rules relative to different cost functions, in particular between the
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B1 B2

Intermediate

decision

G

H

Final

decisionF

Fig. 2. Two-step implementation of the decision table

number of misclassifications and the depth of decision trees or the length of decision

rules. Proposed algorithm constructs a directed acyclic graph (DAG), which represents

structure of subtables of initial tables. For decision table A separable subtables of A

described by systems of equalities of the kind ai = b are considered as subproblems,

where ai is an attribute and b is its value. Classification and optimization of decision

trees and rules are discussed in details in [5, 10].

In the applied approach to optimization of decision trees directed acyclic graph

(DAG) represents a set of CART-like decision trees [11]. Set of Pareto optimal points

for bi-criteria optimization problem is constructed. Two types of decision tree pruning

have been compared. First is the multi-pruning for which, using validation subtable

(part of training subtable) for each Pareto optimal point, a decision tree with minimum

number of misclassification is found. Second, as an improvement of multi-pruning, is

to use only the best split for a small number of attributes in each nodes of DAG graph,

instead of using the best split for all attributes. This pruning is called restricted multi-

pruning.

The system of decision rules as a prediction model was also considered. As in case

of decision trees we used dynamic programming algorithm to create and optimize de-

cision rules [10].

4 Experiments

To evaluate the proposed decomposition algorithm and hierarchical decision making

idea the Dagger software system created in King Abdullah University of Science and

Technology was used. Proposed algorithm has been tested on categorical datasets from

UCI ML Repository [12]. A data sets were preprocessed. Duplicate rows were removed.

There were some inconsistencies, i.e., there are instances with the same values of con-

ditional attributes, but their decisions are different. The solution was to replace such set

with a single row with most common decision. Results were obtained using the two-

fold Cross-Validation evaluation repeated 100 times, each time using a different random

selected testing subset. From training part, 70% of rows was used to generate decision

trees and remaining part is preserved for validation.
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Table 5. Compression results, where S is size of original decision table and SD is a

sum of tables after decomposition (H and G).

data set rows attributes compression (SD/S)

flags 196 27 0.801

house 281 17 0.395

kr-vs-kp 3198 37 0.209

breast cancer 268 10 0.754

cars 1730 7 0.261

spect-test 169 23 0.751

dermatology 366 35 0.352

The advantage of decomposition is due to the fact that two components (i.e. tables

G and H) require less memory than the original decision table. Let us express the size

of the table as S = n
∑

i bi, where n is the number of objects, and bi =
⌈

log
2
|Vai

|
⌉

is the number of bits required to represent attribute ai. Then, after the decomposition,

we may compare the size of specific components with that of the original table (prior to

decomposition). Results of compression are presented in Table 5.

Table 6. Comparison of accuracy error with and without decomposition.

data set rows attributes decomp. dp rules dp tree MP dp tree RMP

flags 196 27
no 0.402 ± 0.041 0.409 ± 0.047 0.399 ± 0.041

yes 0.402 ± 0.041 0.404 ± 0.038 0.417 ± 0.045

house 281 17
no 0.092 ± 0.013 0.064 ± 0.008 0.067 ± 0.009

yes 0.076 ± 0.045 0.080 ± 0.047 0.073 ± 0.031

kr-vs-kp 3198 37
no 0.019 ± 0.003 0.015 ± 0.004 0.062 ± 0.003

yes 0.061 ± 0.015 0.064 ± 0.016 0.011 ± 0.015

breast cancer 268 10
no 0.287 ± 0.022 0.302 ± 0.023 0.304 ± 0.026

yes 0.274 ± 0.024 0.295 ± 0.020 0.297 ± 0.029

cars 1730 7
no 0.070 ± 0.009 0.062 ± 0.010 0.068 ± 0.004

yes 0.122 ± 0.013 0.159 ± 0.022 0.112 ± 0.018

spect-test 169 23
no 0.048 ± 0.025 0.048 ± 0.019 0.047 ± 0.000

yes 0.056 ± 0.022 0.051 ± 0.016 0.049 ± 0.005

dermatology 366 35
no 0.229 ± 0.028 0.219 ± 0.028 0.221 ± 0.022

yes 0.212 ± 0.030 0.226 ± 0.030 0.228 ± 0.027

Table 6. represents experimental results of classification using different dynamic

programming algorithms. For each data set and method, accuracy error and standard

deviation were calculated. As we can see the decomposition influences on accuracy. In

cases of two data sets, i.e., kr-vs-kp and cars, accuracy error incomparably increased

after decomposition. Note, that the compression for those date sets was very efficient.
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However, for most of measurements, accuracy keeps a significant level or is slightly

better. The biggest improvement occurring when dynamic programing rules were used.

5 Conclusion

Effective data aggregation algorithms have been sought after for a long time due to the

increasing complexity of databases used in practice. Recently, some suggestions were

put forward that decomposition algorithms, previously used mainly in logic synthesis

of digital systems, may be applied for that purpose [13]. This approach is indeed very

relevant as decision systems and logic circuits are very similar. Bearing this in mind,

this paper demonstrates that a typical algorithm for the decomposition of binary data

tables (representing Boolean functions) may be applied to the decomposition of data

represented by multi-valued attributes used in decision systems.

The paper indicates the advantages and possibilities of decomposition algorithms

for the purpose of classification. Results of experiments performed by proposed de-

composition algorithm and Dagger system has been presented. New attributes selec-

tion criteria describing partitions for decomposition has been introduced and used in

the experiments. Proposed method is particularly efficient in data compression. It al-

lows to build simple classification model and save memory, simultaneously keep the

accuracy. To achieved better results in accuracy data set decomposition requires further

research, particularity with attributes selection criteria. Also, there is a need to extend

the decomposition to deal with continuous attributes and noise in data.
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