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Abstract. Feature selection methods, as a preprocessing step to machine learn-

ing, are effective in reducing dimensionality, removing irrelevant data, increasing

learning accuracy, and improving result comprehensibility. However, the recent

increase of dimensionality of data poses a severe challenge to many existing fea-

ture selection methods with respect to the efficiency and effectiveness. In this

work, we introduce a novel concept, relevant feature selection based on informa-

tion gathered from decision rule models. A new measure for a feature rank based

on the feature frequency and rule quality is additionally defined. The efficiency

and effectiveness of our method is demonstrated through exemplary use of five

real-world datasets. Six different classification algorithms were used to measure

the quality of learning models built on original features and on selected features.

Key words: Feature selection, feature ranking, decision rules, dimensionality

reduction, relevance and irrelevance

1 Introduction

In the era of the acquisition of vast amounts of data, different domain information

databases, efficient analysis and retrieval of regularity have become an extremely im-

portant task. The issue of classification and object recognition is applied in many fields

of human activity. Data mining is fraught with many aspects which hinder it, like a very

large number of observations, too many attributes, the insignificance of the part of vari-

ables for the classification process, mutual interdependence of conditional variables,

the simultaneous presence of variables with different types, the presence of undefined

values of variables, the presence of erroneous values of the variables, uneven distribu-

tion of categories for the target variable. Thus, the development of efficient methods for

significant feature selection is valid.

Feature selection (FS) methods are frequently used as a preprocessing step to ma-

chine learning experiments. An FS method can be defined as a process of choosing a
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subset of original features so that the feature space is optimally reduced according to

a certain evaluation criterion. Feature selection has been a fruitful field of research and

development since 1970’s and it has been proven to be effective in removing irrelevant

features, increasing efficiency in learning tasks, improving learning performance like

predictive accuracy, and enhancing comprehensibility of the learned results [1].

The feature selection methods are typically divided into three classes based on how

they combine the selection algorithm and the model building: filter, wrapper and em-

bedded FS methods. Filter methods select features with respect to the model. They are

based only on general features like the correlation with the variable to be predicted.

These methods select only the most interesting variables. Then, a selected subset will

be a part of the classification model. Such methods are effective in computation time

and robust to overfitting [2]. However, some redundant, but relevant features can re-

main unrecognized. In turn, wrapper methods evaluate subsets of features which allow

to detect the possible interactions between variables [1, 3]. However, the increase in

overfitting risk, when the number of observations is insufficient, is possible. Addition-

ally, the significant computation time, when the number of variables is large, highly

increases. The third type, called embedded methods, is intended for reducing the clas-

sification of learning. Methods in this group try to combine the advantages of both

methods mentioned previously. Thus, the learning algorithm takes advantage of its own

variable selection algorithm. Therefore, it needs to know initially what a good selection

is, which limits its exploitation [4].

Kohavi and John [1] observed that there are several definitions of relevance that

may be contradictory and misleading. They proposed two degrees of relevance (strong

and weak) that are required to encompass all notions usually associated with this term.

In their approach the relevance is defined in the absolute terms, with the help of the

ideal Bayes classifier. In this context, a feature X is strongly relevant when removal

of X alone from the data always results in deterioration of the prediction accuracy of

the ideal Bayes classifier. In turn, a feature X is weakly relevant if it is not strongly

relevant and there exists a subset of features S, such that the performance of the ideal

Bayes classifier on S is worse than the performance on S ∪{X}. A feature is irrelevant

if it is neither strongly nor weakly relevant.

Nilsson et al. [5] introduced the formal definition of two different feature selection

problems:

1. Minimal Optimal Feature Selection (MOFS) consisting in identification of minimal

set of features to obtain the optimal quality of classification.

2. All Relevant Feature Selection (ARFS)), where the problem is to find all the vari-

ables that may, under certain conditions, improve the classification.

There are two important differences between these problems. The first one is detec-

tion of attributes with low importance (ARFS) [6], which may be completely obscured

by other, more important attributes, from the point of view of the classifier (MOFS).

The second difference is to find the boundary between the variables poorly, but realisti-

cally related to the decision and those for which such a relation is created as a result of

random fluctuations. The formal definition of the problem of all relevant feature selec-

tion (ARFS) as a distinct problem from the classical minimal optimal feature selection

(MOFS), was proposed recently in 2007 [5].
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In our research, we used the contrast variable concept to distinguish between rele-

vant and irrelevant features [6]. It is a variable that does not carry information on the

decision variable by design that is added to the system in order to discern relevant and

irrelevant variables. Here, it is obtained from the real variables by random permutation

of values between objects. The use of contrast variables was, for the first time, proposed

by Stoppiglia et al. [7] and then by Tuv et al. [8].

2 Methods and Algorithms

During experiments the following general procedure was applied:

1. Step 1. Selection of dataset and features for investigation.

(a) Application of a set of ranking measures to calculate importance for each fea-

ture:

i. With set of contrast features.

ii. Without contrast features.

(b) Definition (selection) of the most important feature subset.

2. Step 2. Application of different machine learning algorithms for classification of

unseen objects using the 10-fold cross validation method:

(a) Using all original features.

(b) Using only selected, important features.

3. Step 3. Comparison of gathered results using different evaluation measures.

In the first step, a dataset as well as a feature for investigation were defined. Then,

different ranking measures were applied to estimate importance of each feature. In order

to check specificity of the feature selection, the dataset was extended by adding contrast

variables. It means that each original variable was duplicated and its values were ran-

domly permuted between all objects. Hence, a set of non-informative by design shadow

variables was added to original variables. The variables that were selected as impor-

tant more significantly than random, were examined further, using different tests. To

define the level of feature importance, six well-known ranking measures were applied:

ReliefF, Information Gain, Gain Ratio, Gini Index, SVM weight, and RandomForest.

Additionally, our new measure, called RQualityFS, was introduced. It is based on the

frequency of presence of different feature in a rule model generated from an original

dataset and it also takes into consideration the quality of the rules in which this feature

occurs. Rank quality of the i-th feature could be presented as follow:

QAi
=

n∑

j=1

QRj
{Ai} (1)

where n is a number of rules inside the model, QRj
defines the classification quality of

the rule Rj and {Ai} describes the presence of the i-th attribute, usually it is equal to 1

(the feature occurred) or to 0 (the feature did not occur).

In turn, the quality of the rule is defined as follows:

QRj
=

Ecorr

Ecorr + Eincorr

(2)
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where Ecorr depicts a number of correctly matched learning objects by the j-th rule

and Eincorr depicts a number of incorrectly matched learning objects by this rule.

During the second step, a test probing the importance of variables was performed

by analyzing the influence of variables used for model building on the prediction qual-

ity. Six different machine learning algorithms were applied to build different predictors

for the original set of features and for selected features: Classification Tree (CT), Ran-

dom Forest (RF), CN2 decision rules algorithm (CN2), Naive Bayes (NB), k-Nearest

Neighbors (kNN), and Support Vector Machine (SVM). During this step, a 10-fold cross

validation paradigm was used. Ten known evaluation measures were uti-lized in each

predictor: Classification Accuracy (CA), Sensitivity, Specificity, Area Under ROC curve

(AUC), Information Score (IS), F1 score (F1), Precision, Brier measure, Matthew Co-

efficient Correlation (MCC) parameter, and finally Informadness (Inform.) ratio [9].

3 Investigated Datasets

Our initial investigations focus on applying the developed algorithm on several re-al-

world datasets. Five datasets have been used during experiments. Four of them are gath-

ered from the UCI ML repository, while the fifth set has been developed earlier by the

authors [10]. A summary of datasets is presented in Table 1. These datasets have diverse

numbers of objects, features and their types as well as classes.

Table 1. A summary characteristic of benchmark datasets

Dataset # instances # features # classes

Breast cancer 286 9 2

Heart disease 303 13 2

Lung cancer 32 56 3

Primary tumor 339 17 21

Skin cancer 548 13 13

4 Results and Conclusions

To illustrate the proposed methodology, only results for Breast cancer datasets will be

presented in details. The first step of the experiment revealed six features, that were

recommended as important by all or almost all ranking measures. In Table 2, we can

observe that deg-malig, node-caps, irradiat, inv-nodes, breast, and menopause features

create a stable and core set of features which have the highest values of seven measures

of importance, particularly using RQualityFS measure, introduced in our investigation.

In the same table, comparison with importance of contrast values (italic rows and con-

trast index) is also presented. The most important contrast feature is tumor-size (con-

trast) for which RQualityFS measure, defined earlier, is equal to 2.34. In this way, we
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also treated a threshold that separates the core, relevant set of attributes from other less

informative attributes. Most of the measures (except SVM weight) used in this approach

show that the selected set of features has higher values of these parameters than the

gathered threshold value (underlined values). These values are denoted in bold style in

Table 2. Hereby, we can observe that different measures give different thresholds.

Table 2. Ranking of features using seven different measures

Feature ReliefF Inf. Gain Gini SVM RF RQualityFS

gain Ratio weight

deg-malig 0.08 0.08 0.05 0.02 0.07 2.01 8.78

node-caps 0.15 0.06 0.08 0.02 0.05 1.21 7.23

irradiat 0.13 0.03 0.03 0.01 0.00 0.88 4.94

inv-nodes 0.15 0.07 0.05 0.02 0.03 0.32 3.78

breast -0.01 0.00 0.00 0.00 0.06 0.32 3.66

menopause -0.03 0.00 0.00 0.00 0.02 0.00 3.14

tumor-size -0.01 0.01 0.00 0.00 0.04 0.01 2.34

(contrast)

Age 0.01 0.01 0.01 0.00 0.04 -0.12 2.24

breast 0.01 0.00 0.00 0.00 0.00 0.06 2.05

(contrast)

tumor-size 0.07 0.06 0.02 0.01 0.10 0.04 1.74

age 0.05 0.01 0.00 0.00 0.01 -0.06 1.27

(contrast)

deg-malig 0.06 0.00 0.00 0.00 0.01 0.46 1.23

(contrast)

menopause 0.09 0.01 0.01 0.00 0.06 0.02 1.16

(contrast)

irradiat -0.01 0.00 0.00 0.00 0.00 -0.16 0.86

(contrast)

breast-quad 0.07 0.00 0.00 0.00 0.03 -0.05 0.00

(contrast)

inv-nodes -0.02 0.02 0.02 0.01 0.14 0.07 0.00

(contrast)

node-caps -0.04 0.00 0.00 0.00 0.02 -0.03 0.00

(contrast)

breast-quad -0.05 0.01 0.01 0.00 0.16 0.13 0.00

The second step of the experiment was devoted to evaluation of prediction of the

quality of utilized machine learning algorithms described in Section 2. During this step,

six different algorithms were applied using the 10-fold cross validation method. The

average results for the Breast cancer dataset are shown in Figure 1. This procedure was

utilized for two specified sets:
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Table 5. Average results of Random forest on original (normal font) and selected sets

(italic font)

Dataset CA Sens Spec AUC IS F1 Prec Brier MCC Inform.

Breast cancer 0.75 0.59 0.59 0.70 0.08 0.58 0.79 0.37 0.32 0.17

0.75 0.61 0.61 0.71 0.10 0.61 0.75 0.36 0.33 0.21

Heart disease 0.81 0.81 0.81 0.89 0.41 0.81 0.82 0.27 0.63 0.62

0.77 0.76 0.76 0.86 0.35 0.76 0.77 0.31 0.53 0.53

Lung cancer 0.35 0.33 0.65 0.73 0.17 0.34 0.43 0.61 0.01 -0.02

0.50 0.53 0.75 0.68 0.30 0.50 0.49 0.59 0.26 0.28

Primary tumor 0.45 0.21 0.97 0.87 1.03 0.33 0.37 0.71 0.35 0.17

0.33 0.11 0.96 0.82 0.68 0.37 0.31 0.80 0.25 0.07

Skin cancer 0.83 0.79 0.93 0.97 1.11 0.80 0.85 0.27 0.75 0.72

0.75 0.69 0.90 0.94 0.99 0.68 0.72 0.33 0.61 0.58

Average 0.64 0.54 0.79 0.83 0.56 0.57 0.65 0.44 0.41 0.33

0.62 0.54 0.79 0.80 0.48 0.58 0.61 0.48 0.40 0.33

Table 6. Average results of CN2 rules on original (normal font) and selected sets (italic

font)

Dataset CA Sens Spec AUC IS F1 Prec Brier MCC Inform.

Breast cancer 0.72 0.57 0.57 0.61 0.12 0.56 0.68 0.46 0.22 0.14

0.75 0.60 0.60 0.66 0.14 0.61 0.74 0.39 0.31 0.21

Heart disease 0.82 0.81 0.81 0.84 0.58 0.81 0.83 0.33 0.64 0.62

0.74 0.73 0.73 0.76 0.43 0.74 0.75 0.43 0.48 0.47

Lung cancer 0.44 0.44 0.71 0.65 0.39 0.44 0.46 0.72 0.15 0.14

0.56 0.55 0.77 0.69 0.25 0.68 0.58 0.60 0.46 0.32

Primary tumor 0.45 0.21 0.97 0.87 1.03 0.33 0.37 0.71 0.35 0.17

0.33 0.11 0.96 0.82 0.68 0.37 0.31 0.80 0.25 0.07

Skin cancer 0.82 0.79 0.93 0.94 1.32 0.81 0.84 0.27 0.75 0.72

0.76 0.70 0.90 0.92 1.09 0.72 0.78 0.34 0.64 0.60

Average 0.65 0.56 0.80 0.78 0.69 0.59 0.64 0.50 0.42 0.36

0.63 0.54 0.79 0.77 0.52 0.62 0.63 0.51 0.43 0.33
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Table 7. Average results of Naive Bayes classifier on original (normal font) and selected

sets (italic font)

Dataset CA Sens Spec AUC IS F1 Prec Brier MCC Inform.

Breast cancer 0.73 0.66 0.66 0.69 0.16 0.66 0.67 0.43 0.33 0.31

0.74 0.65 0.65 0.70 0.17 0.66 0.68 0.40 0.33 0.31

Heart disease 0.83 0.83 0.83 0.90 0.62 0.83 0.83 0.27 0.66 0.66

0.78 0.78 0.78 0.87 0.50 0.78 0.78 0.29 0.55 0.55

Lung cancer 0.62 0.64 0.81 0.74 0.67 0.63 0.64 0.72 0.44 0.44

0.60 0.63 0.80 0.68 0.43 0.59 0.61 0.60 0.43 0.43

Primary tumor 0.40 0.17 0.97 0.81 0.98 0.31 0.31 0.75 0.28 0.13

0.38 0.16 0.97 0.80 0.88 0.43 0.33 0.79 0.29 0.13

Skin cancer 0.78 0.77 0.92 0.96 1.24 0.78 0.80 0.27 0.71 0.69

0.73 0.70 0.90 0.94 1.12 0.71 0.73 0.33 0.61 0.59

Average 0.67 0.61 0.84 0.82 0.74 0.64 0.65 0.49 0.48 0.45

0.65 0.58 0.82 0.80 0.62 0.63 0.63 0.48 0.44 0.40

Table 8. Average results of kNN classifier on original (normal font) and selected sets

(italic font)

Dataset CA Sens Spec AUC IS F1 Prec Brier MCC Inform.

Breast cancer 0.71 0.60 0.60 0.65 0.16 0.61 0.64 0.47 0.24 0.21

0.72 0.60 0.60 0.61 0.10 0.61 0.65 0.45 0.25 0.20

Heart disease 0.77 0.76 0.76 0.85 0.51 0.76 0.76 0.36 0.53 0.53

0.70 0.70 0.70 0.80 0.40 0.70 0.70 0.46 0.40 0.40

Lung cancer 0.43 0.46 0.72 0.66 0.35 0.44 0.44 0.68 0.17 0.18

0.53 0.53 0.76 0.62 0.35 0.49 0.47 0.66 0.27 0.29

Primary tumor 0.49 0.26 0.98 0.84 1.48 0.41 0.27 0.75 0.26 0.24

0.37 0.19 0.97 0.82 1.13 0.36 0.24 0.78 0.20 0.16

Skin cancer 0.81 0.82 0.93 0.94 1.40 0.82 0.81 0.29 0.75 0.76

0.77 0.75 0.91 0.92 1.26 0.75 0.76 0.34 0.67 0.66

Average 0.64 0.58 0.80 0.79 0.78 0.61 0.59 0.51 0.39 0.38

0.62 0.55 0.79 0.76 0.65 0.58 0.57 0.54 0.36 0.34
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6. Rudnicki, W.R., Wrzesień, M., Paja, W.: All Relevant Feature Selection Methods and Ap-
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