
Enhanced Error Correction Algorithm for RBF Neural

Networks

Pawel Rozycki and Janusz Kolbusz

University of Information Technology and Management in Rzeszow,

{prozycki,jkolbusz}@wsiz.rzeszow.pl

Abstract. Using RBF units in neural networks are very interesting option that

make network more powerful. The paper presents new training algorithm based

on second order ErrCor algorithm. The effectiveness of proposed algorithm has

been confirmed by several experiments.

Key words: Error Correction, ErrCor, RBF networks, training algorithms

1 Introduction

The rapid development of intelligent computational systems allowed to solve thou-

sands of practical problems using neural networks. Major achievements have been made

mainly using architecture MLP (Multi-Layer Perceptron), but it turns out that it is also

possible with other neural network architectures. Although EBP (Error Back Propaga-

tion) [1] caused a real breakthrough, it turned out to be a very slow algorithm, not capa-

ble of learning other than MLP, compact network architectures. Most visible progress

in this field was develop the LM (Levenberg-Marquardt) algorithm to train the neural

network. This algorithm is able to teach the network by 100 to 1000 times less itera-

tions, but its usage to more complex problems is significantly limited, since the size of

the Jacobian matrix is proportional to the number of patterns.

In order to solve more and more complex problems with the use of neuron networks

we should thoroughly understand the neural network architecture and its impact on

the operation of the system and finally develop appropriate processes of learning these

networks. Modification of existing algorithms and development of new algorithms for

network learning will allow for faster and more effective network teaching.

Often used networks MLP have limited capabilities[1], but new neural network ar-

chitectures like BMLP (Bridged MLP) [1,2] or DNN (Dual Neutral Networks) [2] with

the same number of neurons can solve problems up to 100 times more complex [2,3].

Therefore, it can be concluded that the way neurons interconnections in the network is

fundamental.

The use of appropriate architecture has a significant impact on the solution of given

problem. An example can be FCC (Fully Connected Cascade) network architecture.

Such a network with 10 neurons can solve the Parity-1023 problem, while the most

widely used the MLP architecture network with 10 neurons in the three-tiered, one

hidden layer, architecture, is able to solve Parity-9 problem. Thus, moving away from

the commonly used architecture MLP, while maintaining the same number of neurons

121

can increase network capacity, even a hundred times. [2-4]. However, a problem arises

in that the currently known network learning algorithms, such as EBP [5], or LM do

not deal with such network architectures. LM algorithm is not able to teach other ar-

chitectures than the MLP, because the size of Jacobian, which must be processed is

proportional to the number patterns of learning, which limits LM algorithm for solv-

ing network learning a relatively small problems. The only known algorithm that can

learn these new architectures is NBN algorithm (Neuron-by-Neuron) [6-8]. It is faster

than LM and can be used for all architectures, including BMLP, FCC DNN and MLP,

of course, and gives good learning results. However, published in 2012 ISO algorithm

[9] and published in 2014 ErrCor (Error Correction) algorithm [10].allow to get even

better results

2 Enhanced Error Correction Algorithm

2.1 Error Correction Fundamentals

Error Correction is second order LM based algorithm that has been designed for RBF

networks where as neurons RBF units with Gaussian activation function defined by (1)

are used.

ϕh (xp) = exp

(

−
‖xp − ch‖

2

σh

)

(1)

where: ch and σh are the center and width of RBF unit h, respectively. ‖·‖ represents

the computation of Euclidean Norm. The output of such network is given by:

Op =

H
∑

h=1

whϕh (xp) + wo (2)

where: wh presents the weight on the connection between RBF unit h and network

output. w0 is the bias weight of output unit. Note that the RBF networks can be im-

plemented using neurons with sigmoid activation function in MLP architecture [11,12].

The main idea of the ErrCor algorithm is increasing the number of RBF units one by

one and adjusting all RBF units in networkby training after adding of each unit. New

unit is initially set to compensate largest error in the current error surface and after that

all units are trained changing both centers and widths as well as output weights. Details

of algorithm can be found in [10].

As can be found in [10, 13] ErrCor algorithm had been successfully used to solve

several problems like function approximation, classification or forecasting. The main

disadvantage of ErrCor algorithm is long computation time caused mainly by re-

quirement of training of whole network at each iteration.

2.2 Enhanced ErrCor

Long computation time depends on many factors. One of the most important is number

of patterns used in training and long training of whole network after adding of next

122

Fig. 1. RBF network architecture

RBF unit. In order of improve this process we suggest the following modifica-tions of

ErrCor algorithm:

– after adding new RBF unit only this new unit is trained using LM-based method

used in ErrCor algorithm [10] and after that all output weights are justified using

regression;

– after added N new RBF units whole network is trained using the same LM-based

method used in ErrCor algorithm where N is arbitrary assigned value.

Such modification allow to shortened training process because critical whole train-

ing process is limited to cases when N new units are added to network. In the other cases

the training is much faster because in fact trained is only one RBF unit and regression

is quite small absorbing process.

Pseudo code of the enhanced ErrCor algorithm is shown below. Changes to original

ErrCor algorithm [10] are bolded.

Enhanced ErrCor pseudo code

evaluate error of each pattern;

while 1

C = pattern with biggest error;

add a new RBF unit with center = C;

if N new RBF units are added

train the whole network using LM-based method;

else

train only one new added RBF unit using LM-based method;

adjust output weights for whole network by regression

end

evaluate error of each pattern;

123

calculate SSE = Sum of Squared Errors;

if SSE < desired SSE

break;

end;

end

In the next section some experimental results for this approach is presented.

3 Experiments Results

To confirm suggested approach several experiments for different approximation bench-

mark functions and training parameters have been prepared. The following functions

have been selected: Peaks function, Second Shaffer function and Shwefel function. In

the next three subsections the ErrCor algorithm and the Enhanced ErrCor algorithm

have been used to solve approximation problem of mentioned functions. In all exper-

iments 900 training patterns and 3481 testing patterns have been generated. For such

prepared data series experiments have been done with different values of parameter N

and compared to results achieved using original ErrCor algorithm. To prepare experi-

ments Matlab 2009b software with Windows 7 64 on Intel Core i5-M560 CPU and 8GB

platform was used.

3.1 Shwefel Function

First experiment was prepared for Shwefel function given by

z (x, y) = 2 ∗ 418.9829−xsin
(

√

|x|
)

−ysin
(

√

|y|
)

(3)

shown in Figure 2.

Fig. 2. Surface of normalized Shwefel function.

124

Results achieved for Shwefel function are shown in Table 3. Result for original

ErrCor that can be treated as a reference is denoted as OrgErrCor. Parameter N means

the number of units that are added to network between full training. The case when

training process is done without full network training is denoted as X in column N. The

RMSE is Root Mean Square Error given by:

RMSE =

√

∑n

i=1
(outT − outE)

2

n
(4)

where outT is the output of trained network and outE is expected value and n is the

number of patterns.

Table 1. Results for Shwefel function.

N Training time Training RMSE Testing RMSE

OrgErrCor 246.6722 0.0038543 0.0038299

2 215.7920 0.0032388 0.0031717

3 148.7899 0.0030517 0.0029844

4 88.0451 0.0052154 0.0051204

5 75.5889 0.0053222 0.0051949

6 59.7885 0.0052533 0.0051889

7 51.9710 0.0057257 0.0057030

8 66.9600 0.0079042 0.0077081

9 60.3580 0.0054597 0.0053507

10 51.2228 0.0059679 0.0058742

15 43.1061 0.0105723 0.0104105

30 36.2405 0.0497498 0.0498103

X 21.1715 0.0747471 0.0732735

As shown in Table 1 training time decreases with increased value of N. This is

ob-vious because frequency of full training, that is the most time consuming part of

training process is smaller for higher N. More important is that values of testing and

training RMSE for small values of N (2 and 3) are better than these achieved with

original ErrCor, and for higher value of N are only slightly worse. Note that results for

N=10 are only 53% worse but achieved almost 5 times faster.

3.2 Second Shaffer Function

The second experiment have been done for Second Shaffer function. This function is

given by

z (x, y) = 0.5 +
sin2

(

x2 − y2
)

− 0.5

[1 + 0.001 (x2 − y2)]
2

(5)

shown in Figure 3.

125

Fig. 3. Surface of normalized Second Shaffer function.

Results achieved with Enhanced Error Correction algorithm is shown in Table 2.

Similarly like for Shwefel function training time decreases with N while RMSE is rel-

atively are close to or even lower than for original ErrCor.

Figure 4 show the training process that show changes of training and testing RMSE

during training process. Training RMSE is drown as blue circles and testing RMSE is

drawn as a red stars. As can be observed in the case of Enhanced ErrCor with N = 2

reaches similar result as ErrCor but is able to obtain same results faster and using less

neurons.

Table 2. Results for Second Shaffer function.

N Training time Training RMSE Testing RMSE

OrgErrCor 262.1465 0.0008487 0.0046744

2 160.7057 0.0005260 0.0046379

3 140.3324 0.0005305 0.0046374

4 123.2476 0.0008320 0.0051382

5 106.8903 0.0014932 0.0047826

6 50.9329 0.0018604 0.0049701

7 44.1457 0.0011056 0.0047119

8 43.9627 0.0010136 0.0046913

9 28.2079 0.0018110 0.0049119

10 57.9185 0.0010418 0.0047068

15 21.7188 0.0017827 0.0049438

30 17.5358 0.0093627 0.0103736

X 14.4285 0.0093627 0.0103736

126

Fig. 4. Training process for approximation of Second Shaffer function with: (a) original

ErrCor algorithm, (b) Enhanced ErrCor (N=2)

3.3 Peaks Function

The last experiment with described Enhanced Error Correction algorithm has been used

for approximation of Peaks function given by:

z(x, y) = − 1

30
e(−1−6x−9x2

−9y2)+

−
(

0.6x − 27x3 − 243y5
)

e(−9x2
−9y2)

+
(

0.3 − 1.8x + 2.7x2
)

e(−1−6y−9x2
−9x2)

(6)

and shown in Figure 5.

Results achieved for this function in the same way like for previous functions are

shown in Table 3. Unfortunately, they are not so clear like for previous functions. While

training time decreases with N in the same time RMSE values increase.

Examples of training process by original ErrCor and Enhanced ErrCor with N=3

is presented in Figure 6. As can be observed the full network training is seen as a

rapid RMSE decreasing while adding and training of one RBF unit initially produces

similar effect but later does not decrease RMSE. In the case when N value is higher than

maximal number of units in the network the training is limited to adding new units and

training then one-by-one without full network training. Such training process is shown

in Figure 7. Note that starting from 14th unit added to network RMSE values are not

decreasing. This is because each new unit added to network is localized ac-cording to

the pattern with the highest error and in these case each new unit, starting from 14th, is

initially localized in the same place.

4 Conclusions

Achieved results confirm effectiveness of suggested method for improvement Er-ror

Correction algorithm that is currently one of the most powerful for training RBF net-

works. Proposed modification allows to reduce training time in most cases without

127

Fig. 5. Surface of Peaks function.

Table 3. Results for Peaks function.

N Training time Training RMSE Testing RMSE

OrgErrCor 710.2437 0.0000071 0.0000071

2 418.5150 0.0000234 0.0000234

3 255.5103 0.0000580 0.0000580

4 137.8621 0.0001049 0.0024100

5 75.8098 0.0015600 0.0018230

6 72.7661 0.0079510 0.0080396

7 136.9426 0.0001695 0.0001710

8 98.7397 0.0024247 0.0024510

9 28.9673 0.0191530 0.0231557

10 25.4868 0.0107400 0.0108643

15 54.5841 0.0014544 0.0014681

30 29.8234 0.0464481 0.0470313

X 17.1136 0.0464481 0.0470313

128

Fig. 6. Training process for approximation of Peaks function with: (a) original ErrCor

algorithm, (b) Enhanced ErrCor (N=3).

Fig. 7. Training process for approximation of Peaks function with Enhanced ErrCor

without full network training.

129

losses of low training and testing errors. Further work will be focused on improve-

ment of proposed algorithm by correction of method for selection of initial localization

for new RBF units and on applying described algorithm for wider spectrum of functions

and real world classification datasets from UCI Machine Learning Repository.

References

1. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back-

propagating errors," Nature, vol. 323, pp. 533-536, 1986.

2. S. E. Fahlman and C. Lebiere, "The cascade-correlation learning architecture". In D. S. Touret-

zky (ed.) Advances in Neural Information Processing Systems 2 . Morgan Kaufmann, San

Mateo, CA, 1990, pp. 524-532

3. K. L. Lang, M.J. Witbrock, "Learning to Tell Two Spirals Apart". Proceedings of the 1988

Connectionists Models Summer School, Morgan Kaufman.

4. B. M.Wilamowski, "Challenges in Applications of Computational Intelligence in Industrial

Electronics", IEEE International Symposium on Industrial Electronics (ISIE 2010), Jul 04-07,

2010, pp. 15-22.

5. Y. Bengio, "Learning deep architectures for AI". Foundations and Trends in Machine Learn-

ing, 2(1), 1-127. Also published as a book. Now Publishers, 2009.

6. D. C. Ciresan, U. Meier, L.M. Gambardella, and J. Schmidhuber, "Deep big simple neural

nets excel on handwritten digit recognition", CoRR, 2010.

7. B. M. Wilamowski and H. Yu, "Neural Network Learning Without Backpropagation," IEEE

Trans. on Neural Networks, vol. 21, no.11, pp1793-1803, Nov. 2010.

8. P. J. Werbos, "Back-propagation: Past and Future". Proceeding of International Conference on

Neural Networks, San Diego, CA, 1, 343-354, 1988.

9. H. Yu, T. Xie, J. Hewlett, P. Rozycki, B. Wilamowski, "Fast and Efficient Second Order

Method for Training Radial Basis Function Networks", IEEE Transactions on Neural Net-

works, 2012, Vol. 24, Issue: 4, pp. 609-619

10. H. Yu, P. Reiner, T. Xie, T. Bartczak, B. Wilamowski, "An Incremental Design of Radial

Basis Function Networks", IEEE Transactions on Neural Networks and Learning Systems,

vol 25, No. 10, Oct 2014, pp. 1793-1803.

11. B. M. Wilamowski, R. C. Jaeger, "Implementation of RBF type networks by MLP net-

works", IEEE International Conference on Neural Networks (ICNN 96), pp. 1670-1675

12. X. Wu, B.M. Wilamowski "Advantage analysis of sigmoid based RBF networks". In: Pro-

ceedings of the 17th IEEE International Conference on Intelligent Engineering Sys-tems

(INES’13). 2013. p. 243-248.

13. C. Cecati, J. Kolbusz, P. Rozycki, P. Siano, B. Wilamowski, "A Novel RBF Training Al-

gorithm for Short-Term Electric Load Forecasting and Comparative Studies", IEEE Trans. on

Ind. Electronics, Eearly Access, 2015.

